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Abstract We show that SDP (semidefinite programming) and SOCP (second order cone
programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic
optimization problems. It is a generalization of the results by S. Zhang for a subclass of
quadratic maximization problems that have nonnegative off-diagonal coefficient matrices
of quadratic objective functions and diagonal coefficient matrices of quadratic constraint
functions. A new SOCP relaxation is proposed for the class of nonconvex quadratic opti-
mization problems by extracting valid quadratic inequalities for positive semidefinite cones.
Its effectiveness to obtain optimal values is shown to be the same as the SDP relaxation
theoretically. Numerical results are presented to demonstrate that the SOCP relaxation is
much more efficient than the SDP relaxation.
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1 Introduction

We are concerned with solving quadratic optimization problems (QOPs) with quadratic con-
straints by semidefinite programming (SDP) relaxation and second order cone programming
(SOCP) relaxation. QOPs have been a subject of extensive study for their theoretical and
practical importance in optimization. The focus of this paper, in particular, is on nonconvex
QOPs which involve indefinite coefficient matrices in the objective function and constraints.

QOPs arise in a broad range of fields such as combinatorial optimization, numerical
partial differential equations from engineering, control and finance, and general nonlinear
programming problems. Nonconvex QOPs include indefinite symmetric matrices in the ob-
jective and constraints, as opposed to convex QOPs whose coefficient matrices are positive
semidefinite. Local optimizers of convex QOPs serve as global optimizers, hence, an ap-
proximate global optimizer can be found using many publically available codes [1, 8, 9]. For
solutions of convex QOPs, formulating the QOPs as SOCP problems is a possible approach
before applying the primal-dual interior-point method.

Nonconvex QOPs are known to be NP-hard. Lovész and Schrijver [4] and others showed
that certain types of NP-hard combinatorial optimization problems can be approximated
using SDPs. Goemans and Williamson [2] proved an approximated result by SDP relaxation
for the max cut problem, which is a special QOP. This work was extended to approximately
solve QOPs with diagonally homogeneous quadratic constraints and simple bound by Nes-
terov [6] and Ye [10]; a quality bound was established when the constraints are convex and
homogeneous by Nesterov [7]; Zhang [11] showed that an optimal solution of QOPs can be
found from the optimal solution of SDP relaxation for special subclasses of QOPs. When
numerical solutions are to be computed, we can use software such as [1, 8, 9, etc.|, which
are extensions of interior-point methods developed for LPs, to SDPs.

SOCP (second order cone programming) relaxations were proposed in [3] as efficient
methods for obtaining effective bounds for optimal values of QOPs. As the size of QOPs
grows in the number of variables and constraints, computing time needed to solve SDP re-
laxations of QOPs increases rapidly. This has prevented us from finding bounds for optimal
values of large scale QOPs within reasonable amount of computational time. The SOCP
relaxation in [3] was formulated based on the lift-and-project LP (linear programming) re-
laxation by adding convex quadratic valid inequalities for the constraint X — xzz? > 0,
which indicates an infinite number of convex quadratic inequalities, in the SDP relaxation.
The resulting SOCP relaxation method fell between SDP relaxation and the lift-and-project
LP relaxation in the sense that it strengthened the lift-and-project LP relaxation method
with convex quadratic inequalities. Numerically, the SOCP relaxation was shown to be a
reasonable compromise between the effectiveness of the SDP relaxation and the low com-
putational cost of the lift-and-project LP relaxation. A SOCP relaxation for the max cut
problem was proposed by Muramatsu [5]. It took into consideration of the triangular in-
equalities of the max cut problem to reinforce the quality of the added convex quadratic
inequalities. In this paper, we generate a new type of quadratic valid inequalities for positive
semidefinite cones, by requiring a necessary condition that all the 2 x 2 principal subma-
trices of X are nonnegative for an X € S" to be positive semidefinite. Hence the SOCP
relaxation obtained here is different from the ones in [3, 5]. In a class of QOPs which we
will introduce, the added finite number of quadratic inequalities are equally effective as the



positive semidefinite constraint. Considering a smaller number of the variables than SDP
relaxation for QOPs with sparse data matrices in this approach, we can expect increased
effectiveness as well as numerical efficiency over SDP relaxation.

