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Abstract We present a high-order accurate scheme for the reinitialization equation of Suss-
man et al. (J. Comput. Phys. 114:146–159, 1994) that guarantees accurate computation of
the interface’s curvatures in the context of level set methods. This scheme is an extension
of the work of Russo and Smereka (J. Comput. Phys. 163:51–67, 2000). We present nu-
merical results in two and three spatial dimensions to demonstrate fourth-order accuracy for
the reinitialized level set function, third-order accuracy for the normals and second-order
accuracy for the interface’s mean curvature in the L1- and L∞-norms. We also exploit the
work of Min and Gibou (UCLA CAM Report (06-22), 2006) to show second-order accurate
scheme for the computation of the mean curvature on non-graded adaptive grids.

Keywords Level set method · Second-order accurate curvature · Reinitialization equation ·
Adaptive mesh refinement

1 Introduction

The level set method was introduced by Osher and Sethian [11] as a powerful technique to
analyze and compute the motion of interfaces. The level set method is used in a myriad of
applications such as in physical simulations, in computer graphics and computer vision to
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cite a few (see e.g. [2, 3, 6, 9, 10, 13] and the references therein). Level set methods are
particularly well-suited for tracking interfaces that may undergo complex changes in topol-
ogy, such as the merging or the pinching of two fronts. However, as it is the case for many
interface tracking methods, a limitation is that the computation of the curvatures is often
noisy. This is due to the fact that, in order to compute the second-order accurate deriva-
tives used in the definition of the curvatures, the level set function must be guaranteed to
have some smoothness. Unfortunately, the level set function evolution through an arbitrary
velocity field does not guarantee that the smoothness of the original level set function is
preserved. For this reason, a procedure to transform the level set function into a smooth
function without altering the location of the zero-level set is desired.

In order to lower the amount of loss of area/volume characteristics of level set methods,
Sussman et al. [17] introduced the so-called reinitialization equation. This equation trans-
forms any level set function into a signed distance function, therefore producing a function
for which the numerical discretization of its derivatives, necessary in the level set evolution,
can be computed robustly. The signed distance function is of course a good candidate for
guaranteeing the smoothness necessary in the computation of interface’s curvatures. Tradi-
tionally, this equation is solved using high-order accurate Hamilton-Jacobi solvers, e.g. the
HJ-WENO scheme of Jiang and Peng [4]. However, the reinitialization procedure in [4] is
at best second-order accurate as noted in Gibou et al. [1]. In turns, this produces oscillatory
results in the computations of the interface curvatures.

In [12], Russo and Smereka pointed out that the HJ-WENO scheme of [4] for the reinitial-
ization equation violates the direction of propagation of the information along the character-
istic curves and leads to a loss of mass. They proposed a simple solution to this problem. In
particular, they developed a second-order accurate reinitialization procedure that produces
much improved results in the computation of the interface location over the HJ-WENO
of [4]. They also outlined a guideline to extend this methodology to higher order schemes.
In this paper, we further exploit the idea of [12] in order to develop a higher-order scheme for
the reinitialization equation that produces second-order accurate computations of the curva-
tures. We then turn to a variant of [12], presented in [8] and show that this too produces
second-order accurate curvature. Finally we show that the latter method is better suited for
adaptive mesh refinements and preserves second-order accuracy on quadtree and octree data
structures.

2 The Level Set Method

The level set method, introduced by Osher and Sethian [11], represents an interface, noted �

(a curve in two dimensions or a surface in three dimensions) as the zero level set of a higher
dimensional Lipschitz continuous function φ, called the level set function. Traditionally,
the level set function is negative in the region enclosed by the interface and positive outside.
The interface deforms under a velocity field V, according to the following partial differential
equation, called the level set equation:

φt + V · ∇φ = 0. (1)

In order to reduce the ‘loss of area/volume’ inherent to the level set method, Sussman et al.
introduced the reinitialization equation

φτ + Sign(φ0) (|∇φ| − 1) = 0, (2)
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where τ represents a fictitious time. This equation transforms an arbitrary level set func-
tion φ0 into a signed distance function φ. Equation (2) therefore guarantees that |∇φ| ≈ 1,
which in turn produces more robust and accurate discretizations of (1). Traditionally, these
Hamilton-Jacobi equations are discretized with high-order accurate schemes such as the
HJ-WENO of Jiang and Peng [4]. The normal to the interface n and the interface mean
curvature κ are defined as:

n = ∇φ

|∇φ| and κ = ∇ ·
( ∇φ

|∇φ|
)

.

