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Abstract

We present a simple and efficient fluid/solid coupling algorithm in two-spatial dimensions.
In particular, we consider the numerical approximation of the Navier-Stokes equations on ir-
regular domains and propose a novel approach for solving the projection step with Neumann
boundary conditions on arbitrary shaped objects. This method is straightforward to implement
and leads to a symmetric positive definite linear system for both the Projection step and for the
implicit treatment of the viscosity. Both the density and the viscosity can be varying in space,
which can serve as a basis for two-phase flows simulations. We demonstrate the accuracy of
our method in in the L1 and L∞ norms. We apply this method to the simulation of a flow past
a cylinder and show that our method can reproduce the known stable and unstable regimes as
well as correct lift and drag forces. We also apply this algorithm to the coupling of flows with
moving rigid bodies.

1 Introduction

The Navier-Stokes equations are the fundamental equations of fluid dynamics with countless appli-
cations, from engineering to biology. Oftentimes, the coupling between fluids and solids is necessary,
for example in micro-fluidics or porous media flows, where the interaction between the fluid and
the solid is specific to the physical characteristics of the solid, e.g. through the definition of the
so-called contact angle, which in turns requires the accurate computation of the fluid velocity ad-
jacent to the solids boundary. It is therefore important to develop a numerical method that is also
convergent near the objects boundary. We note that the notion of contact angles only makes sense
in the context of two-phase flows and might involve other issues than the accurate solution of the
fluid velocity near the objects boundary, but it emphasizes that an accurate Navier-Stokes solver
for irregular domains will serve as a building block for applications beyond single phase flows.

The projection method, introduced by Chorin [3] is a very efficient method to solve the Navier-
Stokes equations. Its ease of implementation on regular domains is based on the fact that the
discretization of the Poisson equation can be decoupled in each of the Cartesian directions, so that
imposing the necessary Neumann boundary condition is straightforward. The difficulty in using
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a projection method on irregular domains is thus primarily to impose the Neumann boundary
condition when the contour of the solid objects is not necessarily aligned with the Cartesian grids.
Several approaches such as the immersed boundary method of Peskin [14], the immersed interface
method Leveque and Li [9] and the ALE method of Hirt [8] have been proposed to represent the
boundary of an object and simulate its influence on the fluid dynamics, often with the side-effects of
being more computationally expensive (due to non-symmetric linear systems), the loss of accuracy
near the solids boundary since considering a smeared out interface, or being more challenging to
implement. Because of the lack of a simple method that can accurately solve this problem, one often
opts for describing the solids boundary by rasterization, i.e. the objects share are approximated
by forcing their boundary to follow the grid lines. This approach is obviously straightforward to
implement, but it produces solutions that do not converge in the L∞ norm and show staircase
effects near the walls; only the average velocity field is convergent. The loss of accuracy can in turn
be problematic, for example in imposing a contact angle condition, since it requires the value of
the fluid velocity in the region where it is not computed accurately. In [2], Batty et al. presented
a methodology based on energy minimization to account for the fluid-solid coupling. This method
is able to reproduced the average fluid dynamics and considers boundary that are not necessarily
aligned with the grid lines. However, as we show in section 4, this method is not convergent in
the L∞ norm with large O(1) errors near the solids boundary. In this paper, we present a novel
projection method that is straightforward to implement, produces a symmetric positive definite
linear system and is second-order accurate in both the L1 and L∞ norms.

2 Standard Projection Method

The incompressible Navier-Stokes equations describe the motion of fluids and are written as:

ρ(Ut + (U · ∇)U) = −∇p +∇ · [µ(∇U + (∇U)T )] + ρF,

∇ ·U = 0,

where t is time, ρ the fluid’s density, U =< u, v, w > the velocity field, p the pressure, µ the
viscosity and F the forcing term, such as the gravity field.

The seminal work of Chorin [3] described a method to solve the Navier-Stokes equations based
on the Hodge decomposition, which states that any vector field U∗ can be decomposed into the
sum of a divergence-free vector field U and a weighted gradient field ∇p

ρ for some scalar function p
and some known positive function ρ.

The projection method consists of three stages: First, given the velocity field Un at time tn, an
intermediate velocity U∗ is calculated for a time step ∆t by ignoring the pressure component, e.g.:

U∗ −Un

∆t
+ Un · ∇Un =

1
ρn
∇ · [µn(∇Un + (∇Un)T )] + F,

then the velocity fluid Un+1 at the new time step tn+1 is defined as a projection of U∗ onto the
divergence free vector space:

Un+1 = U∗ −∆t
∇pn+1

ρn+1
.
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Figure 1: Standard MAC grid configuration: The pressure is sampled at the cells’ center (circles),
the x-component of the velocity field is sampled on the vertical faces (rectangles), and the y-
component of the velocity field is sampled on the horizontal faces (triangles). The irregular domain
is represented by the shaded area.

The incompressibility condition ∇ ·Un+1 = 0 for the new fluid velocity is enforced by choosing the
(scalar function) pressure pn+1 to satisfy the Poisson equation:

∇ ·
(∇pn+1

ρn+1

)
=
∇ ·U∗

∆t
, (1)

with Neumann boundary conditions on the domain’s boundaries and on the solid objects.

n ·
(∇p

ρ

)
= n · (U∗

bc −Ubc).