The goal of this paper is to demonstrate, first, that SDP and SOCP relaxations can
provide exact optimal solutions for a class of QOPs in theory. Second, SOCP relaxation is
a much more efficient method than SDP relaxation for the class of QOPs when solutions
are sought numerically. More specifically, we find a class of QOPs such that their optimal
values are the same as the bounds obtained by their SDP and SOCP relaxations and optimal
solutions for the original problems can be obtained from the optimal solutions of the SDP
and SOCP relaxations. We call this property as SDP or SOCP relaxation is exact. We
should mention that this class is an extension of a special subclass of QOPs by Zhang
[11] to more general classes. Numerical experiments are also given to illustrate that SOCP
relaxation is much faster in finding solutions than SDP relaxation.

The remaining of the paper is organized as follows: After introducing a standard form of
QOPs and brief description of their SDP relaxation in Section 2, we show in Section 3 classes
of QOPs whose optimal values can be obtained exactly by SDP and SOCP relaxations. More
precisely, we show that the QOPs with nonpositive off-diagonal elements can be solved
without gap. We also describe how the class of QOPs can be transformed into SOCP
problems. In Section 4, we present numerical results from SDP and SOCP relaxations, and
compare the results and performance with respect to computing time. Section 5 is devoted
to concluding discussions.

Throughout the paper, we use the following notation: Let R", 8" and S’ denote the
n-dimensional Euclidean space, the set of n x n symmetric matrices and the set of n x n
positive semidefinite symmetric matrices, respectively. Let Q, € §", q, € R", and v, € R
(0<p<m). For A,B € S", wedenote Ae B=>7" >"  A;B;, and A = B means
A — B is positive semidefinite. We use ”;” to concatenate vectors into a column.

2 A general QOP and its SDP relaxation

Consider a QOP of the form
minimize 7 QT + 2qi x )
subject to acTQpa: + qucc +7% <0 (1<p<m), z* € F.

Here @, is an n X n symmetric matrix, q, € R", 7, € R for 0 < p <m, F a closed convex
subset of R", and x* = (2%, 22,...,22)T. For convenience, we adopt the following matrix

notation: . .
— 7[37 qp < < _ 1, 0
M, ( 4, Q, ) (0<p<m) and M, 0, 0 )

Here we take 79 = 0. Then we can rewrite QOP (1) as a HQOP (homogeneous QOP)
minimize  (zo;x)T Mo(zo; )
subject to (zo; )" M ,(zo;2)" <0 (p=1,...,m), (2)
1 2

(wo; :I:)TMm+1(:E0; CU)T =

2



It is easily verified that (xo; x) solves HQOP (2) if and only if 23 = 1 and x/z solves QOP
(1).
The SDP (semidefinite programming) relaxation of QOP (1) is

minimize  Q, e X + 2qlx

subject to onX+2q§:L'+7p§O (1<p<m),
. - 1 7 N
dlag(X)E}",X:(m X)ES?.

Using M ,,, we rewrite the SDP relaxation as

minimize Mye X
subject to M,e X <0 (p=1,....,m), Xoo=M,, 110X =1,
XOO .’,CT

diag(X)e]-“,X:( x X >€Sf".

(3)

3 A class of quadratic optimization problems that can
be solved by SDP and SOCP

In this section, we consider QOPs whose SDP and SOCP relaxations admit no gap with
the true optimal values, and whose optimal solutions can be found directly from SDP and
SOCP optimal solutions. We provide a condition when HQOP (2) can be solved exactly by
the SDP relaxation.

