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Abstract

We present a robust second-order accurate method for discretizing the multidimensional
Heaviside and the Dirac delta functions on irregular domains. The method is robust in the
following ways: (1) Integrations of source terms on a co-dimension one surface are independent
of the underlying grid and therefore stable under perturbations of the domain’s boundary; (2)
The method depends only on the function value of a level function, not on its derivatives. We
present the discretizations in tabulated form to make their implementations straightforward.
We present numerical results in two and three spatial dimensions to demonstrate the second-
order accuracy in the L1-norm in the case of the solution of PDEs with singular source terms.
In the case of evaluating the contribution of singular source terms on interfaces, the method is
also second-order accurate in the L∞-norm.

1 Introduction

The use of regularized Heaviside and delta functions is ubiquitous in computational science and
provide a systematic framework to discretize source terms and to approximate discontinuous vari-
ables on irregular domains. For example, the numerical approximations of the Heaviside and delta
functions are widely used in the level set community to discretize two-phase flow problems and to
evaluate singular source terms such as surface tension forces, as introduced by Sussman et al. [22]
in the context of two-phase flows. Volume of fluid, Front Tracking, Immersed Boundary and Phase-
Field methods also use a smear-out approach where the discretization of the Heaviside and delta can
be handy (see for example [26, 2, 7, 15] and the references therein). In addition, several hybridiza-
tions of numerical methods have been proposed, such as particle/level set [5], VOF/levelset [21],
etc., so that the use of numerical delta and Heaviside functions is omnipresent in computational
science and engineering.

More precisely, consider an irregular domain Ω ⊂ Rd and its boundary Γ = ∂Ω. Here, the sets
are assumed to be represented through a level function φ : Rd → R as

Ω = {x ∈ Rd|φ(x) ≤ 0}
Γ = {x ∈ Rd|φ(x) = 0}.
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We note that in the case where Ω and Γ are not described by a level function, as it is the case
for front-tracking, volume of fluid, or phase-field methods, a signed distance function to Γ can be
constructed using any of the well documented algorithms, such as [17, 14, 19, 13]. Therefore, our
discretizations are not limited to level set methods.

Using this functional representation, one can compute integrals on irregular domains Ω or in-
terfaces Γ as integrals on regular domains as:

∫

Ω

f dΩ =
∫

Rd

f(x) ·H(φ(x)) dx,

∫

Γ

f dΓ =
∫

Rd

f(x) · δ(φ(x)) · ‖∇(φ(x))‖ dx.

Several approximations of the one dimensional delta and Heaviside functions have been proposed
in the literature, see [14, 18] for a review. However, Tornberg and Engquist [23] pointed out that
the standard approximations used in the level set community may lead to erroneous results and
provided an example where, even in the simple computation of the length of a curve, the use of
standard numerical delta functions could lead to non convergent approximations. Later, Engquist
et al. [4] proposed first-order accurate discretizations of the Dirac delta function that removes the
problem of convergence. We note that they also proposed a second-order accurate discretization
of delta, but that only two dimensional results are presented, possibly because of its complexity.
Also, leveraging on the work of Mayo [9] and building on the work of Calhoun and Smereka [3],
Smereka proposed first- and second-order accurate discretizations of the regularized delta function
and proposed numerical results using the computation of length and areas of irregular domains
to demonstrate their accuracy [20]. In this work, the discretization of the Dirac delta involves
second order derivatives of a level set function, which may lead to numerical noise. Discretization
of Dirac delta involving derivatives of functions can also be found in the work of Towers [24,
25]. We also note that the interesting work of Waldén [27] addresses discretizations of Dirac
delta, although only treating the one dimensional case. In Min and Gibou [12], we proposed a
second-order accurate geometric approach to the computation of length and area that is robust
to the perturbations of the irregular domain’s boundary. However, this work focused only on
approximating integrals for computing lengths, areas and volumes of irregular domains and did not
provide explicit discretizations of Heaviside and delta functions.