3 A Novel Hodge Decomposition on Irregular Domains

In the case of an irregular domain, it is not obvious how to choose a scalar function p that will
enforce the divergence free condition. The reason is due to the fact that it is not straightforward
to solve the Poisson equation with Neumann boundary conditions at the boundary of an irregular
domain, especially if one seeks to design a simple methodology that can be applied dimension by
dimension. In what follows, we introduce a novel Hodge decomposition that solves this problem.
The method is second-order accurate, produces a symmetric linear system that can be inverted
efficiently and is straightforward to implement. Without loss of generality, we present our approach
in two spatial dimensions.

Consider a vector field U∗ on a simply connected irregular domain Ω and assume that the
domain Ω is represented by a level function φ such that Ω = {x : φ(x) ≤ 0}. Consider a MAC
grid configuration and a cell Cij =

[
i− 1

2 , i + 1
2

]× [
j − 1

2 , j + 1
2

]
partially covered by the irregular

domain, as depicted in figure 1. Taking a finite volume approach, i.e. integrating the left hand side
of equation (1) over Cij and evoking the divergence theorem, we obtain:

∫

Cij∩Ω

∇ ·
(∇p

ρ

)
dA =

∫

Cij∩Ω

∇ ·U∗dl,
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where dA and dl refer to the area and length differentials, respectively. Similarly for the right hand
side of equation (1), we write

∫

∂(Cij∩Ω)

n ·
(∇p

ρ

)
dA =

∫

∂(Cij∩Ω)

n ·U∗dl.

Since the boundary ∂Cij ∩ Ω has two components, the faces of the grid cell ∂Cij ∩ Ω and the
boundary of the interface Cij ∩∂Ω, we consider separately the contribution of the two components.
On a face

(
i− 1

2

) × [j − 1
2 , j + 1

2 ], the length fraction of the face covered by the irregular domain
{x|φ(x) ≤ 0} is linearly approximated as :

Li− 1
2 ,j =





∆y
φ

i− 1
2 ,j− 1

2
φ

i− 1
2 ,j− 1

2
−φ

i− 1
2 ,j+ 1

2

if φi− 1
2 ,j− 1

2
< 0 and φi− 1

2 ,j+ 1
2

> 0

∆y
φ

i− 1
2 ,j+ 1

2
φ

i− 1
2 ,j+ 1

2
−φ

i− 1
2 ,j− 1

2

if φi− 1
2 ,j− 1

2
> 0 and φi− 1

2 ,j+ 1
2

< 0

∆y if φi− 1
2 ,j− 1

2
< 0 and φi− 1

2 ,j+ 1
2

< 0
0 if φi− 1

2 ,j− 1
2

> 0 and φi− 1
2 ,j+ 1

2
> 0

By approximating the boundary integral on the grid faces as the product of the length and the
sampled value at the center, we obtain:

−
∫

∂(Cij∩Ω)

n ·
(∇p

ρ

)
'

Li− 1
2 ,j

ρi− 1
2 ,j

· pij − pi−1,j

∆x

+
Li+ 1

2 ,j

ρi+ 1
2 ,j

· pij − pi+1,j

∆x

+
Li,j− 1

2

ρi,j− 1
2

· pij − pi,j−1

∆y

+
Li,j+ 1

2

ρi,j+ 1
2

· pij − pi,j+1

∆y
−

∫

Cij∩Γ

n · (U∗
bc −Ubc).

Similarly, we obtain an approximation of boundary integral of ∇ ·U∗ as:

−
∫

∂(Cij∩Ω)

n · (U∗) ' Li− 1
2 ,j · u∗i− 1

2 ,j

− Li+ 1
2 ,j · u∗i+ 1

2 ,j

+ Li,j− 1
2
· v∗i,j− 1

2

− Li,j+ 1
2
· v∗i,j+ 1

2
−

∫

Cij∩Γ

n ·U∗
bc.

Finally, combining the discretizations above, we obtain the following Poisson problem with
Neumann boundary condition as the definition of the scalar function p used for projecting the
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Li−1/2,j

Li,j+1/2

pi,j

Li+1/2,j

Li,j−1/2

Figure 2: Cells involved in the construction of the linear system for node (i, j). The densities
ρi± 1

2 ,j± 1
2

are located at the same location as the length fractions Li± 1
2 ,j± 1

2
.

intermediate velocity U∗ onto the divergence free vector field on irregular domains:

Li− 1
2 ,j

ρi− 1
2 ,j

· pij − pi−1,j

∆x
+

Li+ 1
2 ,j

ρi+ 1
2 ,j

· pij − pi+1,j

∆x

+
Li,j− 1

2

ρi,j− 1
2

· pij − pi,j−1

∆y
+

Li,j+ 1
2

ρi,j+ 1
2

· pij − pi,j+1

∆y
= Li− 1

2 ,j · u∗i− 1
2 ,j − Li+ 1

2 ,j · u∗i+ 1
2 ,j (2)

+ Li,j− 1
2
· v∗i,j− 1

2
− Li,j+ 1

2
· v∗i,j+ 1

2
−

∫

Cij∩Γ

n ·Ubc

The above discretization forms a symmetric positive definite linear system for p (see section 3.1)
and obviously reduces to the standard linear system for regular domains. We also note that the
linear system involves p at grid cells that are located outside and adjacent to the irregular domain,
so the pressure at this location is solved for. We consider in this work static objects so that we can
set Ubc = 0 and ignore the integral term on the right-hand side of the linear system.