In Zhang [11], a class of QOPs is considered:
maximize x?Qz subject to x? € F. (4)

Apparently, the QOP above is a special case of QOP (1) where we take Q, = —Q, q, =0
and m = 0. To be consistent with our arguments here and with what we usually call convex
QOPs having convex quadratic objective functions to be minimized and convex quadratic
inequality constraints, we will deal with a minimization problem:

minimize x?Q,x subject to x*¢€ F (5)
instead of the maximization problem (4). A SDP relaxation of (5) is given as
minimize Q,e X subject to diag (X)e€ F, X =0, (6)

which is a special case of (3). Zhang [11] showed that the optimal value of QOP (5) is equal
to the optimal value of its SDP relaxation (6) if all off-diagonal elements of Q, = —Q are
nonpositive (Corollary 1 of [11]) or more generally if Q, is almost OD-nonpositive (or if
Q is almost OD-nonnegative, Theorem 4 of [11]). See Definition 3.2 below. We will extend
this result to more general cases in Theorems 3.1 and 3.4.

Theorem 3.1. (An extension of Corollary 1 of [11]). Assume that all off-diagonal elements
of M, (0 < p <m) are nonpositive. Let X be an optimal solution of the SDP relazation

(8). Then (2g; &) = (1, vXit, ..., \/Xnn)T is an optimal solution of HQOP (2).
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Proof: By definition, we first observe that
&€ F, =1 and [M,)];27 =[M,];X;; (0<j<n, 0<p<m).
Since X is positive semidefinite, we see that
(Xkj)* < XXy (0< k <j<n). (7)

Hence, it follows from the nonpositivity of all off-diagonal elements of M, (0 < p < m)
that

[M )26 = Xk ki [ Xijl < [M ) Xij
0<k<j<n, 0<p<m).

Therefore, for every p=0,1,2,..., m, we obtain that

(1,2) "M, (1 ZZ k]xkxj<zz ki Xe = M, e X.

k=0 j=0 k=0 j=0

That is, (1; @) is a feasible solution of QOP (1) and its objective value is at least as good
as Mye X.

The assumption that all off-diagonal elements of M, are nonpositive plays an important
role in the proof of Theorem 3.1. The class of QOPs satisfying the assumption seems to
represent a very small group of QOPs. The assumption, however, can be extended to a
slightly larger class of QOPs, in which [M,];; are not necessarily of the same sign for ¢ # j.
We observe this with the following definition.

Definition 3.2. Zhang [11] A symmetric matriv A € 8" is said to be almost OD-nonpositive
(or almost OD-nonnegative, respectively) if there exists a sign vector o € {—1,+1}¢ such
that

[Al;joi0; <0 (or [A];joi0; > 0, respectively) (1 <1< j <{).
Here [A];; denotes the (i, j)th element of A.

Definition 3.3. A family of symmetric matrices A, € S (1 < p < m) is said to be uni-
formly almost OD-nonpositive (or uniformly almost OD-nonnegative, respectively) if there
exists a sign vector o € {—1,+1}¢ such that

[A,]ijoi0; <0 (or [A,]ijoi0; > 0, respectively) (1 <i<j</{ 1<p<m).

As a result, Theorem 3.1 can be extended to the following.

Theorem 3.4. (An extension of a part of Theorem 4 of [11]). Assume that the family of
symmetric matrices M, € Sﬁf" (0 < p < m) is uniformly almost OD-nonpositive with a
sign vector o € {—1,+1}'". Let X be an optimal solution of the SDP relazation (3). Then

(Zo; @) = (1,0001\/X11, e ,aoan\/X,m)T is an optimal solution of HQOP (2).
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Proof: By assumption, [M,];;o0; < 0 (0 < i < j <mn, 0 <p < m). Replace the
variable z; by ogo;x; in HQOP (2). Then the resulting HQOP satisfies the assumption
of Theorem 3.1. Hence the conclusion follows.