In this paper, integrals over irregular domains are first converted to integrals over regular do-
mains via the multi-dimensional Heaviside and delta functions:

∫

Ω

f dΩ =
∫

Rd

f(x) ·HΩ(x) dx and
∫

Γ

f dΓ =
∫

Rd

f(x) · δΓ(x) dx,

then, leveraging on the robust geometric integration of [12], we propose a direct discretizations δi,j

and Hi,j of the multi-dimensional Heaviside and delta functions in two and three spatial dimensions
such that: ∫

Ω

f dΩ =
∑

i,j

Hi,j · fi,j ∆x∆y + O
(
∆x2 + ∆y2

)
, (1)

and ∫

Γ

f dΓ =
∑

i,j

δi,j · fi,j ∆x∆y + O
(
∆x2 + ∆y2

)
. (2)
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Figure 1: Decomposition of the frustrum P0P02P12P1 of a triangle P0P1P2 into two simplices
P0P02P1 and P02P12P1.

We first consider discretizing the integrals over irregular domains. Then discretizations of the
multi-dimensional Heaviside and delta functions will follow from the discretizations of equations
(1) and (2).

2 Geometric Integration

In [10], an isosurfacing method was introduced to efficiently decompose the irregular domains Ω and
Γ defined by the level function φ into simplices. Using the quadrature rules on simplices (triangles
in 2D and tetrahedra in 3D), we proposed in [12] an efficient and second-order accurate integration
method. In addition, we showed that this method is robust to the perturbation of the interface on
the underlying grid. For the sake of clarity, we briefly review next the integration method.

On Cartesian grids, we assume that the level function φ and the integrand f are sampled at
grid nodes. Each grid cell can be decomposed into simplices and the integrals can be evaluated as
the sum over the simplices. It is enough then to consider integration over one simplex, as described
next.

2.1 Two Spatial Dimensions

Consider a triangle with vertices P1, P2 and P3, denoted ∆P0P1P2, to be an element in the decom-
position of a two dimensional domain. We denote by φi and fi, the values of the level function and
the integrand function on a vertex Pi. Whenever φiφj < 0, there exists an interface point on the
line segment PiPj , which we denote by Pij and approximated by linear interpolation:

Pij = Pi
φ(Pj)

φ(Pj)− φ(Pi)
+ Pj

φ(Pi)
φ(Pi)− φ(Pj)

.

Using the interface points, the intersections of the irregular domain Ω and interface Γ with the
triangle are discretized as:

Ω ∩∆P0P1P2 =





∆P0P1P2 if φ0, φ1, φ2 < 0
∆P0P1P02 ∪∆P12P1P02 if φ0, φ1 < 0 and φ2 > 0
∆P02P12P2 if φ0 < 0 and φ1, φ2 > 0
∅ if φ0, φ1, φ2 > 0

,
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and

Γ ∩∆P0P1P2 =





∅ if φ0, φ1, φ2 < 0
P02P12 if φ0, φ1 < 0 and φ2 > 0
P02P01 if φ0 < 0 and φ1, φ2 > 0
∅ if φ0, φ1, φ2 > 0

,

as depicted in figure 1.
Note: Without loss of generality, we assumed that the values of φ0, φ1, and φ2 were sorted

with the negative signs first. Note also that Ω ∩∆P0P1P2 and Γ ∩∆P0P1P2 are now the union of
simplices. On each simplex of the irregular domains, one can apply the midpoint quadrature rule
to approximate the contribution of the integral of f over that simplex. For example, in the case
where φ0, φ1 < 0 and φ2 > 0, we have:

∫

Ω∩∆P0P1P2

fdΩ =
∫

∆P0P1P02

fdΩ +
∫

∆P12P1P02

fdΩ

≈ 1
3

(f(P0) + f(P1) + f(P02))A(P0P1P02)

+
1
3

(f(P12) + f(P1) + f(P02)) A(P12P1P02),

and ∫

Γ∩P0P1P2

fdΓ =
∫

∆P02P12

fdΓ

≈ 1
2

(f(P02) + f(P12)) L(P02P12),

where A(PiPjPk) and L(PiPj) denote the area of the triangle ∆PiPjPk and the length of the line
segment PiPj , respectively. Since f is only sampled on grid nodes, the unknown value f(Pij) is
simply linearly interpolated as:

f(Pij) =
fiφj − fjφi

φj − φi
.

The integrals above thus become:
∫

Ω∩∆P0P1P2

fdΩ ≈ A(P0P1P02)
3

(
f0 + f1 +

f0φ2 − f2φ0

φ2 − φ0

)

+
A(P12P1P02)

3

(
f1φ2 − f2φ1

φ2 − φ1
+ f1 +

f0φ2 − f2φ0

φ2 − φ0

)
,

and ∫

Γ∩∆P0P1P2

fdΓ ≈ L(P02P12)
2

(
f0φ2 − f2φ0

φ2 − φ0
+

f1φ2 − f2φ1

φ2 − φ1

)
.