3.1 Symmetry Positive Definiteness of the Linear System

The proof that the linear system is symmetric definite positive is trivial and a direct consequence
of the fact that the length fractions Li± 1

2 ,j± 1
2

and densities ρi± 1
2 ,j± 1

2
are located midway between

grid nodes (at the flux locations as illustrated in figure 2) and the fact that their values are positive:

• For each grid node (i, j) equation 2 is used to fill one row r = (j − 1)Nx + i of the linear
system, where Nx the number of nodes in the x-direction. The diagonal element Ar,r of the
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linear system is given by

Ar,r =
Li− 1

2
, j

∆xρi− 1
2
, j

+
Li+ 1

2
, j

∆xρi+ 1
2
, j

+
Li,j− 1

2

∆yρi,j− 1
2

+
Li,j+ 1

2

∆yρi,j+ 1
2

and the sum
∑

of the extra-diagonal elements is given by

∑
= −

Li− 1
2
, j

∆xρi− 1
2
, j
−

Li+ 1
2
, j

∆xρi+ 1
2
, j
−

Li,j− 1
2

∆yρi,j− 1
2

−
Li,j+ 1

2

∆yρi,j+ 1
2

.

Clearly the matrix is diagonally dominant, since Ar,r +
∑

= 0.

• The diagonal element Ar,r is positive since the L’s refer to (positive) length fractions, the ρ’s
refer to the (positive) fluid’s density and ∆x and ∆y are the (positive) grid spacing in the x-
and y- directions, respectively.

• For a given row r = (j − 1)Nx + i, the first extra diagonal element to the right, Ar,r+1, is

the coefficient in front of pi+1,j , i.e.
L

i+ 1
2 ,j

∆xρ
i+ 1

2 ,j
. Its corresponding symmetric element, Ar+1,r

is the coefficient of the first extra diagonal element to the left of Ar+1,r+1, i.e.
L

i− 1
2 ,j

∆xρ
i− 1

2 ,j
with

i = i +1, thus
L

i+ 1
2 ,j

∆xρ
i+ 1

2 ,j
. Likewise, the second extra diagonal element to the right, Ar,r+Nx , is

the coefficient in front of pi,j+1, i.e.
L

i,j+ 1
2

∆xρ
i,j+ 1

2

. Its corresponding symmetric element, Ar+Nx,r

is the coefficient of the second extra diagonal element to the left of Ar+Nx,r+Nx , i.e.
L

i,j− 1
2

∆xρ
i,j− 1

2

with j = j + 1, thus
L

i,j+ 1
2

∆xρ
i,j+ 1

2

. Therefore the linear system is symmetric.

The linear system is symmetric, diagonally dominant with positive diagonal elements. Therefore
the linear system is symmetric definite positive. ¥

3.2 Convergence of the New Hodge Decomposition

Consider an irregular domain Ω = {(x, y)| sin(x) sin(y) ≥ .2 and 0 ≤ x, y ≤ π} and vector field
(u∗, v∗) to be the sum of a divergent-free vector field and a gradient field:

u∗ = sin(x) cos(y) + (x2 − x)(y3/3− y2/2)

v∗ = − cos(x) sin(y) + (y2 − y)(x3/3− x2/2)

We apply our projection method on (u∗, v∗) and compare with the exact solution of the divergent-
free vector field inside the irregular domain. In this example we take Ubc · n = 0 on ∂Ω. Table 1
demonstrates the second-order accuracy of our Hodge decomposition method in the L1- and L∞-
norms.
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Figure 3: Error of the Hodge decomposition in the case of [2] (left) and the present work (right) for
the same grid resolution. Note that in the case of [2], the maximum error is mostly concentrated
near the domain’s boundary. In addition, the maximum error will not decrease as the grid is refined,
as demonstrated in table 2. In the present work, the maximum error is not necessarily near the
domain’s boundary. In addition, the maximum error decreases with second-order accuracy as the
grid is refined, as shown in table 1.
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Figure 4: Evolution of ||un||2 (left) and ||un||∞ (right) after applying repeatedly the projection
describe in section 3, illustrating the stability of our method.
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grid L∞ norm order L1 norm order
162 6.63E-3 1.34E-3
322 1.66E-3 1.99 3.15E-4 2.08
642 4.05E-4 2.03 7.63E-5 2.04
1282 9.67E-5 2.06 1.88E-5 2.02
2562 2.41E-5 2.00 4.66E-6 2.01

Table 1: Convergence of the horizontal velocity in the case of the present Hodge decomposition on
irregular domain.

3.3 A Note on Stability

In the case of a standard projection method on regular grids, the stability of the Hodge decom-
position is guaranteed by the fact that the numerical approximations of the gradient G and the
divergence D operators are related by the minus transpose relation GT = D, which corresponds to
the standard relation for the operators ∇· and ∇. In the case of our discretization on irregular do-
mains, this relation is no longer true, since the approximation of the divergence operator in section
3 is D̃ = DL, where L is the matrix of the length fractions of the cell faces occupied by the fluid.
As a consequence, one cannot use the standard energy estimate argument to show stability.

