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Abstract

We present a high-order accurate scheme for the reinitialization equation of Sussman et al. [16] that guarantees
accurate computation of the interface’s curvatures in the context of level set methods. This scheme is an extension of
the work of Russo and Smereka [11]. We present numerical results in two and three spatial dimensions to demonstrate
fourth-order accuracy for the reinitialized level set function, third-order accuracy for the normals and second-order
accuracy for the interface’s mean curvature in the L'- and L>°- norms. We also exploit the work of Min and Gibou
[17] to show second-order accurate scheme for the computation of the mean curvature on non-graded adaptive grids.

1 Introduction

The level set method was introduced by Osher and Sethian [10] as a powerful technique to analyze and compute the
motion of interfaces. The level set method is used in a myriad of applications such as in physical simulations, in
computer graphics and computer vision to cite a few (see e.g. [8, 9, 12, 2, 7, 3] and the references therein). Level set
methods are particularly well-suited for tracking interfaces that may undergo complex changes in topology, such as the
merging or the pinching of two fronts. However, as it is the case for many interface tracking methods, a limitation is
that the computation of the curvatures is often noisy. This is due to the fact that, in order to compute the second-order
accurate derivatives used in the definition of the curvatures, the level set function must be guaranteed to have some
smoothness. Unfortunately, the level set function evolution through an arbitrary velocity field does not guarantee that
the smoothness of the original level set function is preserved. For this reason, a procedure to transform the level set
function into a smooth function without altering the location of the zero-level set is desired.

In order to lower the amount of loss of area/volume characteristics of level set methods, Sussman ef al. [16] in-
troduced the so-called reinitialization equation. This equation transforms any level set function into a signed distance
function, therefore producing a function for which the numerical discretization of its derivatives, necessary in the
level set evolution, can be computed robustly. The signed distance function is of course a good candidate for guar-
anteeing the smoothness necessary in the computation of interface’s curvatures. Traditionally, this equation is solved
using high-order accurate Hamilton-Jacobi solvers, e.g. the HI-WENO scheme of Jiang and Peng [4]. However, the
reinitialization procedure in [4] is at best second-order accurate as noted in Gibou ef al. [1]. In turns, this produces
oscillatory results in the computations of the interface curvatures.

In [11], Russo and Smereka pointed out that the HI-WENO scheme of [4] for the reinitialization equation violates
the direction of propagation of the information along the characteristic curves and leads to a loss of mass. They
proposed a simple solution to this problem. In particular, they developed a second-order accurate reinitialization
procedure that produces much improved results in the computation of the interface location over the HI-WENO of [4].
They also outlined a guideline to extend this methodology to higher order schemes. In this paper, we further exploit
the idea of [11] in order to develop a higher-order scheme for the reinitialization equation that produces second-order
accurate computations of the curvatures. We then turn to a variant of [11], presented in [17] and show that this too
produces second-order accurate curvature. Finally we show that the latter method is better suited for adaptive mesh
refinements and preserves second-order accuracy on quadtree and octree data structures.
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2 The Level Set Method

The level set method, introduced by Osher and Sethian [10], represents an interface, noted I' (a curve in two dimensions
or a surface in three dimensions) as the zero level set of a higher dimensional Lipschitz continuous function ¢, called
the level set function. Traditionally, the level set function is negative in the region enclosed by the interface and positive
outside. The interface deforms under a velocity field V, according to the following partial differential equation, called
the level set equation :

¢+ V-V =0. (1)

In order to reduce the ‘loss of area/volume’ inherent to the level set method, Sussman et al. introduced the reinitial-
ization equation

¢ + Sign(¢°) (Vo] — 1) =0, 2)

where 7 represents a fictitious time. This equation transforms an arbitrary level set function ¢ into a signed distance
function ¢. Equation (2) therefore guarantees that |V¢| ~ 1, which in turn produces more robust and accurate
discretizations of (1). Traditionally, these Hamilton-Jacobi equations are discretized with high-order accurate schemes
such as the HI-WENO of Jiang and Peng [4]. The normal to the interface n and the interface mean curvature x are

defined as: v v
n=——— and ﬁzV-().
Vo Vol
The mean curvature can be written in general as:

Vol ’

and reduces to the Laplace operator in the case where ¢ is a signed distance function. Standard central difference
formulas are used in the discretizations of the normals and the mean curvature.