The above discretizations are linear polynomials with respect to the sampled function values f0,
f1, and f2, which we write as:

∫

Ω∩∆P0P1P2

fdΩ ≈ f0H0 + f1H1 + f2H2

∫

Γ∩∆P0P1P2

fdΓ ≈ f0δ0 + f1δ1 + f2δ2

, (3)
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Figure 2: Middle cut triangulation (left) and Kuhn triangulation (right) of a three dimensional grid
cell

where the Hi’s and δi’s are the coefficients of the linear polynomials fi’s. Note that these coefficients
are functions of the six arguments φ0, φ1, φ2, P0, P1, and P2 and that the discretizations in (3)
does not depend on the order of indexing of the vertices. Therefore, once one of the coefficients,
say H0(φ0, φ1, φ2, P0, P1, P2), is known, the other coefficients directly follow it, i.e.:

H1(φ0, φ1, φ2, P0, P1, P2) = H0(φ1, φ0, φ2, P1, P0, P2),

and

H2(φ0, φ1, φ2, P0, P1, P2) = H0(φ2, φ0, φ1, P2, P0, P1).

As a consequence, it is enough to derive formulas for H0 and δ0, which we give in table 1. These
formulas depend on the sign of the φ since the combination of signs define the location and geometry
of the domain and of the interface.

2.2 Extension to Three Spatial Dimensions

The integration method presented above can be extended to three spatial dimensions in the same
fashion by first triangulating the grid into simplices. In this case, among the many possible de-
compositions, two choices are evident: each grid cell can be decomposed in either five tetrahedra
(the middle cut triangulation [16]) or into six tetrahedra (the Kuhn triangulation [8]) as illustrated
in figure 2. The advantage of the Kuhn triangulation is that it can be more easily extended to
higher spatial dimensions, as described in [10]. It is also a better choice if one needs to match
triangulations between adjacent cells [6]. The advantage of the middle cut triangulation is that
the angles of the tetrahedra are less acute than those of the Kuhn triangulation and that the total
number of tetrahedra is less, which is preferable for computational efficiency. We choose the middle
cut triangulation since we do not need to consider interactions between adjacent cells and limit
ourselves to two and three spatial dimensions. The simplicity of this decomposition also translates
to the simplicity of the method.

Then, given a tetrahedra ∆P0P1P2P3, the irregular domains Ω∩∆P0P1P2P3 and Γ∩∆P0P1P2P3

are decomposed into a disjoint union of tetrahedra and triangles, respectively, as depicted in figures
3 and 4. By using the midpoint quadrature rule on tetrahedra and triangles, we obtain the following
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Figure 3: The three generic representations of the set S ∩ Ω, where S is a simplex in three spatial
dimensions (i.e. a tetrahedron): One tetrahedron (left) or the union of three tetrahedra (center and
right).

Figure 4: Generic cases of the decomposition of S ∩ Γ, where S is a simplex in three spatial
dimensions: S ∩ Γ ≈ conv ({Pij |φ(Pi)φ(Pj) < 0}).
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φ0 φ1 φ2 H0(φ0, φ1, φ2, P0, P1, P2) δ0(φ0, φ1, φ2, P0, P1, P2)

− − − A(P0P1P2)
3 0

− − + A(P0P1P2)
3 − A(P02P12P2)

3 · φ2
φ2−φ0

L(P02P12)
2 · φ2

φ2−φ0

− + − A(P0P1P2)
3 − A(P01P21P1)

3 · φ1
φ1−φ0

L(P01P21)
2 · φ1

φ1−φ0

− + + A(P01P02P0)
3 ·

(
1 + φ2

φ2−φ0
+ φ1

φ1−φ0

)
L(P01P02)

2 ·
(

φ1
φ1−φ0

+ φ2
φ2−φ0

)

