
SIAM REVIEW c© 2004 Society for Industrial and Applied Mathematics
Vol. 46, No. 3, pp. 443–454

Accelerating the Nonuniform
Fast Fourier Transform∗

Leslie Greengard†

June-Yub Lee‡

Abstract. The nonequispaced Fourier transform arises in a variety of application areas, from medical
imaging to radio astronomy to the numerical solution of partial differential equations. In
a typical problem, one is given an irregular sampling of N data in the frequency domain
and one is interested in reconstructing the corresponding function in the physical domain.
When the sampling is uniform, the fast Fourier transform (FFT) allows this calculation
to be computed in O(N logN) operations rather than O(N2) operations. Unfortunately,
when the sampling is nonuniform, the FFT does not apply. Over the last few years,
a number of algorithms have been developed to overcome this limitation and are often
referred to as nonuniform FFTs (NUFFTs). These rely on a mixture of interpolation and
the judicious use of the FFT on an oversampled grid [A. Dutt and V. Rokhlin, SIAM J.
Sci. Comput., 14 (1993), pp. 1368–1383].

In this paper, we observe that one of the standard interpolation or “gridding” schemes,
based on Gaussians, can be accelerated by a significant factor without precomputation
and storage of the interpolation weights. This is of particular value in two- and three-
dimensional settings, saving either 10dN in storage in d dimensions or a factor of about
5–10 in CPU time (independent of dimension).

Key words. nonuniform fast Fourier transform, fast gridding, FFT, image reconstruction

AMS subject classifications. 42A38, 44A35, 65T50, 65R10

DOI. 10.1137/S003614450343200X

1. Introduction. In this note, we describe an extremely simple and efficient
implementation of the nonuniform fast Fourier transform (NUFFT). There are a
host of applications of such algorithms, and we refer the reader to the references
[2, 6, 8, 11, 13, 14, 17] for examples. We restrict our attention here to one: function
(or image) reconstruction from Fourier data as discussed in [6, 8, 11, 14]. Let us
begin, however, with a more precise description of the computational task. In two
dimensions, we define the nonuniform discrete Fourier transform of types 1 and 2
according to the formulae

F (k1, k2) =
1
N

N−1∑
j=0

fj e
−i(k1,k2)·xj ,(1)

∗Received by the editors July 23, 2003; accepted for publication (in revised form) December 1,
2003; published electronically July 30, 2004.

http://www.siam.org/journals/sirev/46-3/43200.html
†Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

(greengard@cims.nyu.edu). The work of this author was supported by the Applied Mathematical
Sciences Program of the U.S. Department of Energy under contract DEFGO288ER25053.
‡Department of Mathematics, Ewha Womans University, Seoul, 120-750, Korea (jylee@math.

ewha.ac.kr). The work of this author was supported by the Korea Research Foundation under grant
2002-015-CP0044.

443

444 LESLIE GREENGARD AND JUNE-YUB LEE

f(xj) =
∑
k1

∑
k2

F (k1, k2) ei(k1,k2)·xj ,(2)

respectively, where xj ∈ [0, 2π]× [0, 2π] and −M2 ≤ k1, k2 <
M
2 .

It is, perhaps, convenient to think of (1) as a discretization of the Fourier integral

F (k1, k2) =
1

(2π)2

∫ 2π

0

∫ 2π

0
f(x) e−i(k1,k2)·x dx(3)

with {xj} serving as the discretization points. If we let wj denote the quadrature
weight corresponding to {xj}, then we obtain (1) by setting fj = f(xj)wj . Equation
(2), of course, is simply the evaluation of a finite Fourier series

f(x) =
∑
k1

∑
k2

F (k1, k2) ei(k1,k2)·x(4)

at an arbitrary set of targets.
Nonuniform FFTs of the types discussed here are based, in essence, on combining

some interpolation scheme with the standard FFT. Oddly enough, it was a number
of years after their use in applications before a rigorous analysis of such schemes was
introduced by Dutt and Rokhlin [5]. Subsequent papers, such as [1, 3, 9, 10], described
variants based on alternative interpolation/approximation approaches.