In the proof of Theorem 3.1, the set of quadratic inequalities (7), which is merely a
necessary (but not sufficient ) condition for X to be positive semidefinite, is essential. In
other words, even if we replace the positive semidefinite requirement in the SDP relaxation
(3) by the weaker condition (7), the conclusion of Theorem 3.1 remains true. In general,
the resulting problem involves n(n + 1)/2 quadratic inequality constraints as in (7). When
the data matrices M, (0 < p < m) are sparse, however, we can reduce the number of the
quadratic inequality constraints. Let

A={(k,j) : 0<k<j<n and [M,|; # 0 for some p}.
Thus we consider the following relaxation of (1).

minimize Mgye X
subject to M,eX <0 (1<p
<X117X227" Xn )
(k

<m), Xogp=M,+10X =1,
n €
(Xij)? < XX (

F, X;; >0(1<j<n), (8)
J) €M)

Theorem 3.5. Assume that the family of symmetric matrices M, € Sf" (0<p<m)is
uniformly almost OD-nonpositive with a sign vector o € {—1,+1}*". Let X be an optimal

solution of the problem (8). Then (Zo;x) = (1,0001\/)(11, - ,aoan\/Xm)T is an optimal
solution of HQOP (2).

Proof:  If all off-diagonal elements of M, (0 < p < m) are nonpositive, apply the same
proof to the theorem as that of Theorem 3.1. Then use the same argument as in the proof
of Theorem 3.4 for the general case. |y

We now convert (8) to a SOCP. It is known that a constraint of the form
w* < ¢&n, €>0 andn >0
is equivalent to the SOCP constraint
(")
2w

Thus we obtain the following SOCP which is equivalent to the problem (8).

'§§+n

minimize Mgye X
subject to M,e X <0 (1< ) Xoo=M, 10X =1,
XH,X22,.. Xom (9)

[ ) X3, (2 )

It should be noted that only the variables X,; (0 < j <n)and Xj; ((k,j) € A)) are relevant
in the problem (9). Therefore, as the number of the elements in A decreases, the efficiency
of the problem (9) can increase. Especially, when all @, (0 < p < m) are diagonal in QOP
(1), the corresponding A = {(1,7) : 1 < j < n} consists of n elements. We will illustrate the
advantage of the SOCP relaxation (9) against the SDP relaxation (3) through numerical
results in the next section.




n the number of variables
m the number of quadratic inequality constraints
Sparsity | the density of nonzeros in off-diagonal elements of @, and elements of g,
SDP the SDP relaxation
SOCP | the SOCP relaxation
cpu the cpu time in seconds
it. the number of iterations that the corresponding relaxation takes
cpu.ratio | cpu time consumed by SDP relaxation/ that by SOCP relaxation

Table 1: Notation
4 Numerical results

We present computational results on the SDP relaxation (3) and the SOCP relaxation (9)
to compare the results of Theorems 3.4 and 3.5. All the computation was implemented
using a MATLAB toolbox, SeDuMi Version 1.03 [8] on Sun Enterprise 4500 (CPU 400MHz
with 6 GB memory). The set of test problems in our numerical experiments consists of

(a) QOPs with nonpositive off-diagonal @, and g, <0 (0 < p < m).

(b) QOPs with diagonal Q, and g, <0 (0 <p <m).

In both cases, we took F = IR". We use the notation described in Table 1 in the discussion
of computational results.

4.1 QOPs with nonpositive off-diagonal Q,’s and nonpositive g,’s

One of the main purposes of creating QOPs of this type was to vary its sparsity. To control
the sparsity of QOPs, a sparse vector s of the size of n(n — 1)/2 and a sparse vector ¢ of
length n with a given density were generated using MATLAB random number generator.
The number of nonzero elements in the vector s was decided by the preassigned density.
Then, we generated a nonzero element in Q, (p = 0,1,...,m), according to a nonzero
element of s. More precisely, we first examined a component in s, and if the component
was nonzero, a nonzero element in @, was produced in the interval (—10,0) and the element
in its symmetric position in @, was also assigned with the same number. We continued this
process until we reached the last element of s. Using the vector ¢, we created a nonpositive
element from the interval (—1,0) in q, (p = 0,1,...,m); if t; was not zero, (q,); was
assigned to a nonzero element. The diagonal elements of @, were generated randomly in
the interval (—1,1). And, 7, was set to —1 to have an interior of the feasible region. We
present the numerical results of the problems generated this way.

We also tested whether the positioning of the nonzero elements in @, (p =0,1,...,m)
made differences in performance of the SDP and SOCP relaxations. For this test, we
generated nonzero elements in the interval (—10,0) to place the upper left corner of each
Q, according to the given sparsity. g, and 7, were chosen as above. The numerical results
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n m Sparsity SDP SOCP | cpu.ratio
cpu it. | cpu it.