The mean curvature can be written in general as:

κ = φ2
xφyy−2φxφyφxy+φ2

yφxx+φ2
xφzz−2φxφzφxz+φ2

z φxx+φ2
yφzz−2φyφzφyz+φ2

z φyy

|∇φ|3 ,

and reduces to the Laplace operator in the case where φ is a signed distance function. Stan-
dard central difference formulas are used in the discretizations of the normals and the mean
curvature.

3 Standard Discretization of the Reinitialization Equation and Its Limitations

Standard discretizations for the reinitialization equation combine Godunov spatial dis-
cretizations with high-order TVD Runge-Kutta schemes in time as described next.

3.1 Spatial Discretization—Godunov Scheme

The reinitialization equation is of type Hamilton-Jacobi and can be written as:

φτ + Sign(φ0)H(φ,∇φ) = 0,

where H is the corresponding Hamiltonian. This equation can be written in semi-discrete
form as:

φτ + S(φ0)
[
HG

(
D+

x φ,D−
x φ,D+

y φ,D−
y φ

)] = 0, (3)

where D+
x φ, D−

x φ, D+
y φ and D−

y φ are the one-sided derivatives of φ and where HG is
defined as:

HG(a, b, c, d) =
{√

max(|a+|2, |b−|2) + max(|c+|2, |d−|2) − 1, if sgn(φ0) ≤ 0,√
max(|a−|2, |b+|2) + max(|c−|2, |d+|2) − 1, if sgn(φ0) > 0,

with f + = max(f,0) and f − = min(f,0).

3.2 Time Discretization

The Godunov scheme is used in conjunction with high-order TVD Runge-Kutta schemes
[15, 16]. For example, a third-order TVD Runge-Kutta scheme is written as a linear combi-



J Sci Comput

nation of Euler steps as follows: First, define φ̃n+1, φ̃n+2 and φ̃n+ 3
2 with Euler steps:

φ̃n+1 − φn

�τ
+ S(φ0)

[
HG

(
D+

x φn,D−
x φn,D+

y φn,D−
y φn

)] = 0,

φ̃n+2 − φ̃n+1

�τ
+ S(φ0)

[
HG

(
D+

x φ̃n+1,D−
x φ̃n+1,D+

y φ̃n+1,D−
y φ̃n+1

)] = 0.

Second, define an intermediate value φ̃n+ 1
2 by simple averaging

φ̃n+ 1
2 = 3

4
φn + 1

4
φ̃n+2,

before defining φ̃n+ 3
2 from φ̃n+ 1

2 with another Euler step:

φ̃n+ 3
2 − φ̃n+ 1

2

�τ
+ S(φ0)

[
HG

(
D+

x φ̃n+ 1
2 ,D−

x φ̃n+ 1
2 ,D+

y φ̃n+ 1
2 ,D−

y φ̃n+ 1
2
)] = 0.

Finally, φn+1 is defined by a linear combination of φn and φ̃n+ 3
2 :

φn+1 = 1

3
φn + 2

3
φ̃n+ 3

2 .

3.3 Standard Computation of One-Sided Derivatives: HJ-WENO Algorithm

Traditionally, the one-sided derivatives D±
x , D±

y of (3) are computed at each grid node in
a dimension by dimension framework using the HJ-WENO scheme of Jiang and Peng [4],
which is extended from the HJ-ENO algorithm and the fourth-order accurate WENO scheme
of Liu et al. for conservation laws [5]. The philosophy behind the HJ-ENO is to choose
the discretization that avoids interpolating across discontinuities. There are three possible
divided differences for each one-sided derivative. The idea behind HJ-WENO is to use a
convex combination of the three possible HJ-ENO approximations in such a way as to obtain
fifth order accuracy in smooth regions, while preserving the HJ-ENO methodology near the
discontinuities. There are two limitations to this algorithm applied to the reinitialization
equation:

• It does not conserve the location of the interface when used in the reinitialization equation,
which translates into a loss of area/volume.