Before discussing the algorithm itself, we would like to comment briefly on appli-
cations that involve evaluation of (3) or the Fourier integral

H(s1, s2) =
∫ ∞
−∞

∫ ∞
−∞

h(x) e−i(s1,s2)·x dx(5)

when the transform data h(x) is known at a scatter of points rather than on a regular
Cartesian mesh. There is some confusion in the literature about the use of NUFFTs in
this context (see Remark 1 below). There are three separate issues involved: acquisi-
tion of data h(xj) in the Fourier domain, the choice of a quadrature scheme {xj , wj},
and the availability of a fast algorithm for computing the discrete transform itself.
They are often blended together when they should not be. Dutt and Rokhlin [5] ap-
pear to have been the first to try to isolate one of these problems; they addressed the
algorithmic question and showed that sums of the form (1) or (2) can be computed
in O(N logN) time with complete control of precision. While they concentrated on
the one-dimensional case, higher dimensional versions have been considered by a va-
riety of authors [3, 6, 14]. The first rigorous two-dimensional version can be found
in a paper by Strain [15], which uses the NUFFT to solve a class of elliptic partial
differential equations.

Remark 1. Not all schemes for reconstructing Fourier integrals of the type (3)
can be represented formally as a quadrature of the type (1). Different schemes for
interpolating f(xj) to a uniform mesh do give rise to different reconstructed functions
F . However, if the decision has been made to use a quadrature approach such as (1),
then the remaining task is entirely computational. The best algorithm is the one that
evaluates the relevant sums as quickly and as accurately as possible.

2. The NUFFT. Let us first consider the one-dimensional analogs of the summa-
tion problems (1) and (2). With xj ∈ [0, 2π], the type-1 NUFFT is defined by the

ACCELERATING THE NONUNIFORM FAST FOURIER TRANSFORM 445

calculation of

F (k) =
1
N

N−1∑
j=0

fj e
−ikxj for k = −M

2
, . . . ,

M

2
−1 .(6)

It is based on the following set of observations:
1. Equation (6) describes the exact Fourier coefficients of the function

f(x) =
N−1∑
j=0

fjδ(x− xj),(7)

viewed as a periodic function on [0, 2π]. Here, δ(x) denotes the Dirac delta
function. It is clearly not well-resolved by a uniform mesh in x.

2. Let gτ (x) denote the one-dimensional periodic heat kernel on [0, 2π], given by

gτ (x) =
∞∑

l=−∞
e−(x−2lπ)2/4τ .

If we define fτ (x) to be the convolution

fτ (x) = f ∗ gτ (x) =
∫ 2π

0
f(y)gτ (x− y) dy,(8)

then fτ is a 2π-periodic C∞ function and can be well-resolved by a uniform
mesh in x whose spacing is determined by τ (Figure 1). The Fourier coeffi-
cients of fτ , namely,

Fτ (k) =
1

2π

∫ 2π

0
fτ (x)e−ikx dx ,

can be computed with high accuracy using the standard FFT on an oversam-
pled grid

Fτ (k) ≈ 1
Mr

Mr−1∑
m=0

fτ (2πm/Mr)e−ik2πm/Mr ,(9)

where

fτ (2πm/Mr) =
N−1∑
j=0

fjgτ (2πm/Mr − xj).(10)

3. Once the values Fτ (k) are known, an elementary calculation shows that

F (k) =
√
π

τ
ek

2τFτ (k).(11)

(This is a direct consequence of the convolution theorem and the fact that
the Fourier transform of gτ is Gτ (k) =

√
2τ e−k

2τ .)

446 LESLIE GREENGARD AND JUNE-YUB LEE

j

image

image
x

π20

Fig. 1 In the version of the NUFFT described here, each delta function source at a point such as
xj in (7) is replaced by a Gaussian. This smears the source strength to nearby regular grid
points. The regular grid must be fine enough to resolve the smeared function fτ in (8). Note
that we include 2π-periodic images of the sources in the definition of the heat kernel gτ .
They decay sufficiently rapidly that all but the nearest ones can be ignored.

Recall that a type-2 transformation evaluates a regular Fourier series at irregular
target points. Thus, in one dimension, for xj ∈ [0, 2π], the type-2 NUFFT is defined
by the calculation of

f(xj) =

M
2 −1∑

k=−M2

F (k) eikxj .(12)

It is based on a closely related idea:
1. We first deconvolve the Fourier coefficients, defining F−τ (k) by

F−τ (k) =
√
π

τ
ek

2τ F (k),(13)

and evaluate the corresponding function f−τ (x) on a uniform mesh with Mr

points on [0, 2π] using the FFT

f−τ (x) =
Mr−1∑
k=0

F−τ (k) eikx.(14)

In the preceding expression, we set F−τ (k) = 0 for M
2 ≤ k < Mr − M

2 and
view F−τ (k) as an Mr-periodic function F−τ (k) = F−τ (k −Mr).