200 100 10% | 251.4 17 | 32.6 22 7.7

200 100 10% | 290.4 19 | 28.8 20 10.1

200 100 10% | 287.5 19| 31.5 21 9.1

200 100 10% | 297.2 19| 30.8 21 9.6

200 100 10% | 282.8 19| 31.6 21 9.0

Table 2: 5 tries with n = 200 and m = 100

n  m Sparsity SDP SOCP cpu.ratio
cpu it. cpu it.

200 100 5% | 198.8 19| 15.1 18 13.1

200 100 10% | 2904 19| 288 20 10.1

200 100 50% | 1430.7 31| 173.1 27 8.3

200 100 70% | 1858.3 33 | 2124 26 8.7

200 100 100% | 2282.8 33 | 342.5 32 6.7

Table 3: QOPs with n = 200, m = 100 and varying sparsity

were very similar to those from the problems generated with the vectors s and ¢ above. This
leads us to say that the locations of nonzero elements in @, do not effect the performance
of both SDP and SOCP relaxations.

We show the numerical results for various n, m and sparsity from Table 2 to Table 5.
Since all the test problems were generated using MATLAB random number generator, we
first experimented to see whether there existed a difference in cpu time and the number of
iterations of test results each time that the program was executed. The results from five
runs of the program for n = 200, m = 100 and sparsity=10% are summarized in Table 2.
Cpu time and the number of iterations are similar in the five tries. In particular, the ratio of
cpu time of SDP to that of SOCP remains in the range of 7 to 10. Based on the test, we can
say that the results from one execution of the program are not much different from those of
others. We proceeded rest of the tests on varying n, m and sparsity with this information.

Table 3 shows that the results from varying sparsity of Q, (p =0,1,...,m) from 5% to
100%, fully dense matrix @,,. The objective values of the two relaxations were the same for
all the experiments, which was shown in Section 3, therefore, actual values were omitted
in the Tables. We observe that SOCP was much faster to obtain an optimal solution than
SDP. SOCP was as fast as from 6 times to 13 times in the case of n = 200, m = 100.
The speed of SOCP increased as the number of nonzero elements decreased as shown in the
column of cpu.ratio. It should be noted that even in the case of fully matrices, i.e., 100%
sparsity in Q,, the SOCP relaxation provided better performance in finding a solution.

Numerical results for n = 100, sparsity= 10%, and from m = 50 to m = 400 are
shown in Table 4. As m becomes large, computational advantage of SOCP shown in the
cpu.ratio column varies from 8 to 6.5 to 7.7. The ratio has not worsen as m increases.



n m Sparsity SDP SOCP | cpu.ratio
cpu it. | cpu it.

100 50 10% | 183 16| 23 15 8.0

100 100 10% | 421 20| 6.5 19 6.5

100 200 10% | 125.4 18 | 17.7 20 7.1

100 400 10% | 733.1 19| 95.6 19 7.7

Table 4: QOPs with n = 100 and varying m

n m Sparsity SDP SOCP cpu.ratio
cpu it. cpu it.

50 100 10% 12.6 15 1.3 13 9.7
100 100 10% 42.1 20 6.5 19 6.5
200 100 10% | 2904 19| 288 20 10.1
400 100 10% | 3910.4 25 | 236.7 36 16.5

Table 5: QOPs with m = 100 and varying n

Ifall @, (p = 0,1,...,m) are of the same structure, increasing number of constraints m
does not make the performance of SOCP relaxation worse. We can say from this that the
computing time of the SDP and SOCP relaxations does not depend heavily on m. This is
partly because the number of variables in both SDP and SOCP does not change when m
increases.