• The computation of higher derivatives of the level set function are often noisy. This is par-
ticularly the case for the computations of the interface curvatures, which involve second-
order derivatives.

These limitations stem from the fact that the HJ-WENO scheme of [4] only produces
second-order accurate solutions when used in the reinitialization equation, as pointed out
in [1]. Attempts to design numerical treatments that produce smoother curvatures can be
found in Shin [14], which proposes a hybrid method using particles (see also Losasso et al.
[7]). However, the reason behind low accuracy of the reinitialization equation has been de-
scribed in [12]: the scheme in [4] violates the propagation of information (along the char-
acteristics) near the interface. Russo and Smereka then proposed a simple procedure that
guarantees that the information propagates along the characteristics. In their original work,
they propose first and second-order accurate schemes for the reinitialization equations and a
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methodology to build higher order accurate schemes. In this article, we further develop the
methodology of [12] to obtain a fourth-order accurate scheme for the reinitialization equa-
tion, which in turn lead to second-order accurate computations of interface curvatures. In
[8], Min and Gibou proposed a variant of [12] that utilizes a smaller stencil. We show that
this approach produces second-order accurate computation of the curvature similar to the
results on uniform grids and is a better fit for adaptive mesh refinements. We first recall the
scheme of [12] and then describe its extension.

4 The ‘Subcell Fix’ of Russo and Smereka

The main idea in [12] is to discretely impose the fact that the information in the reinitializa-
tion equation propagates away from the interface in its normal direction. Therefore, while
calculating the derivatives on one side of the interface, the value of φ at the interface should
be used. Their algorithm therefore computes the first-order derivatives in (3) using the in-
formation that φ is zero on the interface instead of using the φ value at a node across the
interface as depicted in Fig. 1. This ‘subcell fix’ is applicable in a dimension by dimension
framework. For example, the first-order accurate scheme in the x-direction is as follows. Let
di be the signed distance from the interface:

di = �x
φo

i

�φo
i

,

where

�φo
i = max

{|φo
i+1 − φo

i−1|/2, |φo
i+1 − φo

i |, |φo
i − φo

i−1|, ε
}
,

and ε is a small number compared to �x. The smoothed sign function S becomes

S =
{

di/�x, if φo
i φ

o
i+1 ≤ 0 or φo

i φ
o
i−1 ≤ 0,

Sign(φo
i ), otherwise.

The first-order scheme using the Euler discretization is then:

φn+1
i =

{
φn

i − �t
�x

(Sign(φo
i )|φn

i | − di), if φo
i φ

o
i+1 < 0 or φo

i φ
o
i−1 < 0,

φn
i − �t Sign(φo

i )HG

(
D+

x φ,D−
x φ,0,0

)
, otherwise,

Fig. 1 In [12], the interface
location (A) where φ = 0 is
explicitly used in the
approximation of the one-sided
derivatives in (3), hence taking
into account the fact that the
information propagates outward
from the interface
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Fig. 2 (Color online) Zoom of the interface location after 150 iterations of the reinitialization equation on
a 100 × 100 grid. The original level set function (blue) is defined as φ : (x, y) = x2 + y2 − 2.3132. The red
curve depicts the reinitialized function. Left: Using the HJ-WENO scheme of [4]. Right: Using the first-order
accurate scheme of Russo and Smereka

Table 1 Errors in the
reinitialized level set
corresponding to Fig. 2 after
150 iterations of (2)

‖φ − φh‖1 ‖φ − φh‖∞

HJ-WENO scheme 2.006 × 10−2 5.903 × 10−2

Russo & Smereka’s scheme 8.805 × 10−4 3.580 × 10−3

where HG is given by (3.1) and the one-sided differences D+
x φ and D−

x φ are:

(
D−

x φ
)
ij

= φij − φi−1j

�x
and

(
D+

x φ
)
ij

= φi+1j − φij

�x
.

This discretization can be extended to two and three spatial dimensions and to a second-
order accurate scheme (see [12] for more details).

Since the location of the interface is preserved, the loss of area/volume becomes indepen-
dent of the number of iteration of the algorithm. A clear improvement in the preservation of
the location of the interface is observed in Fig. 2 and the associated Table 1, which compare
the results obtained after 150 iterations of the reinitialization equation with the HJ-WENO
algorithm of Jiang and Peng [4] and that of Russo and Smereka [12].