3 Standard Discretization of the Reinitialization Equation and its Limita-
tions

Standard discretizations for the reinitialization equation combine Godunov spatial discretizations with high-order TVD
Runge-Kutta schemes in time as described next.

3.1 Spatial Discretization - Godunov Scheme

The reinitialization equation is of type Hamilton-Jacobi and can be written as:
¢- + Sign(¢”)H(¢, V) =0,
where H is the corresponding Hamiltonian. This equation can be written in semi-discrete form as:
¢ +8(¢") [He (D ¢, D; 6, Dy ¢, Dy ¢)] =0, 3)

where D;rqb, D ¢, D; ¢ and Dy_ ¢ are the one-sided derivatives of ¢ and where H is defined as:

vmax(lat[?, [b~[2) + max([ct[?,[d-[2) — 1 if sgn(¢®) <0
\/max(|a*|2, [bF2) + max(|c— |2, |[dF]2) — 1 ifsgn(¢®) >0

)

HG(a7 ba c, d) = {

with f* = max(f,0) and f~ = min(f,0).



3.2 Time Discretization

The Godunov scheme is used in conjunction with high-order TVD Runge-Kutta schemes [14, 15]. For example, a
third-order TVD Runge-Kutta scheme is written as a linear combination of Euler steps as follows: First, define ot
@2 and "2 with Euler steps:

(5n+1 _ (bn
Q7+ S@")[Ho (DIe" Dr¢", Dyé", Dy¢")] =0,
W + S(¢0) |:HG (D;ggn+17D;gf~)n+1,D;gf~)n+l,D;(];n+1):| —0.

Second, define an intermediate value ¢~)”+% by simple averaging

N

~ 3 1~
n-4 2o n - an42
¢ S+ 16,

before defining ¢"+2 from ¢™*= with another Euler step:

<£"+%—<ZB”+% Tl il Tl Tl
S+ S(¢") [He (DFémE D7, DyeE Dy )| <o
Finally, ¢" ! is defined by a linear combination of ¢" and ¢"*3:

1 2~ .3
n+1 _ ~n “oin+ts
¢ S0+ 2o

3.3 Standard Computation Of One-Sided Derivatives: HJ-WENO Algorithm

Traditionally, the one-sided derivatives D, DyjE of equation (3) are computed at each grid node in a dimension
by dimension framework using the HI-WENO scheme of Jiang and Peng [4], which is extended from the HJ-ENO
algorithm and the fourth-order accurate WENO scheme of Liu et al. for conservation laws [5]. The philosophy behind
the HJ-ENO is to choose the discretization that avoids interpolating across discontinuities. There are three possible
divided differences for each one-sided derivative. The idea behind HJ-WENO is to use a convex combination of
the three possible HI-ENO approximations in such a way as to obtain fifth order accuracy in smooth regions, while
preserving the HJ-ENO methodology near the discontinuities. There are two limitations to this algorithm applied to
the reinitialization equation:

e It does not conserve the location of the interface when used in the reinitialization equation, which translates into
a loss of area/volume.

e The computation of higher derivatives of the level set function are often noisy. This is particularly the case for
the computations of the interface curvatures, which involve second-order derivatives.

These limitations stem from the fact that the HI-WENO scheme of [4] only produces second-order accurate solutions
when used in the reinitialization equation, as pointed out in [1]. Attempts to design numerical treatments that produce
smoother curvatures can be found in Shin [13], which proposes a hybrid method using particles (see also Losasso et al.
[6]). However, the reason behind low accuracy of the reinitialization equation has been described in [11]: the scheme
in [4] violates the propagation of information (along the characteristics) near the interface. Russo and Smereka then
proposed a simple procedure that guarantees that the information propagates along the characteristics. In their original
work, they propose first and second-order accurate schemes for the reinitialization equations and a methodology to
build higher order accurate schemes. In this article, we further develop the methodology of [11] to obtain a fourth-
order accurate scheme for the reinitialization equation, which in turn lead to second-order accurate computations of
interface curvatures. In [17], Min and Gibou proposed a variant of [11] that utilizes a smaller stencil. We show that
this approach produces second-order accurate computation of the curvature similar to the results on uniform grids and
is a better fit for adaptive mesh refinements. We first recall the scheme of [11] and then describe its extension.