Table 5 shows the computing time of the SDP and SOCP relaxations of QOPs with
fixed m = 100 and sparsity = 10%. The cpu.ratio ranges from 6.5 for n = 100, m = 100
to 16.5 for n = 400, m = 100. This indicates that as the size of n becomes large, the SDP
relaxation requires much cpu time to solve the same size of the problem than the SOCP
relaxation. The efficiency of the SOCP relaxation increases with n. Note that the matrix
variable X € S of the SDP relaxation involves n(n 4 1)/2 real variables while the SOCP
relaxation involves merely 10% of those variables. Hence the difference in the number of
variables between SDP and SOCP increases as n becomes large, and SDP’s large number
of variables comparing to SOCP requires much cpu time. Therefore, we observe that the
problems with large n can benefit from numerical efficiency of the SOCP relaxation.

. . , el ,
4.2 QOPs with diagonal Q,’s and nonpositive g,’s

We generated QOPs in the form of (1) with 7 = R", diagonal Q, (p = 0,1,...,m) and
q,<0(p=0,1,...,m). Random numbers in (—1, 1) were assigned to the diagonal elements
of @Q,. The vectors q, were also created with random numbers in the range of (—1,0) and
7 with a random number in (-1, 0).

Since the SOCP relaxation (9) has only 2n variables and (n+1)n/2 variables are involved
in the SDP relaxation (3), we can expect greater advantages in the SOCP relaxation than
the SDP relaxation. Numerical results are shown in Table 6 for various n and m, from
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n = 100, m = 50 to n = 500, m = 500. The cpu.ratio changes from 4.1 (n = 100, m = 100)
to 26.2 (n = 500,m = 250 and n = 500, m = 500). The SOCP relaxation shows much
faster performance than Section 4.1. If the number m of constraints is smaller than n (e.g.,
n = 100,m = 50 and n = 200, m = 100), the performance of the SOCP relaxation is even
better than the SOCP relaxation for the problems of equal n and m (e.g., n = 100, m = 100
and n = 200,m = 200), compared to the SDP relaxation. That is, we can have smaller
amount of computing time for the SOCP relaxation for the cases of m is smaller than n,
though the rate deteriorates as n increases (e.g., n = 400, m = 200 and n = 400, m = 400).
We also see that the savings in cpu time of SOCP increases with n; SOCP shows better
performance for large n than SDP.

nom SDP SOCP cpu.ratio
cpu it. cpu it.

100 50 25.7 19 3.8 16 6.8
100 100 421 21| 104 24 4.1
200 100 2479 25| 175 18 14.2
200 200 376.7 25| 43.4 18 8.7
300 150 759.1 22| 45.7 17 16.6
300 300 | 1709.3 31 |125.6 21 13.6
400 200 | 2004.3 16| 91.5 17 21.9
400 400 | 4462.8 33| 2426 19 18.4
500 250 | 4040.8 24| 154.0 17 26.2
500 500 | 15245.2 16 | 582.6 23 26.2

Table 6: Diagonal QOPs with varying n and m

5 Concluding discussions

(A) We have shown that the SDP and SOCP relaxations provide exact optimal solutions
for the class of QOPs with uniformly almost OD-nonpositive coefficient matrices. Many
practical problems may not satisfy the uniformly almost OD-nonnegativity condition since
the condition is too restrictive. Even in such cases, however, subproblems with some of their
variables fixed may satisfy the condition. We also know that when subproblems become
convex QOPs, we can solve them as SOCPs.

(B) Numerically, the proposed SOCP relaxation has proven to be more efficient than the
SDP relaxation in all of the test problems in the previous section, and we have concluded
that the proposed SOCP relaxation is a much better approach to the class of of QOPs with
uniformly almost OD-nonpositive coefficient matrices than the SDP relaxation. From these
numerical results, the SOCP relaxation is expected to work efficiently on more general QOPs
in terms of computing performance although bounds which the SOCP relaxation generates
for their optimal values may be inferior to bounds generated by the SDP relaxation.

(C) The discussions in (A) and (B) above suggest an effective incorporation of SOCPs
into branch-and-bound methods for solving general (0-1) QOPs. An important issue to be
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studied further for such methods is to fix as few variables of a given QOP as possible, so that
more subproblems become convex QOPs or QOPs with uniformly almost OD-nonpositive
coefficient matrices.
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