In this section, we show that numerically the projection introduced in section 3 is stable by
applying iteratively the projection method on the same test problem as in section 3.2. Figure
4 depicts the evolution of the L2 and L∞ norms of the projected vector field u after repeated
projections and illustrates the stability of the method. We have also performed several tests where
the vector field is perturbed by random data before each projection and we have found the same
stable behavior. We conclude that the projection method is numerically stable.

4 A Link with the Minimization Approach of Batty et al.

The work of Batty et al. [2] is based on minimizing the total kinetic energy of the system, i.e.

KE =
∫

Ω

1
2
ρ|u2|+ 1

2
V∗MsV. (3)

In one spatial dimension, [2] showed that this approach leads to the following linear system:

mi+1/2
pi,j−pi+1,j

∆x + mi−1/2
pi,j−pi−1,j

∆x

∆x
=

mi+1/2ui+1/2 + mi−1/2ui−1/2

∆x
, (4)

where mi+1/2 refers to the mass fraction of fluid in the cell Ci,j and can be computed as mi+1/2 =∫
Ci,j∩Ω

ρdV . A few choices on how to compute this integral are given in [2]. This approach can
therefore be interpreted as the standard central differencing approximation of

−∇ · (m∇p) = −∇ · (mu∗) ,

where the negative sign as been introduced to make the system positive definite. In contrast, our
approach is an approximation of

−∇ · (L∇p) = −∇ · (Lu∗) ,
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grid L∞ norm order L1 norm order
162 4.61E-2 4.59E-3
322 1.28E-1 -1.47 3.28E-3 0.48
642 1.08E-1 0.24 1.35E-3 1.28
1282 1.51E-1 -0.48 5.61E-4 1.26
2562 1.30E-1 0.21 2.73E-4 1.03

Table 2: Convergence of the horizontal velocity in the case of the minimization approach of [2]

where L is the length fractions of the cell’s faces occupied by the fluid instead of the mass as in the
case of [2] (see figure 1).

Considering the same example as in section 3.2, we find that the scheme in [2] is only first order
accurate in the average L1-norm and is not convergent in the L∞-norm, as illustrated in table 2. In
order to compute the masses mi+1/2, we used the robust second order accurate method of Min and
Gibou [11] to compute the integrals. Figure 3 also demonstrates that the error is maximum near
the solid object. Since this error does not converge, this method is ill-advised for computations
where the velocity field near objects is important.

5 Solving Navier-Stokes Equations on Irregular Domains

Consider a domain Ω separated into two disjoint subsets Ω− and Ω+ such that Ω = Ω− ∪Ω+, and
Γ, the interface between Ω− and Ω+. We seek to solve the Navier-Stokes equations on the irregular
domain Ω− only.

In what follows, we describe how to use the novel projection of section 3 to the numerical
approximation of the Navier-Stokes equations on irregular domains. We choose a Semi-Lagrangian
scheme for approximating the momentum and a Backward Difference Formula scheme for evolving
the equations in time, as described in [10]. This guarantees unconditional stability, but we emphasize
that the projection method of section 3 can be straightforwardly combined with other methods for
discretizing the momentum or evolving the equations in time.

3
2
U∗ − 2Un

d +
1
2
Un−1

d = ∆t∇ · [µ(∇U∗ + (∇U∗)T )] + ∆tFn+1 in Ω−,

U∗
bc = Un+1

bc + ∆t∇pn on Γ,

where the variables have been rescaled by ρ. Then, the intermediate velocity field U∗ is projected
onto the divergence free field:

Un+1 = U∗ + ∆t∇pn+1,

where the scalar function pn+1 is found with the Hodge decomposition presented in section 3. In
the next few sections, we describe the required steps in details.

5.1 SL-BDF Method

Since we are considering incompressible flows, for which shock and rarefaction waves do not occur,
we can use an implicit scheme based on the method of characteristics to update the velocity field in
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time. The method of characteristics state that Un+1(xn+1) = Un(xd), where xn+1 is any grid node
and xd is the corresponding departure point from which the characteristic curve originates. We use
the second order mid-point method for locating the departure point, as in Xiu and Karniadakis
[16]:

x̂ = xn+1 − ∆t
2 ·Un(xn+1),

xd = xn+1 −∆t ·Un+ 1
2 (x̂),

where we define the velocity at the mid-time step tn+ 1
2 by a linear combination of the velocities at

the two previous time steps, i.e. Un+ 1
2 = 3

2U
n − 1

2U
n−1. Since x̂ and xd are not on grid nodes

in general, Un+ 1
2 (x̂) and φn(xd) are found by interpolation. As noted in Min and Gibou [12], it is

enough to define Un+ 1
2 (x̂) with a multilinear interpolation, e.g.:

u(x, y) = u(0, 0)(1− x)(1− y)
+ u(0, 1)(1− x)( y)
+ u(1, 0)( x)(1− y)
+ u(1, 1)( x)( y),

where the interpolation is written for a scaled cell C = [0, 1]2. On the other hand Un(xd) is
approximated with the non-oscillatory quadratic interpolation described in the next section.