4.1 High-Order Accurate Schemes

The subcell fix of [12] can be extended to general ENO reconstructions in order to de-
velop higher order schemes. These schemes are constructed by successively adding nodes
to build higher interpolants. Two constraints need to be satisfied when computing the one-
sided derivatives for a node adjacent to the interface:

• The nodes across the interface should not be used in the computation of the first-order
degree interpolant since the information propagates outward from the interface.

• The nodes to be added in the construction of higher degree interpolants are chosen in the
direction of smoothness of φ.
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For the nodes not immediately adjacent to the interface, we use the standard HJ-WENO
algorithm. In this algorithm, we use the spatial Godunov approximation and the time dis-
cretization described in Sects. 3.1 and 3.2. We describe the fourth-order accurate scheme
next.

4.1.1 Location of the Interface

The interface location is calculated using a cubic interpolation of the initial level set func-
tion φo, using two points on each side of the interface.

4.1.2 Computation of the One-Sided Derivatives for the Nodes Close to the Interface

We use the Newton form of the polynomial interpolant of degree three by first computing
the divided difference tables. Because we want to include the location of the interface in
the computation of the interpolant, the spatial steps can vary (see Fig. 3). Following the
notations in [12], the divided differences for a stencil ((x(k), h(k)), k ∈ [−3,3]) are now
written as follows:

D1
k+1/2 = h(k + 1) − h(k)

x(k + 1) − x(k)
, k ∈ [−3,2],

D2
k = D1

k+1/2 − D1
k−1/2

x(k + 1) − x(k − 1)
, k ∈ [−2,2],

D3
k+1/2 = D2

k+1 − D2
k

x(k + 2) − x(k − 1)
, k ∈ [−2,1].

Fig. 3 Computation of the table of divided differences with a stencil including the interface location for the
stencil [(Xi−1, φi−1); (Xi ,φi ); (Xi+1, φi+1); (Xinterface,0)]
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We define the MinAbs and MinMod functions as follows:

MinAbs(α,β) =
{

α, if |α| < |β|,
β, otherwise

and

MinMod(α,β) =

⎧⎪⎨
⎪⎩

α, if |α| ≤ |β| and αβ > 0,

β, if |α| > |β| and αβ > 0,

0, if αβ ≤ 0.

To compute the one-sided differences at a point Xi next to the interface, we take a stencil
of three points (including the interface) on each sides of Xi : ((x(k), h(k)), k ∈ [−3,3])
(where x(0) = xi and h(0) = φi ). We evaluate the divided differences as explained above.
Then, the formulation of the one-sided derivatives is given by:

a =
{

(x(0) − x(−1)) · (x(0) − x(−2)) · MinAbs(D3
−1/2,D

3
−3/2), if |D2

−1| < |D2
0 |,

(x(0) − x(−1)) · (x(0) − x(1)) · MinAbs(D3
−1/2,D

3
1/2), otherwise,

b =
{

(x(0) − x(−1)) · (x(0) − x(1)) · MinAbs(D3
−1/2,D

3
1/2), if |D2

0 | < |D2
1 |,

(x(0) − x(1)) · (x(0) − x(2)) · MinAbs(D3
1/2,D

3
3/2), otherwise,

D−
x φ(x(0)) = D1

−1/2 + MinMod(D2
−1,D

2
0) · (x(0) − x(−1)) + a,

D+
x φ(x(0)) = D1

1/2 + MinMod(D2
0,D

2
1) · (x(0) − x(1)) + b.

Similarly, the same procedure is employed in the y- and z-directions.

5 Numerical Results

In this section, we present numerical results to demonstrate the accuracy of the algorithms
described in Sect. 4. In all the simulations, the initial implicit functions are chosen so that
the interface does not necessarily lie on grid nodes.

