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Abstract

We consider the variable coefficient Poisson equation with Dirichlet boundary conditions on irregular domains.
We present numerical evidence for the accuracy of the solution and its gradients for different treatments at the interface
using the Ghost Fluid Method for Poisson problems of Gibou et al. [8, 6]. This paper is therefore intended as a
guide for those interested in using the GFM for Poisson-type problems (and by consequence diffusion-like problems
and Stefan-type problems) by providing the pros and cons of the different choices for defining the ghost values
and locating the interface. We found that in order to obtain second-order-accurate gradients, both a quadratic (or
higher order) extrapolation for defining the ghost values and a quadratic (or higher order) interpolation for finding the
interface location are required. In the case where the ghost values are defined by a linear extrapolation, the gradients
of the solution converge slowly (at most first order in average) and the convergence rate oscillates, even when the
interface location is defined by a quadratic interpolation. The same conclusions hold true for the combination of
a quadratic extrapolation for the ghost cells and a linear interpolation. The solution is second-order accurate in all
cases. Defining the ghost values with quadratic extrapolations leads to a non-symmetric linear system with a worse
conditioning than that of the linear extrapolation case, for which the linear system is symmetric and better conditioned.
We conclude that for problems where only the solution matters, the method described in [8] is advantageous since the
linear system that needs to be inverted is symmetric. In problems where the solution gradient is needed, such as in
Stefan-type problems, higher order extrapolation schemes as described in [6] are desirable.

1 Introduction
The Ghost Fluid Method (GFM), introduced by Fedkiw et al. in the context of compressible gas dynamics [4] is an
important numerical technique developed to implicitly impose sharp boundary conditions on an irregular interface.
In Liu et al. [13] the Ghost Fluid Method was used to guide the development of a first-order-accurate symmetric
discretization of the variable coefficient Poisson equation in the presence of an irregular domain, where the variable
coefficients, the solution and the derivatives of the solution may have jumps across the interface. In Kang et al. [11]
and Nguyen et al. [15], this method was applied to two-phase incompressible flows and to incompressible flame front
discontinuities, respectively. A second-order accurate symmetric discretization was developed in Gibou et al. [8] for
the variable coefficient Poisson equation on irregular domains with Dirichlet boundary conditions instead of jump
conditions. This discretization was then extended to fourth-order accuracy in Gibou et al. [6]. The discretizations
proposed in [13] and in [8] both yield symmetric linear systems that can readily be inverted with a number of fast
methods, such as a Preconditioned Conjugate Gradient (PCG) method (see e.g. Golub and Van Loan [9, 16]). This
is an advantage over the original level set method for solving the Stefan problem by Chen et al. [1] who proposed a
non-symmetric scheme. Likewise, a second-order accurate method for the jump condition case was developed in Li et
al. [12] but with a non-symmetric discretization matrix.

The symmetric discretization presented in [8] has been successfully applied to the simulation of free surface flows
in Enright et al. [3], multiphase flows with phase-change in Gibou et al. [5] and the Stefan Problem in Gibou et al. [7].
In this paper, we further analyze the order of accuracy and error distribution of the gradients produced by the method
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of Gibou et al. [8, 6]. The goal of this paper is therefore to provide a ‘how-to’ on the choices one can make when
considering the Poisson equation on irregular domains with Dirichlet boundary conditions. Since the same techniques
can be applied to diffusion-like as well as Stefan-type problems, this paper can serve as a guide for those problems as
well.

In a nutshell, the disadvantage of using a quadratic extrapolation for the ghost value is that the associated linear
system is no longer symmetric, as it is the case for [1, 6], and that the condition number of the matrix is significantly
larger than that of symmetric discretizations. On the other hand, defining ghost values with quadratic extrapolations
(or higher) leads to more accurate computations of the gradients, which in turn impacts the accuracy of moving
boundary problems with velocity defined from the solution gradients. Our results are in agreement with the analytical
expression for the error in one spatial dimension presented in Jomaa et al. [10] for both the linear and quadratic
boundary treatments and the observation in McCorquodale et al. [14] that a quadratic treatment at the interface leads
to second-order accuracy for the solution gradients.