Table 1: Formulas for the discretization of H0 and δ0 in two spatial dimensions. Note that δ(φ) =
δ(−φ) and that H(−φ) = A(P0, P1, P2)−H(φ)

second-order accurate integration approximations:
∫

Ω∩∆P0P1P2P3

fdΩ ≈ f0H0 + f1H1 + f2H2 + f3H3

∫

Γ∩∆P0P1P2P3

fdΓ ≈ f0δ0 + f1δ1 + f2δ2 + f3δ3

. (4)

Similarly to the two dimensional case, the coefficients Hi’s and δi’s are functions of the eight
arguments φ0, φ1, φ2, φ3, P0, P1, P2, and P3, and can be expressed as a function of each others.
For example, one can define H1, H2, H3 as:

H1(φ0, φ1, φ2, φ3, P0, P1, P2, P3) = H0(φ1, φ0, φ2, φ3, P1, P0, P2, P3)
H2(φ0, φ1, φ2, φ3, P0, P1, P2, P3) = H0(φ2, φ0, φ1, φ3, P2, P0, P1, P3)
H3(φ0, φ1, φ2, φ3, P0, P1, P2, P3) = H0(φ3, φ0, φ1, φ2, P3, P0, P1, P2).

Table 2 presents the formula for H0 and δ0 in three spatial dimensions.

3 Discretization of The Multi-Dimensional Heaviside and
Delta Functions

Equation (1) gives a relationship between a discretization of the multidimensional Heaviside function
and an approximation of

∫
Ω

fdΩ. Therefore, using the robust second-order accurate discretizations
of

∫
Ω

fdΩ described in section 2, we obtain a robust second-order accurate discretization of the
multi-dimensional Heaviside functions. Likewise, equation (2) gives a relationship between a dis-
cretization of the multidimensional delta function and an approximation of

∫
Γ

fdΓ. Therefore, a
robust second-order accurate of the delta function can be given in terms of the integration method
of section 2.
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φ0 φ1 φ2 φ3 H0(φ0, φ1, φ2, φ3, P0, P1, P2, P3) δ0(φ0, φ1, φ2, φ3, P0, P1, P2, P3)

− − − − V (P0P1P2P3)
4 0

− − − + V (P0P1P2P3)
4 − V (P03P13P23P3)

4
φ3

φ3−φ0

A(P03P13P23)
3

φ3
φ3−φ0

− − + − V (P0P1P2P3)
4 − V (P02P12P2P23)

4
φ2

φ2−φ0

A(P02P12P23)
3

φ2
φ2−φ0

− − + +
V (P0P02P03P13)

4

(
1 + φ2

φ2−φ0
+ φ3

φ3−φ0

)
A(P02P03P13)

3

(
φ2

φ2−φ0
+ φ3

φ3−φ0

)

+V (P0P02P1P13)
4

(
1 + φ2

φ2−φ0

)
+ V (P02P1P12P13)

4
φ2

φ2−φ0
+A(P02P12P13)

3
φ2

φ2−φ0

− + − − V (P0P1P2P3)
4 − V (P0P1P12P13)

4
φ1

φ1−φ0

A(P01P12P13)
3

φ1
φ1−φ0

− + − +
V (P0P01P03P23)

4

(
1 + φ1

φ1−φ0
+ φ3

φ3−φ0

)
A(P01P03P23)

3

(
φ1

φ1−φ0
+ φ3

φ3−φ0

)

+V (P0P01P2P23)
4

(
1 + φ1

φ1−φ0

)
+ V (P01P12P2P23)

4
φ1

φ1−φ0
+A(P01P12P23)

3
φ1

φ1−φ0

− + + −
V (P0P01P02P23)

4

(
1 + φ1

φ1−φ0
+ φ2

φ2−φ0

)
A(P01P02P23)

3

(
φ1

φ1−φ0
+ φ2

φ2−φ0

)

+V (P0P01P23P3)
4

(
1 + φ1

φ1−φ0

)
+ V (P01P13P23P3)

4
φ1

φ1−φ0
+A(P01P13P23)

3
φ1

φ1−φ0

− + + + V (P0P01P02P03
4 )

(
1 + φ1

φ1−φ0
+ φ2

φ2−φ0

)
A(P01P02P03)

3

(
φ1

φ1−φ0
+ φ2

φ2−φ0
+ φ3

φ3−φ0

)

Table 2: Formulas for the discretization of H0 in three spatial dimensions. Note that δ(φ) = δ(−φ)
and that H(−φ) = V (P0, P1, P2, P3)−H(φ)
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3.1 Two Spatial Dimensions

Consider a Cartesian grid with spacing ∆x and ∆y in the x- and y- direction, respectively. We use
the standard notation of xi = i∆x and yi = i∆y and we write:∫

Ω

fdΩ =
∑

i,j

∫

Ω∩[xi,xi+1]×[yj ,yj+1]

fdx

=
∑

i,j

∫

Ω∩∆PijPi+1,jPi+1,j+1

fdx +
∑

i,j

∫

Ω∩∆PijPi,j+1Pi+1,j+1

fdx.