5.1 Interface Location

Consider a domain 
 = [−1,1]2 and a level set function φ defining a square as:

φ(x, y) =
{

1, if |x| > 0.5 + �x/3 or |y| > 0.5 + �x/3,

−1, otherwise,

where �x is the distance between two adjacent grid nodes in the x- or y-directions. We
compare the results obtained after 150 iterations of the reinitialization equation using the
Hamilton-Jacobi WENO solver of [4], the second-order accurate scheme of Russo and
Smereka and the high-order accurate scheme of Sect. 4.1. As pointed out in [12], the HJ-
WENO algorithm leads to a loss in area whereas the other two conserve the original location
of the interface as illustrated in Fig. 4. We then test the high-order accurate scheme in the
case where the initial square is rotated by π/4 so that the edges of the square are not parallel
to the Cartesian directions. Figure 5 illustrates that the initial location of the level set func-
tion is unchanged. Not surprisingly, the nonlinear features of the reinitialization equation
along the diagonals of the square are treated properly by the Godunov scheme.
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Fig. 5 (Color online) Left: Initial (blue) and reinitialized (red) zero level set after 100 iterations of (2) on a
100 × 100 grid using the high-order scheme of Sect. 4.1. Right: The reinitialized level set function

Table 2 Accuracy results for the
reinitialized level set function φ

for example in Sect. 5.2. In this
case the HJ-WENO scheme
produces second-order accurate
results

‖φ − φh‖1 Order ‖φ − φh‖∞ Order

16 × 16 1.512 × 10−2 – 2.306 × 10−2 –

32 × 32 4.241 × 10−3 1.83 5.773 × 10−3 2.00

64 × 64 8.414 × 10−4 2.33 1.656 × 10−3 1.80

128 × 128 2.470 × 10−4 1.77 3.441 × 10−4 2.27

Table 3 Accuracy results for the
mean curvature κ for example in
Sect. 5.2. In this case the
HJ-WENO scheme is used and
the resulting lack of smoothness
in φ does not guarantee smooth
computations of the curvatures

‖κ − κh‖1 Order ‖κ − κh‖∞ Order

16 × 16 0.0272 – 0.0596 –

32 × 32 0.0126 1.11 0.0290 1.04

64 × 64 0.0305 −1.27 0.0979 −1.76

128 × 128 0.0207 0.55 0.0732 0.42

5.2 Computation of the Interface’s Curvature in 2D

The main improvement of the high-order algorithm of Sect. 4.1 is clearly the ability to
compute quantities that involve first or second-order derivatives of φ, such as the normals
to the interface and the curvatures. In particular the smoothness of the reinitialized level set
avoids the spurious numerical noise when computing the curvatures.

Consider a domain 
 = [−5,5]2 and an initial level set function φ(x, y) =
e
√

x2+y2−2.313 − 1. Figure 6 compares the results obtained with the HJ-WENO scheme of
[4], the scheme of [12] and the high-order accurate scheme of Sect. 4.1. In particular, it
illustrates the presence of numerical noise in the case where the reinitialization scheme does
not guarantee enough smoothness for φ, i.e. the case of [4]. Tables 2 and 3 further illus-
trate the limitations of the scheme of [4]. In the case of the second-order accurate scheme
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Table 4 Accuracy results for the
reinitialized level set function φ

for example in Sect. 5.2. In this
case the second-order accurate
algorithm of [12] produces more
than second-order accurate
results

‖φ − φh‖1 Order ‖φ − φh‖∞ Order

16 × 16 3.236 × 10−3 – 1.716 × 10−2 –

32 × 32 5.661 × 10−4 2.52 2.710 × 10−3 2.66

64 × 64 4.829 × 10−5 3.55 2.020 × 10−4 3.75

128 × 128 6.787 × 10−6 2.83 3.790 × 10−5 2.41

Table 5 Accuracy results for the
mean curvature κ for example in
Sect. 5.2. In this case the
second-order accurate scheme of
[12] is used

‖κ − κh‖1 Order ‖κ − κh‖∞ Order

16 × 16 1.08 × 10−2 – 1.68 × 10−2 –

32 × 32 2.04 × 10−3 2.40 5.86 × 10−3 1.52

64 × 64 8.00 × 10−4 1.35 2.56 × 10−3 1.20

128 × 128 3.35 × 10−4 1.26 1.28 × 10−3 0.99

Table 6 Accuracy results for the
reinitialized level set function φ

for example in Sect. 5.2. In this
case the high-order accurate
algorithm of Sect. 4.1 produces
fourth-order accurate results