2. We then compute the desired values f(xk) from

f(xj) = f−τ ∗ gτ (xj) =
1

2π

∫ 2π

0
f−τ (x)gτ (xj − x) dx

≈ 1
Mr

Mr−1∑
m=0

f−τ (2πm/Mr) gτ (xj − 2πm/Mr).(15)

This is again a direct consequence of the convolution theorem except that we
deconvolve the effect of Gaussian smoothing in (13) before we actually carry
out the smoothing in (15)!

ACCELERATING THE NONUNIFORM FAST FOURIER TRANSFORM 447

Remark 2. There are a number of details that need to be fixed here, including
the selection of τ , the convolution with a Gaussian in both procedures, and the length
Mr of the FFTs used. We will not repeat the analysis of [5], since the relevant results
can be summarized very simply: with Mr = 2M and τ = 12/M2, Gaussian spreading
of each source to the nearest 24 grid points yields about 12 digits of accuracy. With
τ = 6/M2, Gaussian spreading of each source to the nearest 12 grid points yields
about 6 digits of accuracy.

3. Fast Gaussian Gridding. The dominant task in the NUFFT is the calcula-
tion of fτ (2πm/Mr) in (10) and f(xj) in (15). Following standard practice, we will
refer to these processes as gridding and the Mr-point mesh as the oversampled mesh.
In d dimensions, gridding requires 12dN exponential evaluations for single precision
accuracy and about 24dN exponential evaluations for double precision accuracy. In
order to avoid that cost using existing schemes, one can precompute all the necessary
quantities, incurring a storage cost of 12dN or 24dN and a computational cost of
12dN or 24dN multiplications.

This cost (in either storage or CPU time or both) becomes a significant burden in
two, three, and higher dimensions. It is sometimes called the curse of dimensionality;
in the absence of a separable coordinate system, interpolation-type processes have
costs that grow exponentially with dimension. In the remainder of this paper, we
don’t overcome the curse, but we show that (1 + d)N exponential evaluations or
(1+d)N storage is sufficient, followed by (12d+12d)N or (24d+24d)N multiplications,
depending on the required accuracy. The net reduction in CPU time is by a factor of
5–10.

By inspection of (10), it is evident that we only need values of the function fτ at
equispaced points on the oversampled mesh. For this, we have

fτ (2πm/Mr) =
N−1∑
j=0

fj

∞∑
l=−∞

e−(xj−2πm/Mr−2lπ)2/4τ .

This expression for fτ looks much more expensive than it actually is. Since the
Gaussian sources are sharply peaked (in a manner dependent on τ), each source of
strength fj located at xj is nonnegligible only at nearby grid points. As mentioned
above, we only need to compute its effect at the nearest 12 or 24 points (Figure 1)
to achieve either 6- or 12-digit accuracy. Thus, for the purpose of computation, we
change our point of view from the receiving point (2πm/Mr) to the source point xj
and consider one Gaussian source at a time. An elementary calculation shows that

e−(xj−2πm/Mr)2/4τ = e−x
2
j/4τ

(
exjπ/Mrτ

)m
e−(πm/Mr)2/τ .(16)

But this means that we can compute and store two exponentials, e−x
2
j/4τ and exjπ/Mrτ ,

for each source point. The third exponential, e−(πm/Mr)2/τ , is independent of xj .
The gridding algorithm is straightforward:
• Let ξ = 2πm/Mr denote the nearest regular grid point that is less than or

equal to xj on the oversampled grid. Beginning at ξ, let Msp denote the
number of grid points to which the spreading will be accounted for in each
direction.
• Compute the two exponentials: E1 = e−(xj−ξ)2/4τ , E2 = e(xj−ξ)π/Mrτ .
• The spreading contribution to fτ (2π(m+m′)/Mr) for −Msp < m′ ≤ Msp is
fj E1 ·Em

′

2 ·E3(m′), where Msp = 6 for single precision, Msp = 12 for double
precision, and E3(m′) = e−(πm′/Mr)2/τ .

448 LESLIE GREENGARD AND JUNE-YUB LEE

Careful organization of the loop shows that, for each source point, two exponential
evaluations are required, followed by two multiplications at each of 2Msp regular mesh
points. The algorithm for (15) is similar.