5.2 Stabilized Quadratic Interpolation

Lagrange-type interpolation procedures are sensitive to nearby discontinuities in the solution or
its derivatives, as noted in [12]. In order to produce stable results, we therefore favor quadratic
interpolations with a correction term using an approximation to the second order derivatives. For
a cell [0, 1]2 and a function u, we have:

u(x, y) = u(0, 0)(1− x)(1− y)
+ u(0, 1)(1− x)( y)
+ u(1, 0)( x)(1− y)
+ u(1, 1)( x)( y) − uxx

x(1− x)
2

− uyy
y(1− y)

2
,

where we define:
uxx = min

v∈nodes(C)
(|D0

xxuv|),

and

uyy = min
v∈nodes(C)

(|D0
yyuv|).

Choosing the minimum between the second order derivatives enhances the numerical stability of
the interpolation.

5.3 Implicit Viscosity

We treat the viscous term implicitly using a Dirichlet Boundary condition of U∗ = 0 at the solid
boundary. We use the approach introduced by Gibou et al. [7] to obtain a symmetric implicit
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discretization. For the sake of clarity, we summarize the approach here and refer the interested
reader to [7] for more details.

Consider a Cartesian computational domain, Ω ∈ Rn, with exterior boundary, ∂Ω and a lower
dimensional interface Γ that divides the computational domain into disjoint pieces, Ω− and Ω+.
The variable coefficient Poisson equation is given by

∇ · (β(~x)∇u(~x)) = f(~x), ~x ∈ Ω, (5)

where ~x = (x, y, z) is the vector of spatial coordinates and ∇ = ( ∂
∂x , ∂

∂y , ∂
∂z ) is the gradient operator.

The variable coefficient β(~x) is assumed to be continuous on each disjoint subdomain, Ω− and Ω+,
but may be discontinuous across the interface Γ. β(~x) is further assumed to be positive and bounded
below by some ε > 0. On ∂Ω, either Dirichlet boundary conditions of u(~x) = g(~x) or Neumann
boundary conditions of un(~x) = h(~x) are specified. Here un = ∇u · ~n is the normal derivative of u
and ~n is the outward normal to the interface. A Dirichlet boundary condition of u = uI is imposed
on Γ.

In order to separate the different subdomains, we introduce a level set function φ defined as the
signed distance function: 




φ = −d for ~x ∈ Ω−,
φ = +d for ~x ∈ Ω+,
φ = 0 for ~x ∈ Γ,

where d is the distance to the interface. The level set is used to identify the location of the interface
as well as the interior and exterior regions.

5.3.1 Discretization of the Poisson Equation on Irregular Domains

In this section, we recall the discretization of the Poisson equation on irregular domains, as described
in Gibou et al. [6, 6]. The discretization of the Poisson equation, including the special treatments
needed at the interface, is performed in a dimension by dimension fashion. Therefore, without loss
of generality, we only describe the discretization in one spatial dimension for the (βux)x term. In
multiple spatial dimensions, the (βuy)y and (βuz)z terms are each independently discretized in the
same manner as (βux)x.

Consider the variable coefficient Poisson equation in one spatial dimension

(βux)x = f, (6)

with Dirichlet boundary conditions of u = uI on the interface where φ = 0. The computational
domain is discretized into cells of size ∆x with the grid nodes xi located at the cell centers. The cell
edges are referred to as fluxes so that the two fluxes bounding the grid node xi are located at xi± 1

2
.

The solution of the Poisson equation is computed at the grid nodes and is written as ui = u(xi).
We consider the standard second-order discretization for equation (6) given by

βi+ 1
2
(ui+1−ui

∆x )− βi− 1
2
(ui−ui−1

∆x )

∆x
= fi, (7)

where (βu)x is discretized at the flux locations.
In order to avoid differentiating the fluxes across the interface where the solution presents a

kink, a ghost value is used: Referring to figure 5, let xI be an interface point between grid points
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xi and xi+1 with a Dirichlet boundary condition of u = uI applied at xI . We define a ghost value
uG

i+1 at xi+1 across the interface, and rewrite equation (7) as

βi+ 1
2
(uG

i+1−ui

∆x )− βi− 1
2
(ui−ui−1

∆x )

∆x
= fi. (8)

The ghost value uG
i+1 is defined by first constructing an interpolant ũ(x) of u(x) on the left of the

interface, such that ũ(0) = ui, and then defining uG
i+1 = ũ(∆x). Figure 5 illustrates the definition of

the ghost cells in the case of the linear extrapolation. In this work, we consider linear and quadratic
extrapolations defined by:

Linear extrapolation: Take ũ(x) = ax + b with:

• ũ(0) = ui,

• ũ(θ∆x) = uI .

Quadratic extrapolation: Take ũ(x) = ax2 + bx + c with:

• ũ(−∆x) = ui−1,

• ũ(0) = ui,

• ũ(θ∆x) = uI ,

where θ ∈ [0, 1] refers to the cell fraction occupied by the subdomain Ω−.

i+1

T
i

T
I

θ∆x

TG

−Ω Ω+

Interface Position

x
i

xI xi+1

SUBDOMAIN SUBDOMAIN

Solution Profile

Figure 5: Definition of the ghost cells with linear extrapolation. First, we construct a linear
interpolant ũ(x) = ax+b of u such that ũ(0) = ui and ũ(θ∆x) = uI . Then we define uG

i+1 = ũ(∆x).