‖φ − φh‖1 Order ‖φ − φh‖∞ Order

16 × 16 1.566 × 10−3 – 3.115 × 10−3 –

32 × 32 1.669 × 10−4 3.23 3.198 × 10−4 3.28

64 × 64 5.848 × 10−6 4.84 1.516 × 10−5 4.40

128 × 128 4.822 × 10−7 3.60 8.868 × 10−7 4.10

Table 7 Accuracy results in
computing the interface’s mean
curvature in the case of example
in Sect. 5.2. The high-order
accurate algorithm of Sect. 4.1
produces second-order accurate
results

‖κ − κh‖1 Order ‖κ − κh‖∞ Order

16 × 16 8.87 × 10−3 – 1.92 × 10−2 –

32 × 32 1.42 × 10−3 2.65 4.59 × 10−3 2.06

64 × 64 4.24 × 10−4 1.74 1.05 × 10−3 2.13

128 × 128 1.02 × 10−4 2.05 2.08 × 10−4 2.34

of [12], Table 4 demonstrates second-order accuracy for the reinitialized level set func-
tion, whereas Table 5 demonstrates that the interface’s curvature is only first order, due to
the lack of smoothness of the reinitialized level set. In the case of the high-order scheme
of Sect. 4.1, Table 6 demonstrates fourth-order accuracy for the reinitialized φ. This high
degree of smoothness guarantees second-order accuracy for the computation of the inter-
face curvature and third-order accuracy for the computation of the normals as shown in
Tables 7 and 8, respectively. The interface’s curvature is computed using standard second-
order accurate central difference formulas, whereas the normals are computed with standard
fourth-order accurate central difference formulas.

Figures 7 and 8 further demonstrate the smoothness of the isocontours of the mean cur-
vature in the case of an ellipse and in the case of two nearby circles, respectively.

5.3 Computation of the Interface’s Mean Curvature in 3D

Consider a domain 
 = [−1,1]3 and an initial level set function φ(x, y) = x2 + y2 + z2 −
(0.2222)2. Table 9 demonstrates fourth-order accuracy for the reinitialized φ in the case of
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Table 8 Accuracy results in
computing the normals to the
interface 	n in the case of example
in Sect. 5.2. The high-order
accurate algorithm of Sect. 4.1
produces third-order accurate
results

‖	n − 	nh‖1 Order ‖	n − 	nh‖∞ Order

16 × 16 1.68 × 10−3 – 6.38 × 10−3 –

32 × 32 1.20 × 10−4 3.80 6.81 × 10−4 3.23

64 × 64 1.71 × 10−5 2.81 6.02 × 10−5 3.50

128 × 128 1.51 × 10−6 3.51 7.28 × 10−6 3.05

Fig. 7 (Color online)
Isocontours of the curvature on a
100 × 100 grid in the case where
100 iterations of the high-order
algorithm of Sect. 4.1 is used.
The red curve corresponds to the
curvature at the interface. The
initial implicit function is given
by φ(x, y) =
min{(x − 1.5)2 + y2 − 1.3132,

(x + 1.5)2 + y2 − 1.3132}

the high-order scheme of Sect. 4.1. This high degree of smoothness guarantees second-
order accuracy for the computation of the interface curvature as shown in Table 10. Figure 9
illustrates the smoothness of the curvature computations.

Remark As mentioned in Sect. 2, the formula for the curvature reduces to that of the Lapla-
cian in the case where the level set function is a signed distance function. Tables 11 and 12
show that second-order accuracy is obtained as well when we use the Laplacian to compute
the curvature. We don’t find any benefits in terms of accuracy. This procedure is slightly
faster and easier to implement.

6 Extension to Adaptive Grids

In the case of adaptive grids, it is difficult to construct numerical schemes with large stencils,
especially in the case of non-graded grids, i.e. grids for which the size ratio between adjacent
cells is not constrained. In this case, the difficulty comes from the fact that infinitely many
possible arrangements could exist for the next to adjacent cells, making a general procedure
difficult to write. In [8], Min and Gibou extended the work of Russo and Smereka [12] to
the case of non-graded Cartesian grids. We show here that this scheme leads to second-order
accurate computations for the mean curvature. In the case of adaptive grids, [8] made two
changes to the original work of Russo and Smereka: (1) different interpolation to locate the
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Fig. 8 (Color online) Isocontours of the curvature on a 150 × 150 grid in the case where 100 iterations of
the high-order algorithm of Sect. 4.1 is used. The red curve corresponds to the curvature at the interface. The
initial implicit function is given by φ(x, y) = 0.1(