A nice feature of Gaussian spreading is that the heat kernel is built as a tensor
product:

e−(xj−2πm/Mr)2/4τ · e−(yj−2πn/Mr)2/4τ

= e−(xj+yj)2/4τ
(
exjπ/Mrτ

)m (
eyjπ/Mrτ

)n
e−(πm/Mr)2/τ e−(πn/Mr)2/τ .

Thus, one can carry out spreading one dimension at a time.
There follows an informal description of the implementation of the type-1 fast

gridding algorithm in two dimensions,

F (k1, k2) =
1
N

N−1∑
j=0

fj e
−i(k1,k2)·xj ,

for −M2 ≤ k1, k2 <
M
2 and xj ∈ [0, 2π]× [0, 2π].

Fast Gridding Algorithm of Type 1 in Two Dimensions.

Step I: Initialization

1. Set the oversampling ratio R = Mr/M , the spreading parameter Msp, and
the Gaussian kernel parameter τ according to the desired precision ε.

2. Precompute E3(l) = e−(πl/Mr)2/τ for 0 ≤ l ≤ Msp and E4(k) = E4(M−k)
= eτk

2
for |k| ≤ M

2 .
Step C: Convolution for Each Source Point (xj , yj)

1. Find the nearest grid point (ξ1, ξ2) = 2π
Mr

(m1,m2) with ξ1 ≤ xj , ξ2 ≤ yj .

2. Compute E1 = e−((xj−ξ1)2+(yj−ξ2)2)/4τ , E2x = eπ(xj−ξ1)/Mrτ , E2y = eπ(yj−ξ2)/Mrτ

and E2x(l1) = E2x
l1 , E2y(l2) = E2y

l2 for −Msp < l1, l2 ≤Msp.
3. Convolve the Gaussian spreading function with fj as follows:

V0 = fj · E1
for l2 = −Msp+1, Msp

Vy = V0 · E2y(l2)
for l1 = −Msp+1, Msp

Add Vy · E2x(l1) to fτ (m1 + l1,m2 + l2).
Step D: FFT and Deconvolution

1. Compute two-dimensional FFT of fτ (m1,m2) to obtain Fτ (k1, k2).
2. Set F (k1, k2) =

√
π
τ E4(k1)E4(k2)Fτ (k1, k2) for −M2 ≤ k1, k2 <

M
2 .

The total cost is that of the oversampled two-dimensional FFT (Step D), (d+1) ex-
ponential evaluations (Step C2), (d·2Msp) multiplications (Step C2), and (2Msp)d mul-
tiplications (Step C3) per source point.

4. Numerical Examples. The NUFFT of types 1 and 2 have been implemented
(in Fortran) with fast gridding in one and two dimensions. The following is a selection
of examples illustrating their performance.

Example 1 (Verification of Accuracy). In order to check the accuracy of the
gridding algorithm numerically, we compare the results of the type-1 and -2 transforms

ACCELERATING THE NONUNIFORM FAST FOURIER TRANSFORM 449

0 5 10 15
10

−15

10
−10

10
−5

10
0

Type 1: 1024 points in 1D

Spreading distance

C
om

pu
te

d
E

rr
or

0 5 10 15
10

−15

10
−10

10
−5

10
0

Type 1&2: 64*64 grid

Spreading distance
0 5 10 15

10
−15

10
−10

10
−5

10
0

Type 1&2: 16384 points in 2D

Spreading distance

Fig. 2 Gridding error in the NUFFT. In each figure, the x-axis indicates the spreading distance
defined by parameter Msp and the y-axis indicates the computed error. The leftmost figure
corresponds to a one-dimensional example with 1024 points. The middle example uses a uni-
form set of data points in two dimensions and the rightmost figure uses a random distribution
of data points in two dimensions. Dash-dotted lines show the error for an oversampled grid
with Mr = 1.5M , solid lines for Mr = 2M , and dashed lines for Mr = 3M .

Table 1

Msp R = 1.5 R = 2 R = 2.5 R = 3 R = 3.5 R = 4

3 9.0E-3 1.9E-3 8.5E-4 5.3E-4 3.8E-4 3.1E-4
6 8.1E-5 3.5E-6 7.2E-7 2.8E-7 1.5E-7 1.0E-7
9 7.2E-7 6.5E-9 6.2E-10 1.5E-10 5.8E-11 3.0E-11
12 6.5E-9 1.2E-11 5.5E-13 8.0E-14 2.3E-14 9.2E-15

(6), (12) with uniformly distributed random data points using direct summation and
the NUFFT. Figure 2 shows the errors in the l2-norm.