5.3.2 Location of the Interface

Referring to figure 5, we compute the location of the interface between xi and xi+1 by finding the
zero crossing of the quadratic interpolant φ = φ(xi) + φx(xi)x + 1

2φxx(xi)x2. We note that the
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quadratic interpolant in φ is convex with a positive second order derivative. The location of the
interface along the x-direction is calculated as:

θ∆x =





−φx(xi)+
√

φ2
x(xi)−2φxx(xi)φ(xi)

φxx(xi)
if φxx(xi) > ε

− φ(xi)
φx(xi)

if |φxx(xi)| ≤ ε,
(9)

where ε is a small positive number to avoid division by zero. φx(xi) and φxx(xi) are approximated
at xi using second-order accurate central difference schemes.

5.4 Extrapolation Procedures on Irregular Domains

The procedure to update the intermediate velocity requires interpolation procedures that may need
valid values for Un outside Ω−. Likewise, the procedure to update the intermediate velocity only
defines U∗ in the irregular domain Ω− but needs to be extrapolated in a band outside Ω− in order
to apply the projection step described in section 3. In [1], Aslam introduced a high-order accurate
extrapolation method on irregular domain to the whole domain, and [12] improve the efficiency
of the method by lowering the unnecessarily high order of finite differences to enhance numerical
stability.

In what follows, we present a method heavily based on [1] and the variants of [12], to include
the boundary condition Ubc at the interface.

Consider a quantity Q(x) given inside an irregular domain Ω− = {x|φ(x) < 0}, where φ is a
higher dimensional level set function [13, 15]. In order to extend this quantity to third order accu-
racy, Aslam proposes the following steps [1]: First, the normal vector fields n = ∇φ

|∇φ| is calculated in
the whole domain with the standard central finite difference formulas. Then directional derivatives
Qn = n · ∇Q and Qnn = n · ∇Qn are successively calculated with standard central finite difference
formulas. Since Q is not defined in the whole domain, Qn and Qnn at a grid node are properly
defined only when Q and Qn are defined at all of its neighboring nodes. To help in these definitions,
numerical Heaviside functions are defined as:

H0
ij =

{
1 if φij < 0
0 else

,

H1
ij =

{
1 if H0

i±1,j = 1 and H0
i,j±1 = 1

0 else
,

and

H2
ij =

{
1 if H1

i±1,j = 1 and H1
i,j±1 = 1

0 else
.

Note that Q, Qn and Qnn are properly defined only when H0 = 0, H1 = 0, and H2 = 0, respectively.
For the second step, the value of Qnn is extended to the whole domain along the normal vector
field, via:

∂Qnn

∂τ
+ H2 · (n · ∇Qnn) = 0. (10)
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Figure 6: Streamlines of the flow for example 6.1

Third, using the extrapolated value of Qnn in the above step, Qn is linearly extrapolated to the
whole domain along the normal vector field using:

∂Qn

∂τ
+ H1 · (n · ∇Qn −Qnn) = 0. (11)

Finally, using the extrapolated value of Qn in the above step, Q is quadratically extrapolated to
the whole domain along the normal vector field.

∂Q

∂τ
+ H0 · (n · ∇Q−Qn) = 0. (12)

In [12], we introduced efficient discretizations for the above equations: We found that in order
to obtain third order accuracy for the extrapolated quantity Q near the interface, it is enough to
apply a TVD RK-2 discretization for the time derivative, a first order upwind discretization for the
space derivatives in equations (10) and (11), and a second order ENO discretization for the space
derivatives in (12).

6 Examples for the Navier-Stokes Equations

6.1 Convergence Analysis for an Exact Solution

Consider the Navier-Stokes Equations on an irregular domain Ω = {(x, y)| sin(x) sin(y) ≥ .2 and 0 ≤
x, y ≤ π} with initial velocity field U(x, y, 0) = (sin x cos y,− cos x sin y). The boundary condition
of the velocity field on the wall is Ubc · n = 0. Figure 6 depicts the irregular domain and the
streamlines of the flow. We take the appropriate forcing term for the exact solution to be U(x, y, t) =
(cos t sin x cos y,− cos t cos x sin y). We take a final time of π/3. Table 3 shows the second-order
accuracy in the L1- and L∞- norms.
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grid L∞ norm order L1 norm order
162 2.44E-3 6.74E-4
322 1.00E-3 1.29 2.22E-4 1.60
642 4.51E-4 1.15 7.33E-5 1.60
1282 1.29E-4 1.81 1.91E-5 1.94
2562 3.31E-5 1.95 4.95E-6 1.95

Table 3: Convergence of the horizontal velocity in the case of the Navier-Stokes example on irregular
domain for example 6.1.

6.2 Flow Past a Cylinder

We now consider the simulation of a fluid flow past a cylinder, as first proposed by Dennis and
Chang [5] and we show that our method is capable of reproducing the steady and unsteady regimes
of the flows. The case where the Reynolds number is relatively small (Re ≈ 40) corresponds to a
steady regime whereas larger Reynolds numbers (Re ≈ 200) correspond to unsteady regimes where
vortex shedding can be observed. The transition between those two regimes occurs somewhere
between Re = 40 and Re = 50, as demonstrated experimentally by Coutanceau and Bouard [4].