Table 1: Errors in the reinitialized level set corresponding to Figure 2 after 150 iterations of equation (2).

HQS_(ZSILHl H(b_gbhHoo
HJ-WENO Scheme 2.006 x 1072 | 5.903 x 102
Russo & Smereka’s Scheme | 8.805 x 10~% | 3.580 x 10~3

Figure 1: In [11], the interface location (A) where ¢ = 0 is explicitly used in the approximation of the one-sided
derivatives in (3), hence taking into account the fact that the information propagates outward from the interface

4 The ‘Subcell Fix’ of Russo and Smereka

The main idea in [11] is to discretely impose the fact that the information in the reinitialization equation propagates
away from the interface in its normal direction. Therefore, while calculating the derivatives on one side of the interface,
the value of ¢ at the interface should be used. Their algorithm therefore computes the first-order derivatives in (3) using
the information that ¢ is zero on the interface instead of using the ¢ value at a node across the interface as depicted in
figure 1. This ‘subcell fix’ is applicable in a dimension by dimension framework. For example, the first-order accurate
scheme in the z-direction is as follows. Let d; be the signed distance from the interface:

o7
Ag’

where
Ag¢f = max {|¢$+1 - 97 _11/2, |¢f+1 — o7l 107 — f_1|,€} )
and € is a small number compared to Az. The smoothed sign function S becomes

di/Ax, if ¢26%,, <0 or ¢6¢_; <0
Sign(¢?), otherwise.

The first-order scheme using the Euler discretization is then:

grtt Z )0 A (Sign(¢9)] 0} | — di), i ¢7pF, <O or ¢7pF y <O
! o — AtSign(¢¢)He (Df ¢, D, ¢,0,0), otherwise,

where H is given by the Eq. (3.1) and the one-sided differences D ¢ and D ¢ are:

(D;c ¢)ij _ ¢zy Aiz 1]7 and (D;»d))” _ ¢7,+1ij d)zy.
This discretization can be extended to two and three spatial dimensions and to a second-order accurate scheme (see
[11] for more details).

Since the location of the interface is preserved, the loss of area/volume becomes independent of the number of
iteration of the algorithm. A clear improvement in the preservation of the location of the interface is observed in figure
2 and the associated table 1, which compare the results obtained after 150 iterations of the reinitialization equation
with the HI-WENO algorithm of Jiang and Peng [4] and that of Russo and Smereka [11].



Figure 2: Zoom of the interface location after 150 iterations of the reinitialization equation on a 100 x 100 grid. The
original level set function (blue) is defined as ¢ : (x,y) = 22 + y? — 2.313%. The red curve depicts the reinitialized
function. Left: using the HI-WENO Scheme of [4]. Right: Using the first-order accurate scheme of Russo and
Smereka.

4.1 High-Order Accurate Schemes

The subcell fix of [11] can be extended to general ENO reconstructions in order to develop higher order schemes.
These schemes are constructed by successively adding nodes to build higher interpolants. Two constraints need to be
satisfied when computing the one-sided derivatives for a node adjacent to the interface:

e The nodes across the interface should not be used in the computation of the first-order degree interpolant since
the information propagates outward from the interface.

e The nodes to be added in the construction of higher degree interpolants are chosen in the direction of smoothness

of ¢.

For the nodes not immediately adjacent to the interface, we use the standard HJ-WENO algorithm. In this algorithm,
we use the spatial Godunov approximation and the time discretization described in sections 3.1 and 3.2. We describe
the fourth-order accurate scheme next.