Using the geometric integration of section 2 on each term, we have:

∫

Ω

fdΩ ≈
∑

i,j




fi,jH0(φij , φi+1,j , φi+1,j+1, Pij , Pi+1,j , Pi+1,j+1)
+fi+1,jH1(φij , φi+1,j , φi+1,j+1, Pij , Pi+1,j , Pi+1,j+1)

+fi+1,j+1H2(φij , φi+1,j , φi+1,j+1, Pij , Pi+1,j , Pi+1,j+1)
+fi,jH0(φij , φi,j+1, φi+1,j+1, Pij , Pi,j+1, Pi+1,j+1)

+fi,j+1H1(φij , φi,j+1, φi+1,j+1, Pij , Pi,j+1, Pi+1,j+1)
+fi+1,j+1H2(φij , φi,j+1, φi+1,j+1, Pij , Pi,j+1, Pi+1,j+1)




,

which we can write in terms of H0 as:

∫

Ω

fdΩ ≈
∑

i,j




fi,jH0(φi,j , φi+1,j , φi+1,j+1, Pi,j , Pi+1,j , Pi+1,j+1)
+fi+1,jH0(φi+1,j , φi,j , φi+1,j+1, Pi+1,j , Pi,j , Pi+1,j+1)

+fi+1,j+1H0(φi+1,j+1, φi,j , φi+1,j , Pi+1,j+1, Pi,j , Pi+1,j)
fi,jH0(φi,j , φi+1,j , φi+1,j+1, Pi,j , Pi+1,j , Pi+1,j+1)

+fi,j+1H0(φi,j+1, φi,j , φi+1,j+1, Pi,j+1, Pi,j , Pi+1,j+1)
+fi+1,j+1H0(φi+1,j+1, φi,j , φi+1,j , Pi+1,j+1, Pi,j , Pi+1,j)




Since in virtue of equation (1), the approximation of
∫
Ω

fdΩ is to be
∑

i,j fijHij∆x∆y, we obtain
the following second-order accurate approximation of the multidimensional Heaviside function by
collecting all the coefficients in front of fij :

Hi,j =
1

∆x∆y




H0(Pi,j, Pi+1,j , Pi+1,j+1, φi,j, φi+1,j , φi+1,j+1)
+ H0(Pi,j, Pi ,j+1, Pi+1,j+1, φi,j, φi ,j+1, φi+1,j+1)
+ H0(Pi,j, Pi−1,j , Pi−1,j−1, φi,j, φi−1,j , φi−1,j−1)
+ H0(Pi,j, Pi ,j−1, Pi−1,j−1, φi,j, φi ,j−1, φi−1,j−1)
+ H0(Pi,j, Pi+1,j , Pi ,j−1, φi,j, φi+1,j , φi ,j−1)
+ H0(Pi,j, Pi−1,j , Pi ,j+1, φi,j, φi−1,j , φi ,j+1)




.

Similarly, using equation (2), we obtain the following second-order accurate discretization of the
delta function:

δi,j =
1

∆x∆y




δ0(Pi,j, Pi+1,j , Pi+1,j+1, φi,j, φi+1,j , φi+1,j+1)
+ δ0(Pi,j, Pi ,j+1, Pi+1,j+1, φi,j, φi ,j+1, φi+1,j+1)
+ δ0(Pi,j, Pi−1,j , Pi−1,j−1, φi,j, φi−1,j , φi−1,j−1)
+ δ0(Pi,j, Pi ,j−1, Pi−1,j−1, φi,j, φi ,j−1, φi−1,j−1)
+ δ0(Pi,j, Pi+1,j , Pi ,j−1, φi,j, φi+1,j , φi ,j−1)
+ δ0(Pi,j, Pi−1,j , Pi ,j+1, φi,j, φi−1,j , φi ,j+1)