√
x2/20 + y2 − 1)(1 + (x − 3.5)2 + (y − 2)2)

Table 9 Accuracy results for the
reinitialized level set function φ

for example in Sect. 5.3. In this
case the high-order accurate
algorithm of Sect. 4.1 produces
fourth-order accurate results

‖φ − φh‖1 Order ‖φ − φh‖∞ Order

193 2.439 × 10−5 – 6.765 × 10−5 –

383 1.791 × 10−6 3.77 7.977 × 10−6 3.08

763 1.212 × 10−7 3.88 6.225 × 10−7 3.68

interface and (2) in computing the second divided differences at a grid point adjacent to the
interface. We refer the reader to [8] for more details.

We next present numerical evidence in Tables 13 and 14 that the reinitialization algorithm
implemented on the non-graded adaptive Cartesian grid produces comparable results to the
one obtained from the uniform grid with the high-order algorithm of Sect. 4.1. In the case
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Table 10 Accuracy results for
the computation of the interface
mean curvature κ in the case of
example in Sect. 5.3. The
high-order accurate algorithm of
Sect. 4.1 produces second-order
accurate results

‖κ − κh‖1 Order ‖κ − κh‖∞ Order

193 2.10 × 10−2 – 1.52 × 10−1 –

383 5.31 × 10−3 1.98 2.03 × 10−2 2.90

763 1.54 × 10−3 1.79 4.96 × 10−3 2.04

Table 11 Accuracy results in
computing the interface’s mean
curvature using the Laplacian in
the case of example in Sect. 5.2.
The high-order accurate
algorithm of Sect. 4.1 produces
second-order accurate results

‖κ − κh‖1 Order ‖κ − κh‖∞ Order

16 × 16 1.12 × 10−2 – 2.59 × 10−2 –

32 × 32 2.16 × 10−3 2.38 6.53 × 10−3 1.99

64 × 64 5.86 × 10−4 1.88 1.85 × 10−3 1.82

128 × 128 1.44 × 10−4 2.03 3.20 × 10−4 2.53

Table 12 Accuracy results for
the computation of the interface
mean curvature using the
Laplacian in the case of example
in Sect. 5.3. The high-order
accurate algorithm of Sect. 4.1
produces second-order accurate
results

‖κ − κh‖1 Order ‖κ − κh‖∞ Order

193 2.73 × 10−2 – 1.52 × 10−1 –

383 7.04 × 10−3 1.95 2.02 × 10−2 2.91

763 2.07 × 10−3 1.77 6.01 × 10−3 1.75

Fig. 9 (Color online) Isosurface of the mean curvature after solving (2) for 80 iterations on a 763 grid in the
case of example in Sect. 5.3. Left: The HJ-WENO scheme of [4]. Right: The high-order accurate scheme of
Sect. 4.1. The red isosurface corresponds to the mean curvature at the zero level set

of the adaptive grids, Table 15 demonstrates third-order accuracy for the reinitialized level
set function and second-order accuracy for the computation of the mean curvature. These
results for the computation of the mean curvature are similar to the ones obtained with the
high-order algorithm of Sect. 4.1 (see Table 7). The adaptive grid thus allows to concentrate
the computational effort in the region of interest, i.e. close to the interface. As a consequence
one is able to obtain results with the adaptive framework that are not possible on uniform
grids. Table 16 gives accuracy results for the mean curvature in three spatial dimensions
in the case of adaptive grids. Figures 11 and 12 demonstrate a comparable smoothness of
the isocontours of the mean curvature in the same cases as the ones using the high-order
algorithm of Sect. 4.1 (Figs. 7 and 8).
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Table 13 Accuracy results for
the reinitialized level set φ and
the mean curvature κ from the
exponential test using the
adaptive framework with a
uniform grid

‖φ − φh‖∞ Order ‖κ − κh‖∞ Order

(24) 1.30 × 10−2 – 2.45 × 10−2 –

(25) 2.48 × 10−3 2.38 6.27 × 10−3 1.96

(26) 3.95 × 10−4 2.65 1.57 × 10−3 1.99

(27) 5.19 × 10−5 2.93 3.93 × 10−4 2.00

(28) 6.56 × 10−6 2.98 9.82 × 10−5 2.00

Table 14 Accuracy results for
the reinitialized level set φ and
the mean curvature κ from the
exponential test in 3D using the
adaptive framework with a
uniform grid