4.1.1 Location Of The Interface
The interface location is calculated using a cubic interpolation of the initial level set function ¢°, using two points on
each side of the interface.

4.1.2 Computation Of The One-Sided Derivatives For The Nodes Close To The Interface

We use the Newton form of the polynomial interpolant of degree three by first computing the divided difference tables.
Because we want to include the location of the interface in the computation of the interpolant, the spatial steps can
vary (see figure 3). Following the notations in [11], the divided differences for a stencil ((z(k), h(k)),k € [—3,3])
are now written as follows:

h(k +1) — h(k)

D} A e A A
k+1/2 Ty FES2
Dl _ Dl
D2 _ k+1/2 k—1/2 bel—2.9
k kD —ako1y FEl22
[ D2, - D?
Dli+1/2 = bl b ke [-2,1]

z(k+2)—z(k—1)’

We define the MinAbs and MinMod functions as follows:
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Figure 3: Computation of the table of divided differences with a stencil including the interface location for the stencil
[(Xi1,0i-1); (Xi, i); (Xiv1, @it1); (Xinter face 0)]-

a if |a] < |G and af > 0,
and MinMod(e, ) =< 3 if |o| > |3] and a3 > 0,
0 ifapg<0.

a ifaf <|g],
3 otherwise .

MinAbs(a, 8) = {

To compute the one-sided differences at a point X; next to the interface, we take a stencil of three points (including
the interface) on each sides of X;: ((z(k), h(k)),k € [-3,3]) (where 2(0) = =; and h(0) = ¢;). We evaluate the
divided differences as explained above. Then, the formulation of the one-sided derivatives is given by:

_ ) @(0) = =(=1))
) —x(=1))

*
—
8
—~
(=}
=

(—2)) *MinAbs(Dil/z,D?i3/2)7 if |[D2,| < |D3|

-z
— (1)) * MinAbs(D?, ,, DY ,), otherwise

8
—~
=}
*
—
8
—~~
=}
=

. {<x<o> — (1)) % (2(0) — (1) * MinAbs(D2, 5, D), if D3] < D}
(z(0) — z(1)) * (x(0) — x(2)) * MinAbs(Df/27 D§/2), otherwise

Dg ¢(x(0)) = D!, , +MinMod(D?y, D§) * (2(0) — z(~1)) +a
D} ¢(z(0)) Dj 5 +MinMod(Dg, D) * (x(0) — 2(1)) +b

Similarly, the same procedure is employed in the y- and z- directions.

5 Numerical Results

In this section, we present numerical results to demonstrate the accuracy of the algorithms described in Section 4. In
all the simulations, the initial implicit functions are chosen so that the interface does not necessarily lie on grid nodes.

5.1 Interface Location

Consider a domain © = [—1, 1] and a level set function ¢ defining a square as:
1, if|z] > 0.5+ Az/3 or |yl > 0.5+ Ax/3,
o(x,y) = e > 4
—1, otherwise,

where Az is the distance between two adjacent grid nodes in the x- or y- directions. We compare the results obtained
after 150 iterations of the reinitialization equation using the Hamilton-Jacobi WENO solver of [4], the second-order



accurate scheme of Russo and Smereka and the high-order accurate scheme of section 4.1. As pointed out in [11],
the HI-WENO algorithm leads to a loss in area whereas the other two conserve the original location of the interface
as illustrated in figure 4. We then test the high-order accurate scheme in the case where the initial square is rotated
by 7/4 so that the edges of the square are not parallel to the Cartesian directions. Figure 5 illustrates that the initial
location of the level set function is unchanged. Not surprisingly, the nonlinear features of the reinitialization equation
along the diagonals of the square are treated properly by the Godunov scheme.
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Figure 4: Initial (blue) and reinitialized (red) zero level set after 150 iterations of equation (2) on a 100 x 100 grid
using the HI-WENO scheme of [4] (left), the second-order accurate scheme of [11] (center) and the high-order scheme
of section 4.1 (right).
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Figure 5: Left: Initial (blue) and reinitialized (red) zero level set after 100 iterations of equation (2) on a 100 x 100
grid using the high-order scheme of section 4.1. Right: The reinitialized level set function.