In the fast gridding algorithm, the accuracy of the type-1 transformation (6) is
controlled by three parameters: the Gaussian kernel parameter τ , the oversampling
ratio R = Mr/M , and the spreading distance Msp. We set τ according to the formula

τ =
1
M2

π

R(R− 0.5)
Msp .

As indicated earlier, we refer to the paper [5] for a detailed analysis. Here, we present
some numerical experiments verifying the precision estimates derived there (see Ta-
ble 1).

Example 2 (Fast Gridding Compared to Gridding). The naive Gaussian grid-
ding algorithm and the fast gridding method for (1), (2), (6), and (12) have been
tested in various computing environments, including Solaris 2.7 with gcc-2.95 on a
450MHz Ultra-60 with 768MB RAM, cygwin-5.1 with gcc-3.2 on a 1GHz Pentium-3
with 384MB RAM, and cygwin-5.1 with gcc-3.2 on a 2.4GHz Pentium-4 with 1GB
RAM. Figure 3 summarizes the computational costs for Mr = 2M , Msp = 6 yielding
six digits of accuracy.

Both algorithms use the standard FFT on the oversampled mesh, and the time
for this step is indicated in Figure 3 by dotted lines. The actual computation time
depends on a number of factors, including compiler options, type of CPU, performance

450 LESLIE GREENGARD AND JUNE-YUB LEE

 0 50,000 100,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
1D: Ultra−60(450Mhz)

Number of Data Points

T
im

e
(S

ec
)

 0 50,000 100,000
0

0.2

0.4

0.6

0.8

1
1D: Pentium−III(1GHz)

Number of Data Points

T
im

e
(S

ec
)

 0 50,000 100,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
1D: Pentium−IV(2.4Ghz)

Number of Data Points

T
im

e
(S

ec
)

 0 50,000 100,000
0

2

4

6

8

10
2D: Ultra−60(450Mhz)

Number of Data Points

T
im

e
(S

ec
)

 0 50,000 100,000
0

2

4

6

8

10
2D: Pentium−III(1GHz)

Number of Data Points

T
im

e
(S

ec
)

 0 50,000 100,000
0

1

2

3

4

5

6
2D: Pentium−IV(2.4Ghz)

Number of Data Points

T
im

e
(S

ec
)

Fig. 3 Computing time. Dotted lines represent the cost for FFT, dashed lines for fast gridding, and
dash-dotted lines for naive gridding. Heavy dots (·) are used for type-1 and plus marks (+)
for type-2 transformation.

of the math coprocessor, cache size, etc. Note that the type-1 and type-2 transforms
are very similar in terms of floating point operations; the differences in CPU time are
due mainly to memory caching issues. In any case, the speed-up of the fast gridding
algorithm is significant in two dimensions and would be even more significant in the
three-dimensional case. We used an optimized version of the FFT and compiled all
codes with the O2 optimization flag, but we did not carry out a complete optimization
of the fast gridding algorithm itself. More detailed (but less portable) implementation
work could probably yield a further factor of 5–10 in performance. We have not carried
out such fine-tuning.

Example 3 (Comparison with Direct Method). In this example, we compare
the computational performance of our fast gridding algorithm with direct summation
and the standard FFT. The direct code was implemented and compiled with the same
options: the gcc-2.95 compiler with -O2 optimization on a 450MHz Sparc Ultra-60.
Figure 4 shows our results. We set Mr = 2M , and set the number of data points
N = M in one dimension and N = M2 in two dimensions.

Using the data of Figure 4, we can summarize the performance of the method in
one and two dimensions as follows. First, direct summation requires about 0.022 N2

(µsec) in one dimension and 0.087 N2 (µsec) in two dimensions. In one dimension,
the oversampled FFT requires about 2.4 Mr µsec (using a linear fit of the data over
the range of Mr tested). Note that this is already twice as expensive as an M -point

ACCELERATING THE NONUNIFORM FAST FOURIER TRANSFORM 451

10
3

10
4

10
5

10
−2

10
−1

10
0

1D Transformation Cost

Number of Data Points

T
im

e
(S

ec
)

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

2D Transformation Cost

Number of Data Points
T

im
e

(S
ec

)

Fig. 4 CPU requirements of the direct code (solid lines with dots), the fast gridding code (four solid
lines with tolerance ε = 10−3, 10−6, 10−9, 10−12 from bottom to top), and the standard FFT
for the oversampled mesh with Mr = 2M (dotted lines).