.
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Pa Pb Pc Pd

(i, j, k) (i + 1, j, k) (i, j + 1, k) (i, j, k + 1)
(i, j, k) (i + 1, j, k) (i, j, k − 1) (i, j − 1, k)
(i, j, k) (i, j, k − 1) (i, j + 1, k) (i− 1, j, k)
(i, j, k) (i, j − 1, k) (i− 1, j, k) (i, j, k + 1)
(i, j, k) (i, j − 1, k − 1) (i− 1, j, k − 1) (i− 1, j − 1, k)
(i, j, k) (i, j − 1, k − 1) (i− 1, j, k − 1) (i, j, k − 1)
(i, j, k) (i, j − 1, k − 1) (i, j − 1, k) (i− 1, j − 1, k)
(i, j, k) (i− 1, j, k) (i− 1, j, k − 1) (i− 1, j − 1, k)
(i, j, k) (i− 1, j, k) (i− 1, j + 1, k) (i− 1, j, k + 1)
(i, j, k) (i, j + 1, k + 1) (i− 1, j + 1, k) (i− 1, j, k + 1)
(i, j, k) (i, j + 1, k + 1) (i− 1, j + 1, k) (i, j + 1, k)
(i, j, k) (i, j + 1, k + 1) (i, j, k + 1) (i− 1, j, k + 1)
(i, j, k) (i + 1, j − 1, k) (i, j − 1, k) (i, j − 1, k + 1)
(i, j, k) (i + 1, j − 1, k) (i + 1, j, k + 1) (i, j − 1, k + 1)
(i, j, k) (i + 1, j − 1, k) (i + 1, j, k + 1) (i + 1, j, k)
(i, j, k) (i, j, k + 1) (i + 1, j, k + 1) (i, j − 1, k + 1)
(i, j, k) (i + 1, j, k − 1) (i, j + 1, k − 1) (i, j, k − 1)
(i, j, k) (i + 1, j, k − 1) (i, j + 1, k − 1) (i + 1, j + 1, k)
(i, j, k) (i + 1, j, k − 1) (i + 1, j, k) (i + 1, j + 1, k)
(i, j, k) (i, j + 1, k) (i, j + 1, k − 1) (i + 1, j + 1, k)

Table 3: List of the 20 tetrahedra ∆PaPbPcPd neighboring each vertex (i, j, k).

3.2 Three Spatial Dimensions

The previous discretizations can be extended to three spatial discretization in a straightforward
manner: First, we evaluate the integrals

∫
Ω

fdΩ and
∫
Γ

fdΓ using the integration method described
in section 3. These formulas involve the contribution of the 20 tetrahedra neighboring each grid
node (i, j, k) (see table 3). Then using formulas (1) and (2), one can define the approximation of
the multidimensional Heaviside and delta functions in three spatial dimensions as:

Hi,j,k =
1

∆x∆y∆z

∑

∆PaPbPcPd neighboring tetrahedron of (i,j,k)

H0(Pa, Pb, Pc, Pd, φa, φb, φc, φd),

and

δi,j,k =
1

∆x∆y∆z

∑

∆PaPbPcPd neighboring tetrahedron of (i,j,k)

δ0(Pa, Pb, Pc, Pd, φa, φb, φc, φd),

where the ∆PaPbPcPd’s are defined in table 3.
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h ||A−Ah||∞ Rate ||L− Lh||∞ Rate
.15 9.02× 10−2 4.29× 10−1

.075 2.31× 10−2 1.97 1.35× 10−1 1.67
.0375 5.35× 10−3 2.11 3.32× 10−2 2.02
.01875 1.35× 10−3 1.99 6.71× 10−3 2.31
.009375 3.31× 10−4 2.03 1.48× 10−3 2.19

Table 4: Convergence analysis in computing the area and arc length of the irregular domain defined
by r ≤ 1 + 1

2 cos(5θ) using the proposed Heaviside and delta functions.

h ||V − Vh||∞ Rate ||S − Sh||∞ Rate
0.2 1.44× 10−1 3.14× 10−1

0.1 3.66× 10−2 1.98 7.85× 10−2 2.00
0.05 9.16× 10−3 1.99 1.95× 10−2 2.00
0.025 2.29× 10−3 2.00 4.89× 10−3 2.00
0.0125 5.72× 10−4 2.00 1.22× 10−3 2.00

Table 5: Convergence analysis in computing the volume and the surface area of an ellipsoid using
the proposed Heaviside and delta functions.