5.2 Computation of the Interface’s Curvature in 2D

The main improvement of the high-order algorithm of Section 4.1 is clearly the ability to compute quantities that
involve first or second-order derivatives of ¢ , such as the normals to the interface and the curvatures. In particular the
smoothness of the reinitialized level set avoids the spurious numerical noise when computing the curvatures.
Consider a domain = [—5, 5|2 and an initial level set function ¢(z, y) = eV**T¥*=2:313 _ 1 Figure 6 compares
the results obtained with the HI-WENO scheme of [4], the scheme of [11] and the high-order accurate scheme of
Section 4.1. In particular, it illustrates the presence of numerical noise in the case where the reinitialization scheme



does not guarantee enough smoothness for ¢, i.e. the case of [4]. In the case of the second-order accurate scheme of
[11], table 4 demonstrates second-order accuracy for the reinitialized level set function, whereas table 5 demonstrates
that the interface’s curvature is only first order, due to the lack of smoothness of the reinitialized level set. In the case
of the high-order scheme of Section 4.1, table 6 demonstrates fourth-order accuracy for the reinitialized ¢ . This high
degree of smoothness guarantees second-order accuracy for the computation of the interface curvature and third-order
accuracy for the computation of the normals as shown in tables 7 and 8, respectively. The interface’s curvature is
computed using standard second-order accurate central difference formulas, whereas the normals are computed with
standard fourth-order accurate central difference formulas.

Figures 7 and 8 further demonstrate the smoothness of the isocontours of the mean curvature in the case of an
ellipse and in the case of two nearby circles, respectively.

Figure 6: Isocontours of the curvature of ¢ after solving equation (2) for 150 iterations on a 128 x 128 grid. The red
curve depicts the curvature at the interface. Left: Results obtained with the HI-WENO scheme of [4]. Middle: Results
obtained with second-order accurate scheme of [11]. Right: Results obtained with the high-order accurate scheme of
section 4.1. Tables 3, 5 and 7 give the accuracy results for these three cases, respectively.
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Figure 7: Isocontours of the curvature on a 100 x 100 grid in the case where 100 iterations of the high-order algorithm
of section 4.1 is used. The red curve corresponds to the curvature at the interface. The initial implicit function is given
by ¢(z,y) = min {(z — 1.5)% + y* — 1.313% (2 + 1.5)% + y? — 1.313?}

5.3 Computation of the Interface’s Mean Curvature in 3D

Consider a domain 2 = [—1,1]? and an initial level set function ¢(x,y) = x2 +y* + 22 — (.2222)2. Table 11
demonstrates fourth-order accuracy for the reinitialized ¢ in the case of the high-order scheme of Section 4.1. This



Table 2: Accuracy results for the reinitialized level set function ¢ for example 5.2. In this case the HI-WENO scheme

produces second-order accurate results.

Table 3: Accuracy results for the mean curvature « for example 5.2. In this case the HI-WENO scheme is used and
the resulting lack of smoothness in ¢ does not guarantee smooth computations of the curvatures.

Table 4: Accuracy results for the reinitialized level set function ¢ for example 5.2. In this case the second-order

[6—¢nlli | Order | [[¢ —¢ nllso | Order

16 x 16 | 1.512 x 102 - 2.306 x 10~2 -
32x32 | 4241 x1073 | 1.83 | 5.773x 1073 | 2.00
64 x 64 | 8414 x10~*] 233 | 1.656 x 10~2 | 1.80
128 x 128 | 2470 x 10~* | 1.77 | 3.441 x 10~% | 2.27

[|k — kpll1 | Order | ||k — Kp||oo | Order

16 x 16 0.0272 - 0.0596 -
32 x 32 0.0126 1.11 0.0290 1.04
64 x 64 0.0305 -1.27 0.0979 -1.76
128 x 128 0.0207 0.55 0.0732 0.42

accurate algorithm of [11] produces more than second-order accurate results.