Table 2

1D ε = 10−3 ε = 10−6 ε = 10−9 ε = 10−12

Time (µsec) 3.77 N 4.40 N 4.78 N 5.44 N
Break even (N) 170 200 220 250

2D ε = 10−3 ε = 10−6 ε = 10−9 ε = 10−12

Time (µsec) 8.45 N 20.67 N 36.35 N 59.30 N
Break even (N =M2) 10*10 15*15 20*20 26*26

FFT. In two dimensions, the oversampled FFT requires about 2.5 M2
r µsec. This is

four times as expensive as an M×M FFT. Table 2 shows how the computational cost
for gridding grows with precision. It also shows the break-even point with respect to
the direct algorithm.

In summary, the NUFFT is about 4 times more expensive in one dimension than
a traditional M -point FFT for single precision accuracy. It is about 25 times slower
in the current implementation than the traditional two-dimensional M ×M FFT—a
factor of 21 from gridding and a factor of 4 from the oversampled FFT.

Example 4 (MRI Image Reconstruction). One of the important applications of
the nonuniform FFT is to magnetic resonance imaging (MRI) [6, 8, 11, 12, 13, 14].
The MRI hardware is able to acquire the Fourier transform of a particular tissue
property at selected points in the frequency domain. In most clinical systems, the
device is designed to acquire data on a uniform Cartesian mesh, from which a standard
FFT can be used for image reconstruction. For a variety of technical reasons, however,
nonuniform data sampling techniques are much better suited for fast data acquisition,
motion correction, and functional MRI [4]. In this example, we create simulated MRI

452 LESLIE GREENGARD AND JUNE-YUB LEE

data by using a type-2 transformation in two dimensions:

F (skx, s
k
y) =

∑
j1

∑
j2

f(j1, j2) e−i(j1,j2)·(skx,s
k
y) ,(17)

followed by a type-1 transformation to reconstruct the image,

f̃(j1, j2) =
N−1∑
k=0

Fk e
i(j1,j2)·(skx,s

k
y).(18)

If the function F (sx, sy) were known everywhere, then the exact reconstruction
would obviously be the Fourier integral

f̃(j1, j2) =
∫ 2π

0

∫ ∞
0

F (r, θ)ei(j1,j2)·(r cos θ,r sin θ)r dr dθ,(19)

written in polar coordinates. It is probably worth repeating a point made in the
introduction: once the decision has been made to use (18) for reconstruction, one
still has a number of degrees of freedom to work with. Engineering considerations
determine the selection of points {(skx, sky)}, which will certainly affect the image
quality. One must also select quadrature weights Wk so that, in the transform (18),
Fk ≡ Wk F (skx, s

k
y). There are a number of interesting optimization questions that

arise here, which will be addressed in subsequent work.
Here, we will simply use a radial grid and truncate the integral (19) at r = π,

introducing a “ringing” artifact that can be seen in the reconstruction. For a fixed
NUFFT tolerance ε, the result computed agrees with the exact sum (18) to within
that error. More precisely, we let

(skx, s
k
y) = rj (cos(θi), sin(θi)) , rj =

πj

M
, θi =

2πi
2M

(20)

for k = i + M ∗ j, 0 ≤ j < M , 0 ≤ i < 2M , so that N = 2M2. Thus, the quadrature
weight for the point indexed by k = i+M ∗j is rj ∆θ∆r = (jπ/M) ·(2π/2M) ·(π/M).

Figure 5 shows the image reconstructed in this manner from the well-known
Shepp–Logan phantom sampled on a 256 × 256 grid. We set the Fourier transform
tolerance to ε = 10−6.

5. Conclusions. The nonuniform FFT (NUFFT) is an important, and relatively
recent, algorithm. There is, however, some confusion in the literature about its use.
It is simply a fast algorithm for computing discrete sums of a certain type. It is
completely independent of considerations having to do with acquisition of data in the
Fourier domain or the choice of a quadrature scheme in computing Fourier integrals.
The use of Gaussian spreading inside the algorithm has no theoretical advantage over
any other properly applied “spreading function.” It does, however, allow a particularly
simple and fast implementation, as described above. We believe it provides the first
reasonably efficient three-dimensional scheme.