‖φ − φh‖∞ Order ‖κ − κh‖∞ Order

(24)3 2.082 × 10−3 – 7.57870 × 10−1 –

(25)3 2.819 × 10−4 2.88 1.835 × 10−1 2.04

(26)3 3.948 × 10−5 2.83 4.520 × 10−2 2.02

(27)3 5.007 × 10−6 2.97 1.645 × 10−2 1.45

Table 15 Accuracy results for
the reinitialized level set φ and
the mean curvature κ from the
example of Fig. 10

‖φ − φh‖∞ Order ‖κ − κh‖∞ Order

(24) 1.32 × 10−2 – 2.45 × 10−2 –

(25) 2.48 × 10−3 2.41 6.27 × 10−3 1.96

(26) 3.99 × 10−4 2.63 1.57 × 10−3 1.99

(27) 5.08 × 10−5 2.97 3.93 × 10−4 2.00

(28) 6.47 × 10−6 2.97 9.82 × 10−5 2.00

(29) 8.39 × 10−7 2.94 2.45 × 10−5 1.99

(210) 1.04 × 10−7 3.01 6.14 × 10−6 2.00

(211) 1.29 × 10−8 3.00 1.53 × 10−6 2.00

(212) 1.78 × 10−9 2.85 3.83 × 10−7 1.99

Table 16 Accuracy results for
the reinitialized level set φ and
the mean curvature κ from the
exponential test in 3D using the
adaptive framework with an
adaptive grid

‖φ − φh‖∞ Order ‖κ − κh‖∞ Order

(24)3 2.081 × 10−3 – 7.578 × 10−1 –

(25)3 2.819 × 10−4 2.88 1.835 × 10−1 2.04

(26)3 3.948 × 10−5 2.83 4.520 × 10−2 2.02

(27)3 5.013 × 10−6 2.97 1.554 × 10−2 1.53

7 Conclusion

We have presented two novel high-order accurate schemes for the reinitialization equa-
tion of Sussman et al. [17] that guarantee accurate computation of the interface’s curva-
ture in the context of level set methods. These schemes builds on the work of Russo and
Smereka [12]. We have presented numerical results in two and three spatial dimensions that
demonstrate fourth-order accuracy for the reinitialized level set function, third-order accu-
racy for the normals and second-order accuracy for the interface’s curvatures in the L1-
and L∞-norms. We also exploited the reinitialization scheme introduced by Min and Gibou
in [8] and demonstrated that one can obtain second-order accuracy for the computation of
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Fig. 10 Left: Adaptive grid used. Right: Smooth computation of the mean curvature after 100 iterations
of the reinitialization equation. The smallest grid size is �xs = 1/1024. The initial implicit function is
φ : (x, y) 
→ exp (

√
x2 + y2 − 2.313) − 1

Fig. 11 (Color online)
Isocontours of the curvature on a
256 × 256 grid in the case where
200 iterations of the algorithm
detailed in [8] are used. The red
curve corresponds to the
curvature at the interface. The
initial implicit function is given
by φ : (x, y) 
→
0.1(

√
x2/20 + y2 − 1) ×

(1 + (x − 3.5)2 + (y − 2)2)

curvatures on highly non-graded adaptive Cartesian grids. A hallmark of this work is that
state-of-the-art second-order accurate reinitialization procedures of [4] can now be replaced
by fourth-order accurate reinitialization schemes, hence solving a long standing problem
in the accurate computation of geometrical quantities in the level-set framework, such as
normals and curvatures. In addition, unlike reinitialization schemes based on WENO tech-
nologies, our approach can be extended to nonuniform meshes producing results with a level
of resolution unattainable on uniform grids.
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Fig. 12 (Color online)
Isocontours of the curvature on a
128 × 128 grid in the case where
100 iterations of the algorithm
detailed in [8] are used. The red
curve corresponds to the
curvature at the interface. The
initial implicit function is given
by φ : (x, y) 
→
min((x − 1.5)2 + y2 − 1.3132,

(x + 1.5)2 + y2 − 1.3132)
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