Table 5: Accuracy results for the mean curvature « for example 5.2. In this case the second-order accurate scheme of

[11] is used.

Table 6: Accuracy results for the reinitialized level set function ¢ for example 5.2. In this case the high-order accurate

664l | Order | [[6—6nll | Order

16 x 16 3.236 x 1073 - 1.716 x 102 -
32 x 32 5.661 x 10~4 252 | 2710 x 10~3 2.66
64 x 64 4.829 x 107° 3.55 2.020 x 1072 3.75
128 x 128 | 6.787 x 10~° 2.83 3.790 x 10~° 2.41

||k — kpll1 | Order | ||k — Knlloo | Order

16 x 16 | 1.08 x 102 - 1.68 x 1072 -
32x32 [204x107°] 240 |58 x1073 [ 1.52
64x64 [800x10~*] 135 [2.56x 1073 | 1.20
128 x 128 [ 335 x 107 [ 1.26 [ 1.28 x 10°% | 0.99

algorithm of Section 4.1 produces fourth-order accurate results.

||¢ — ¢n|lr | Order | [|¢ — ¢nlloc | Order

16 x 16 | 1.566 x 103 - 3.115 x 1073 -
32x32 [1.669x10*%] 323 [3.198x 10~ %[ 3.28
64 x 64 | 5.848 x 1076 | 4.84 | 1.516 x 10~° | 4.40
128 x 128 | 4.822 x 10~ 7 | 3.60 | 8.868 x 10~ 7 | 4.10




Table 7: Accuracy results in computing the interface’s mean curvature in the case of example 5.2. The high-order
accurate algorithm of Section 4.1 produces second-order accurate results.

[lk — krll1 | Order | ||k — Kp|loo | Order
16 x 16 | 8.87 x 1073 - 1.92 x 1072 -
32x32 [142x1073] 2,65 | 459 %1073 | 2.06
64x64 [ 424x107%] 1.74 [1.05x10°° | 2.13

128 x 128 | 1.02 x 10~* | 2.05 | 2.08 x 10~% | 2.34

Table 8: Accuracy results in computing the normals to the interface 77 in the case of example 5.2. The high-order
accurate algorithm of Section 4.1 produces third-order accurate results.

[l —7ip|[1 | Order | || — 7in||oo | Order
16 x 16 | 1.68 x 1073 - 6.38 x 1073 -
32x32 [120x10°%] 380 [ 681 x10°*] 3.23
64x64 | 1.71x107° | 2.81 | 6.02x 10" | 3.50

128 x 128 | 1.51 x 1076 | 351 [ 728 x107°% | 3.05

Table 9: Accuracy results in computing the interface’s mean curvature using the Laplacian in the case of example 5.2.
The high-order accurate algorithm of Section 4.1 produces second-order accurate results.

||k — kp|l1 | Order | ||k — knl|loo | Order
16 x 16 | 1.12 x 102 - 2.59 x 1072 -
32x32 | 216x1073| 238 | 6.53x 1072 | 1.99
64x64 |58 x10~%] 1.88 | 1.85x 103 | 1.82

128 x 128 | 1.44 x 10~* | 2.03 [ 320x 10~* | 2.53

10



Figure 8: Isocontours of the curvature on a 150 x 150 grid in the case where 100 iterations of the high-order algorithm
of section 4.1 is used. The red curve corresponds to the curvature at the interface. The initial implicit function is given

by ¢(x,y) = 0.1(y/22/20 + y2 — 1)(1 + (z — 3.5)2 + (y — 2)?).

Table 10: Accuracy results for the computation of the interface mean curvature using the Laplacian in the case of
example 5.3. The high-order accurate algorithm of section 4.1 produces second-order accurate results.

||k — knl|l1 | Order | ||k — Kpl|oo | Order
19% | 2.73 x 1072 - 1.52 x 1071 -
383 | 7.04x 1073 | 195 | 2.02x 1072 | 291
763 | 2.07x 1073 | 1.77 | 6.01 x 1072 | 1.75

high degree of smoothness guarantees second-order accuracy for the computation of the interface curvature as shown
in table 12. Figure 9 illustrates the smoothness of the curvature computations.