4 Numerical Examples

In this section, we provide numerical evidence that our method is second-order accurate in the L∞-
norm in two and three spatial dimensions. Since the discretizations we propose in this paper are
heavily based on the geometric integration of [12], we do not provide examples demonstrating the
robustness of the method but we stress that this method inherits from this property, as demonstrated
in [12]. In these examples h is the spacing between grid nodes.

4.1 Computing Lengths and Areas in Two Spatial Dimensions

Consider an irregular domain Ω represented in the polar coordinates as r ≤ 1 + 1
2 cos(5θ) with a

corresponding level set function φ(x, y) = 2(x2 +y2)3−2(x2 +y2)2
√

x2 + y2−(x5 +5xy4−10x3y2).
We measure its area and arc length using the discretizations of Heaviside and delta function,
respectively. The exact area is 9

8π, and the arc length is approximately 12.329044714372 · · · . Table
4 demonstrates the second-order accuracy of our approach as we refine the grid.

4.2 Computing Surfaces and Volumes in Three Spatial Dimensions

Consider an ellipsoid defined by x2

1.52 + y2

.752 + z2

.52 = 1 on a computational domain [−1.6, 1.6] ×
[−.8, .8]× [−.6, .6]. Its surface area is approximately 9.901821 · · · and its volume is 3

4π, as detailed
in [20]. Table 5 demonstrates second-order accuracy of our method when computing its surface
area and volume using our discretizations of the Heaviside and the delta functions.
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Figure 5: Contours of f(x, y) before (left) and after (right) quadratic extrapolation of example 4.3.
The red contour represents the domain’s boundary ∂Ω.

h error Rate
.125 8.69× 10−2

.0625 1.28× 10−2 2.76
.03125 2.59× 10−3 2.30
.015625 6.35× 10−4 2.02
.0078125 1.56× 10−4 2.02

Table 6: Convergence analysis in computing the integral of example 4.3

4.3 Evaluation of Source Terms on Irregular Domain

In the case of the computation of lengths, areas and volumes, the integrand is identically equal to
one, so the domain of definition of the integrand is irrelevant. In the case of evaluating singular
source terms, the integrand may not be constant and may be defined only in the interior of the
irregular domain. In this example, we show that a simple extrapolation of the integrand allow to
define it at all grid points near the interface; and subsequent use of our approximation of the delta
Dirac function produces second-order accuracy in the L∞-norm: Consider a domain Ω to be the unit
circle with center (0, 0) and a quantity f(x, y) = e−x2−y2

defined only inside this irregular domain.
Outside the domain, we take f(x, y) = 0. The integral value

∫
Ω

f = π(1 − 1/e) is approximated
by our discretization of the multi-dimensional Heaviside function after extrapolating quadratically
f using method described in [1, 13]. Figure 5 depicts the contours of f(x, y) before and after the
extrapolation. Table 6 demonstrates second-order accuracy in the L∞-norm.

4.4 Poisson Equation with a Singular Source Term

Consider the Poisson equation studied in [4].

−∆u(x) = δΓ(x) in Ω
u(x) = 1− ln(2|x|)

2 on ∂Ω
,
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Grid L∞ norm Rate L∞ in Ω̃2∆x Rate L∞ in Ω̃.2 Rate L1 norm Rate

322 7.35× 10−3 8.18× 10−4 4.14× 10−4 3.09× 10−4

642 3.02× 10−3 1.27 4.43× 10−4 0.88 9.93× 10−5 2.06 8.07× 10−5 1.93
1282 2.53× 10−3 0.26 1.91× 10−4 1.21 2.46× 10−5 2.00 2.25× 10−5 1.84
2562 1.22× 10−3 1.05 7.98× 10−5 1.25 6.39× 10−6 1.94 5.83× 10−6 1.94
5122 6.78× 10−4 0.84 3.17× 10−5 1.32 1.59× 10−6 2.00 1.51× 10−6 1.94
10242 3.36× 10−4 1.01 1.31× 10−5 1.27 4.03× 10−7 1.98 3.78× 10−7 1.99

Table 7: Accuracy of the Poisson problem 4.4. The exact solution has a kink at the interface Γ.

where Ω = [−1, 1]× [−1, 1] and Γ = {x ∈ R2||x| = 1
2}. The equation has the following solution:

u(x) =

{
1 if |x| ≤ 1

2

1− ln(2|x|)
2 if |x| ≥ 1

2

.