Consider a domain Ω = [0, 32] × [016] and a cylinder with radius r = .5 and center located at
(8, 8). We impose Dirichlet boundary conditions of u = U∞ = 1 on the left, top and bottom walls,
an outflux boundary condition at the right wall and the no-slip boundary condition at the cylinder’s
boundary. In our numerical experiments we define the viscosity coefficient µ = 2rU∞/Re and vary
the Reynolds number Re. Figure 7 depicts the streamlines and vorticity contours for Re = 40. In
particular, the symmetry of the results are in agreement with a steady regime for low Reynolds
numbers. Figure 8depicts the streamlines and vorticity contours for Re = 50. This experiment
illustrates a vertical asymmetry, indicating that the transition to an unstable regime occurs between
Re = 40 and Re = 50. Figures 9 and 10 illustrates an unstable regime for Re = 100 and Re = 200,
respectively. In particular, they exhibit the broken symmetry of the vorticity contours and the
standard vortex shedding. The total force acting on the cylinder is is the integration of the force,
and given as

F =
∫

Γ

(−p + 2µD)n,

where D is the symmetric stress tensor and n is the outward normal to the cylinder. The drag and
the lift coefficients are given by the x- and y- components of the F , respectively, properly scaled by
rU∞. Figure 11 depicts the sinusoidal oscillations of the drag and lift coefficients on the cylinder.
The coefficients, compared with earlier reports in table 6.2, are in agreement with those results.
The integral for computing the force is approximated in this work by the geometric integration of
[11].

6.3 Flow Past Arbitrary Shaped Solid Objects

Consider a domain Ω = [−1, 1]2 with multiple solid obstacles as depicted in figure 12. We set
a no-slip boundary on the solids’ boundaries, an inflow boundary condition of (u, v) = (1, 0) at
x = −1 and an outflow boundary condition at x = 1. The top and bottom walls have a boundary
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Figure 7: Stationary State : Contours of the stream functions and of the vorticity for Re = 40 of
example 6.2. The box in the figure is [7, 20] × [6, 10]. Contour levels for the stream function are
[−5 : 0.05 : 5] and [−0.05 : 0.005 : 0.05]. Contour levels for the vorticity are [−1 : 0.4 : 1].

Figure 8: Transition state : Contours of the stream functions and of the vorticity for Re = 50 of
example 6.2 at t = 100. Contour levels and the dimensions of the box are the same as those in
figure 7. The flow does not become stationary, and shows vertical asymmetry.
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Figure 9: Unsteady Vortex Shedding state : Contours of the stream functions and of the vorticity
for Re = 100 of example 6.2 at t = 100. The box in the figure is [7, 32]× [5, 11]. Contour levels for
the stream function are [−5 : 0.1 : 5] and [−0.05 : 0.015 : 0.05]. Contour levels for the vorticity are
[−4 : 0.2 : 4].

Figure 10: Unsteady Vortex Shedding state : Contours of the stream functions and of the vorticity
for Re = 200 of example 6.2 at t = 100. Contour levels and the dimensions of the box are the same
as those in figure 9.
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Figure 11: Time-dependent drag and lift coefficients for example 6.2. (Top Left) Drag, Re=100;
(Top right) Drag, Re=200); (Bottom left) Lift, Re=100; (Bottom right) Lift, Re=200.

Drag(CD) Lift(CL)
Re=100 Re=200 Re=100 Re=200

Belov et al. [] − 1.19± 0.042 − ±0.64
Braza et al. [] 1.364± 0.015 1.40± 0.05 ±0.25 ±0.75
Liu et al. [] 1.350± 0.012 1.31± 0.049 ±0.339 ±0.69

Calhoun et al. [] 1.330± 0.014 1.172± 0.058 ±0.298 ±0.668
Present 1.368± 0.016 1.373± 0.050 ±0.360 ±0.724

Table 4: Drag and lift coefficients for example 6.2
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Figure 12: Streamlines contours for a flow past irregular shapes.
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Figure 13: ...

condition of (u, v) = (1, 0). Figure 12 depicts the streamlines and the vorticity contours at steady
state.

as done in Ito et al. [?].

6.4 Ellipse Falling in Flow with Interaction

7 Examples for the Navier-Stokes Equations in 3D

7.1 Convergence Analysis for an Exact Solution

Consider the Navier-Stokes Equations on an irregular domain Ω = {(x, y, z)| − cos x cos y cos z ≥
.4 and .5π ≤ x, y, z ≤ 1.5π} with initial velocity field U(x, y, z, 0) = (cos x sin y sin z, sin x cos y sin z,−2 sin x sin y cos z).
The boundary condition of the velocity field on the wall is Ubc ·n = 0. We take the appropriate forc-
ing term for the exact solution to be U(x, y, z, t) = (cos t cosx sin y sin z, cos t sin x cos y sin z,−2 cos t sin x sin y cos z).
We take a final time of π/3. Tables 5 and 6 show the first-order accuracy in the L∞- and L1- norms.
Figures 15 through 16 show the log-log plot of the L∞- and L1- norms against grid resolution.
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Figure 14: ...
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Figure 15: Log-log plots of the L∞(left) and L1(right) norms of the x and y components of velocity
as a function of grid resolution for example 7.1
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Figure 16: Log-log plots of the L∞(left) and L1(right) norms of the z component of velocity as a
function of grid resolution for example 7.1
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grid L∞ norm order L1 norm order
83 1.51E-2 4.92E-3
163 5.03E-3 1.58 6.20E-4 2.99
323 2.49E-3 1.02 2.60E-4 1.25
643 7.23E-4 1.78 8.32E-5 1.65
1283 3.77E-4 0.94 2.41E-5 1.77