Figure 9: Isosurface of the mean curvature after solving equation (2) for 80 iterations on a 76 grid in the case of
example 5.3. Left: The HI-WENO scheme of [4]. Right: The high-order accurate scheme of section 4.1. The red
isosurface corresponds to the mean curvature at the zero level set.

Remark: As mentioned in section 2, the formula for the curvature reduces to that of the Laplacian in the case
where the level set function is a signed distance function. Tables 9 and 10 show that second-order accuracy is obtained
as well when we use the Laplacian to compute the curvature. We don’t find any benefits in terms of accuracy. This
procedure is slightly faster and easier to implement.

11



Table 11: Accuracy results for the reinitialized level set function ¢ for example 5.3. In this case the high-order accurate
algorithm of Section 4.1 produces fourth-order accurate results.

||¢_¢h”1 Order H(b_(f)hHoo Order
193 | 2.439 x 10~° - 6.765 x 10~° -
383 | 1.791 x 1076 | 3.77 | 7.977 x 10~¢ | 3.08
763 | 1.212 x 1077 | 3.88 | 6.225 x 1077 | 3.68

Table 12: Accuracy results for the computation of the interface mean curvature ~ in the case of example 5.3. The
high-order accurate algorithm of Section 4.1 produces second-order accurate results.

||k — krll1 | Order | ||k — Kpl|oo | Order
19% | 2.10 x 1072 - 1.52 x 1071 -
383 | 531 x 1072 | 198 | 2.03x1072 | 2.90
763 | 1.54 x 1072 | 1.79 | 4.96 x 1073 | 2.04

6 Extension to Adaptive Grids

In the case of adaptive grids, it is difficult to construct numerical schemes with large stencils, especially in the case
of non-graded grids, i.e. grids for which the size ratio between adjacent cells is not constrained. In this case, the
difficulty comes from the fact that infinitely many possible arrangements could exist for the next to adjacent cells,
making a general procedure difficult to write. In [17], Min and Gibou extended the work of Russo and Smereka [11]
to the case of non-graded Cartesian grids. We show here that this scheme leads to second-order accurate computations
for the mean curvature. In the case of adaptive grids, [17] made two changes to the original work of Russo and
Smereka: (1) different interpolation to locate the interface and (2) in computing the second divided differences at a
grid point adjacent to the interface. We refer the reader to [17] for more details.

We next present numerical evidence in tables 13 and 14 that the reinitialization algorithm implemented on the
non-graded adaptive Cartesian grid produces comparable results to the one obtained from the uniform grid with the
high-order algorithm of section 4.1. In the case of the adaptive grids, table 15 demonstrates third-order accuracy for
the reinitialized level set function and second-order accuracy for the computation of the mean curvature. These results
for the computation of the mean curvature are similar to the ones obtained with the high-order algorithm of section
4.1 (see table 7). The adaptive grid thus allows to concentrate the computational effort in the region of interest, i.e.
close to the interface. As a consequence one is able to obtain results with the adaptive framework that are not possible
on uniform grids. Table 16 gives accuracy results for the mean curvature in three spatial dimensions in the case of
adaptive grids. Figures 11 and 12 demonstrate a comparable smoothness of the isocontours of the mean curvature in
the same cases as the ones using the high-order algorithm of section 4.1 (figures 7 and 8).

Table 13: Accuracy results for the reinitialized level set ¢ and the mean curvature x from the exponential test using
the adaptive framework with a uniform grid.

[l — dnlloo | Order | ||k — Knlloo | Order
2H [130x1072 | — [245x1072 | —
(2°) | 248 x 1073 | 238 | 6.271x 1073 | 1.96
(26) [ 395 x 107 | 2.65 | 1.57 x 1072 | 1.99
(29)
(2°)

519 x 107 | 2.93 [ 3.93 x 10~* | 2.00
6.56 x 107¢ | 2.98 | 9.82x 107° | 2.00




Figure 10: Left: Adaptive grid used. Right: Smooth computation of the mean curvature after 100 iterations of the
reinitialization equation. The smallest grid size is Azs = 1/1024. - The initial implicit function is ¢ : (z,y) —

exp (/22 + y? — 2.313) — 1.