On a uniform grid, we discretize the Laplace operator with standard central finite differences and
the multi-dimensional delta function δΓ with the method presented above. We follow the notation
of [23] and define Ω̃β = {x : x ∈ Ω, |d(Γ,x)| > β}. Table 7 shows that our discretization produces
results that are second order accurate in the L1 norm and first order accurate in the L∞ norm with
the expected drop in accuracy near the interface since the solution presents a kink. Table 7 also
demonstrates second-order accuracy in the L∞ norm when the accuracy is computed away from
the interface, i.e. we take β > .2 as in [4].

We note that a finite volume approach for discretizing the PDE would be more consistent
with our derivation of the delta and Heaviside functions, but we seek to demonstrate that our
discretizations can easily be applied in a finite difference setting.

4.5 Heat Equation with a Singular Source Term

Consider the following PDE:

ut = ∆u + δΓ in Ω
u(x, t) = 1− ln(2|x|)

2 on ∂Ω
u(x, 0) = 1− ln(2|x|)

2 in Ω
,

where Ω = [−1, 1]× [−1, 1] and Γ = {x ∈ R2||x| = 1
2}. The equation has the following solution:

u(x, t) =

{
e−2π2t sin(πx) sin(πy) + 1 if |x| ≤ 1

2

e−2π2t sin(πx) sin(πy) + 1− ln(2|x|)
2 if |x| ≥ 1

2

.

On a uniform grid, we discretize the time derivative with the Crank-Nicolson method, the Laplace
operator with standard central finite differences, and the multi-dimensional delta function δΓ with
our method.

Table 8 shows that our discretization produces second-order accurate results in the L1 norm
first-order accurate solution in the L∞ norm. Table 8 also demonstrates that the solution is second-
order accurate in the L∞ norm if one excludes the nodes near the singularity.
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Figure 6: Evolution of the solution to the heat equation with singular source term of section 4.5.
From left to right and top to bottom, t = 0, t = .039, t = .078 and t = .125 demonstrating a kink
in the solution on Γ.

Grid L∞ norm Rate L∞ in Ω̃2∆x Rate L∞ in Ω̃.2 Rate L1 norm Rate

322 2.76× 10−2 2.76× 10−2 2.76× 10−2 1.05× 10−2

642 6.52× 10−3 2.08 6.52× 10−3 2.08 6.52× 10−3 2.08 2.57× 10−3 2.03
1282 1.83× 10−3 1.82 1.60× 10−3 2.02 1.60× 10−3 2.02 6.46× 10−3 1.99
2562 6.03× 10−4 1.60 4.00× 10−4 2.00 4.00× 10−4 2.00 1.62× 10−4 1.99
5122 2.62× 10−4 1.20 1.19× 10−5 1.74 9.97× 10−5 2.00 4.07× 10−4 1.99
10242 1.10× 10−4 1.24 3.96× 10−5 1.58 2.49× 10−5 2.00 1.02× 10−5 1.99

Table 8: Accuracy of the heat equation problem 4.5 at t = 0.125. The exact solution has a kink at
the interface Γ.
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5 Conclusion

We have introduced a second-order accurate method for the discretization of the multidimensional
Heaviside and delta functions on irregular domains in two and three spatial dimensions and have
provided numerical examples to illustrate the accuracy. This method leverages on geometric inte-
grations that are robust to the perturbation of the interface’s location on the grid and therefore
naturally inherits this property. We use a level set function for the description of the irregular
domain’s boundary but this approach is not limited to level set simulations since distance functions
can be readily constructed from any representation of irregular domains. The discretizations only
depend on the level function and not on its derivatives, and are therefore robust to numerical noise.
In addition, since our discretizations are cell-based, they can be trivially extended to unstructured
grids as in [10, 11, 12]. We have also presented examples of partial differential equations with
singular source terms and showed that the direct discretization of the singular source term together
with standard finite differences lead second-order accuracy in the L1 norm, first order accuracy in
L∞ in the whole domain, and second-order accuracy in L∞ away from the support of the singular
source.
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