Table 5: Convergence of the velocity in the x and y directions in the case of the Navier-Stokes
example in 3D on irregular domain for example 7.1.

grid L∞ norm order L1 norm order
83 2.41E-2 7.55E-3
163 6.02E-3 2.00 7.52E-4 3.33
323 2.10E-3 1.52 3.82E-4 0.98
643 1.01E-3 1.06 1.23E-4 1.64
1283 4.90E-4 1.04 3.58E-5 1.78

Table 6: Convergence of the velocity in the z direction in the case of the Navier-Stokes example in
3D on irregular domain for example 7.1.

7.2 Flow Past a Sphere

We now consider the simulation of a fluid flow past a sphere, as presented by Johnson and Patel
[?] and show that our method is capable of reproducing the steady axissymmetric flow and steady
non-axissymmetric flow regimes (results for unsteady vortex shedding regime pending). Steady
axissymmetric flow occurs at relatively low Reynolds number (Re ≈ 150) while the steady non-
axissymmetric flow occurs at larger Reynolds numbers (Re ≈ 250). The transition between those
two regimes occurs somewhere between Re = 200 and Re = 210.

Consider a domain Ω = [0, 16]× [0, 8]× [0, 8] and a sphere with radius r = .5 and center located
at (4, 4, 4). We impose Dirichlet boundary conditions of u = U∞ = 1 on the left, top, bottom,
front, and back walls, an outflux boundary condition at the right wall and the no-slip boundary
condition at the sphere’s boundary. In our numerical experiments we define the viscosity coefficient
µ = 2rU∞/Re and vary the Reynolds number Re. Figure 17 depicts the particle path trace for
a steady axissymmetric flow in 3D at Re = 150. Figures 18 and 19 depict the streamlines and
vorticity contours at Re = 150. In particular, the symmetry of the results are in agreement with a
steady axissymmetric flow regime for lower Reynolds numbers, and are comparable to the results
obtained by [?](Figures 3 and 7). Figures 20 through 22 depict the streamlines contours, vorticity
contours, and three-dimensional particle path trace for Re = 250 corresponding to the steady non-
axissymmetric flow regime for larger Reynolds number. The results are in good agreement with
results obtained by [?] (Figures 11, 12, and 14). (TODO:Graphs, short explanation on the tilted
plane of symmetry, Re250 projected vorticities)
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Figure 17: Steady Axissymmetric Regime: Particle path trace in 3D for the Re = 150 case of
example 7.2.
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Figure 18: Steady Axissymmetric Regime: Streamlines projected on the x-y plane for the Re = 150
case of example 7.2. Top: our results, bottom: results from [?].
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Figure 19: Steady Axissymmetric Regime: Vorticity contours for the curl of velocity around the
z-axiz for the Re = 150 case of example 7.2. Contour levels are [−5 : .5 : 5]. Top: our results,
bottom: results from [?]
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Figure 20: Steady Non-Axissymmetric Regime: Streamlines projected on the x-y plane(top) and
x-z plane(bottom) for the Re = 250 case of example 7.2. Left column: our results, right column:
results from [?].
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Figure 21: Steady Non-Axissymmetric Regime: Vorticity contours for the curl of velocity around
the z-axiz for the Re = 250 case of example 7.2. Contour levels are [−5 : .5 : 5]. Top: our results,
bottom: results from [?].
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Figure 22: Steady Non-Axissymmetric Regime: Particle path trace from the x-y view(top), x-z
view(middle), and y-z view(bottom) for the Re = 250 case of example 7.2. Left column: our
results, right column: results from [?].
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Figure 23: Curl of velocity and streamlines around the x-axis, viewed down the positive x-axis (left)
and negative x-axis (right).

7.3 Ellipse Translated and Rotated in Flow

Consider a domain Ω = [−1, 1] × [−1, 1] × [−1, 1] and an ellipsoid with dimensions radiusx =
.5, radiusy = radiusz = .2, centered at (.2, 0, 0) at tn = 0, and rotating around the pivot point
(0, 0, 0). We impose no-slip boundary conditions all the domain walls and the ellipsoid boundary.
We define viscosity µ = .0001 and angular velocity ω = .5 in the clockwise direction around the
z-axis. Figures 23 through 25 depict the streamline slices and curl of velocity around the x, y, and
z axes. In figure 25, the streamlines and curl of velocity is symmetric on both sides of the z = 0
plane, since the rotation of the ellipsoid is around the z-axis only.

8 Conclusion

We have presented a novel and efficient projection method for the Navier-Stokes equations on irreg-
ular domains. The irregular domains can be of arbitrary shape and do not have to be approximated
by domain’s rasterization. This method is straightforward to implement and leads to a symmetric
positive definite linear system that can be inverted efficiently with standard iterative methods. We
demonstrated the second-order accuracy in the L1 and L∞ norms and showed that this method
can reproduce accurate fluid flow motions on irregular domains.
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Figure 24: Curl of velocity and streamlines around the y-axis, viewed down the positive y-axis (left)
and negative y-axis (right).
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