We do not mean to suggest, however, that all schemes for Fourier reconstruction
must be based on a quadrature approach and the calculation of sums like (18) or (1).
A more general linear reconstruction algorithm could take the form

F (k1, k2) =
1
N

N−1∑
j=0

W (j, k1, k2)f(xj) e−i(k1,k2)·xj .(21)

ACCELERATING THE NONUNIFORM FAST FOURIER TRANSFORM 453

−1 0 1

0
10
20
30
40
50

y=0.250

−1 0 1

0
10
20
30
40
50

y=−0.609

0

10

20

30

40

50

−1 0 1
−1

0

1

Fig. 5 Reconstructed image from Fourier data sampled on a radial (polar coordinate) grid. The
curves at the right show the reconstructed function along the lines y = 0.25 and y = −0.609.

Here the weight W depends on both the “source” (j) and the “target” (k1, k2). The
NUFFT does not apply to this calculation.

REFERENCES

[1] C. Anderson and M. D. Dahleh, Rapid computation of the discrete Fourier transform, SIAM
J. Sci. Comput., 17 (1996), pp. 913–919.

[2] S. Bagchi and S. Mitra, The Nonuniform Discrete Fourier Transform and Its Applications
in Signal Processing, Kluwer Academic, Boston, 1999.

[3] G. Beylkin, On the fast Fourier transform of functions with singularities, Appl. Comput.
Harmonic Anal., 2 (1995), pp. 363–383.

[4] M. Bourgeois, F. Wajer, D. Ormondt, and D. Graveron-Demilly, Reconstruction of MRI
images from non-uniform sampling and application to Intrascan motion correction in func-
tional MRI, in Modern Sampling Theory: Mathematics and Applications, J. J. Benedetto
and P. Ferreira, eds., Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2001, pp. 343–363.

[5] A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci.
Comput., 14 (1993), pp. 1368–1393.

[6] J. A. Fessler and B. P. Sutton, Nonuniform fast Fourier transforms using min-max inter-
polation, IEEE Trans. Signal Process., 51 (2003), pp. 560–574.

[7] L. Greengard and P. Lin, Spectral approximation of the free-space heat kernel, Appl. Comput.
Harmonic Anal., 9 (2000), pp. 83–97.

[8] J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, Selection of a convolution
function for Fourier inversion using gridding, IEEE Trans. Med. Imag., 10 (1991), pp.
473–478.

[9] Q. H. Liu and N. Nguyen, An accurate algorithm for nonuniform fast Fourier transforms
(NUFFT), IEEE Microwave Guided Wave Lett., 8 (1998), pp. 18–20.

[10] N. Nguyen and Q. H. Liu, The regular Fourier matrices and nonuniform fast Fourier trans-
forms, SIAM J. Sci. Comput., 21 (1999), pp. 283–293.

[11] J. D. O’Sullivan, A fast sinc function gridding algorithm for Fourier inversion in computer
tomography, IEEE Trans. Med. Imag., MI-4 (1985), pp. 200–207.

[12] G. B. Pike, Multidimensional Fourier transformation in magnetic resonance imaging, in The
Fourier Transformation in Biomedical Engineering, T. Peters and J. Williams, eds., Appl.
Numer. Harmon. Anal., Birkhäuser, Boston, 1998, pp. 89–128.

454 LESLIE GREENGARD AND JUNE-YUB LEE

[13] D. Potts, G. Steidl, and M. Tasche, Fast Fourier transforms for nonequispaced data: A
tutorial, in Modern Sampling Theory: Mathematics and Applications, J. J. Benedetto and
P. Ferreira, eds., Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2001, pp. 249–274.

[14] G. E. Sarty, R. Bennett, and R. W. Cox, Direct reconstruction of non-Cartesian k-space
data using a nonuniform fast Fourier transform, Magn. Reson. Med., 45 (2001), pp. 908–
915.

[15] J. Strain, Fast potential theory II: Layer potentials and discrete sums, J. Comput. Phys., 99
(1992), pp. 251–270.

[16] A. R. Thompson and R. N. Bracewell, Interpolation and Fourier transformation of fringe
visibilities, Astronom. J., 79 (1974), pp. 11–24.

[17] A. F. Ware, Fast approximate Fourier transforms for irregularly spaced data, SIAM Rev., 40
(1998), pp. 838–856.