Table 14: Accuracy results for the reinitialized level set ¢ and the mean curvature x from the exponential test in 3D

using the adaptive framework with a uniform grid.

[l — dnlloo | Order [|k — Knlloo Order
2hH3 [ 2.082x 1073 | — [ 757870 x 1071 | —
(2°)3 | 2.819 x 107* | 2.88 | 1.835x 10! | 2.04
(2°)3 | 3.948 x 107° | 2.83 | 4.520 x 1072 | 2.02
(273 | 5.007x 1076 | 2.97 | 1.645x 1072 | 1.45

Y

AR

A

Figure 11: Isocontours of the curvature on a 256 x 256 grid in the case where 200 iterations of the algorithm detailed
in [17] are used. The red curve corresponds to the curvature at the interface. The initial implicit function is given by

¢ (z,y) — 0.1(y/22/20 + y2 — 1)(1 + (z — 3.5)% + (y — 2)?).




Table 15: Accuracy results for the reinitialized level set ¢ and the mean curvature ~ from the example of Figure 10.

[|6 — énlloo | Order | ||x — Kkpl||oo | Order
2 [132x1072 | — [245x1072 ] —
(2°) [ 248 x 1073 | 241 | 6.27x 1073 | 1.96
(2°%) [ 3.99x107* | 2.63 [ 1.57x 1072 | 1.99
(27) [ 5.08x 107> | 2.97 [3.93x10~* | 2.00
(2°)

(2°)

6.47 x 107% [ 2.97 | 9.82x107° | 2.00
839 x 1077 [ 294 [245x10=° | 1.99

)| 1.04x 1077 | 3.01 | 6.14x 1075 | 2.00
(21 1129 x 1078 [ 3.00 [ 1.53x 1075 | 2.00
(272) [ 178 x107° | 2.85 [ 3.83x 1077 | 1.99

Table 16: Accuracy results for the reinitialized level set ¢ and the mean curvature x from the exponential test in 3D
using the adaptive framework with an adaptive grid.

[l — énlleo | Order | ||k — Kpl|loo | Order
(213 12081 x1073 | — [ 7578 x10° 1 [ —
(25)3 12819 x107% | 2.88 [ 1.835 x 101 | 2.04
(2°)3 | 3.948 x 1075 | 2.83 | 4.520 x 1072 | 2.02
(27)3 | 5.013 x 1076 | 297 | 1.554 x 1072 | 1.53

Figure 12: Isocontours of the curvature on a 128 x 128 grid in the case where 100 iterations of the algorithm detailed
in [17] are used. The red curve corresponds to the curvature at the interface. The initial implicit function is given by
¢ (z,y) — min((z — 1.5)% + y? — 1.3132, (v + 1.5)® + y? — 1.3132).
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8 Conclusion
We have presented two novel high-order accurate schemes for the reinitialization equation of Sussman et al. [16] that

guarantee accurate computation of the interface’s curvature in the context of level set methods. These schemes builds
on the work of Russo and Smereka [11]. We have presented numerical results in two and three spatial dimensions
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that demonstrate fourth-order accuracy for the reinitialized level set function, third-order accuracy for the normals and
second-order accuracy for the interface’s curvatures in the L!- and L>°- norms. We also exploited the reinitialization
scheme introduced by Min and Gibou in [17] and demonstrated that one can obtain second-order accuracy for the com-
putation of curvatures on highly non-graded adaptive Cartesian grids. A hallmark of this work is that state-of-the-art
second-order accurate reninitialization procedures of [4] can now be replaced by fourth-order accurate reinitialization
schemes, hence solving a long standing problem in the accurate computation of geometrical quantities in the level-set
framework, such as normals and curvatures. In addition, unlike reinitialization schemes based on WENO technolo-
gies, our approach can be extended to nonuniform meshes producing results with a level of resolution unattainable on
uniform grids.
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