2 Equations and Numerical Methods

2.1 Poisson Equation
Consider a Cartesian computational domain, Ω ∈ Rn, with exterior boundary, ∂Ω and a lower dimensional interface
Γ that divides the computational domain into disjoint pieces, Ω− and Ω+. The variable coefficient Poisson equation is
given by

∇ · (β(~x)∇u(~x)) = f(~x), ~x ∈ Ω, (1)

where ~x = (x, y, z) is the vector of spatial coordinates and ∇ = ( ∂
∂x , ∂

∂y , ∂
∂z ) is the gradient operator. The variable

coefficient β(~x) is assumed to be continuous on each disjoint subdomain, Ω− and Ω+, but may be discontinuous
across the interface Γ. β(~x) is further assumed to be positive and bounded below by some ε > 0. On ∂Ω, either
Dirichlet boundary conditions of u(~x) = g(~x) or Neumann boundary conditions of un(~x) = h(~x) are specified. Here
un = ∇u ·~n is the normal derivative of u and ~n is the outward normal to the interface. A Dirichlet boundary condition
of u = uI is imposed on Γ.

In order to separate the different subdomains, we introduce a level set function φ defined as the signed distance
function: 




φ = −d for ~x ∈ Ω−,
φ = +d for ~x ∈ Ω+,
φ = 0 for ~x ∈ Γ,

where d is the distance to the interface. The level set is used to identify the location of the interface as well as the
interior and exterior regions.

2.2 Discretization of the Poisson Equation on Irregular Domains
In this section, we recall the discretization of the Poisson equation on irregular domains, as described in Gibou et al.
[6, 6]. The discretization of the Poisson equation, including the special treatments needed at the interface, is performed
in a dimension by dimension fashion. Therefore, without loss of generality, we only describe the discretization in
one spatial dimension for the (βux)x term. In multiple spatial dimensions, the (βuy)y and (βuz)z terms are each
independently discretized in the same manner as (βux)x.

Consider the variable coefficient Poisson equation in one spatial dimension

(βux)x = f, (2)

with Dirichlet boundary conditions of u = uI on the interface where φ = 0. The computational domain is discretized
into cells of size ∆x with the grid nodes xi located at the cell centers. The cell edges are referred to as fluxes so that
the two fluxes bounding the grid node xi are located at xi± 1

2
. The solution of the Poisson equation is computed at the

grid nodes and is written as ui = u(xi). We consider the standard second-order discretization for equation (2) given
by

βi+ 1
2
(ui+1−ui

∆x )− βi− 1
2
(ui−ui−1

∆x )

∆x
= fi, (3)
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where (βu)x is discretized at the flux locations.
In order to avoid differentiating the fluxes across the interface where the solution presents a kink, a ghost value

is used: Referring to figure 1, let xI be an interface point between grid points xi and xi+1 with a Dirichlet boundary
condition of u = uI applied at xI . We define a ghost value uG

i+1 at xi+1 across the interface, and rewrite equation (3)
as

βi+ 1
2
(uG

i+1−ui

∆x )− βi− 1
2
(ui−ui−1

∆x )

∆x
= fi. (4)

The ghost value uG
i+1 is defined by first constructing an interpolant ũ(x) of u(x) on the left of the interface, such that

ũ(0) = ui, and then defining uG
i+1 = ũ(∆x). Figure 1 illustrates the definition of the ghost cells in the case of the

linear extrapolation. In this work, we consider linear and quadratic extrapolations defined by:

Linear extrapolation: Take ũ(x) = ax + b with:

• ũ(0) = ui,

• ũ(θ∆x) = uI .

Quadratic extrapolation: Take ũ(x) = ax2 + bx + c with:

• ũ(−∆x) = ui−1,

• ũ(0) = ui,

• ũ(θ∆x) = uI ,

where θ ∈ [0, 1] refers to the cell fraction occupied by the subdomain Ω−.
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Figure 1: Definition of the ghost cells with linear extrapolation. First, we construct a linear interpolant ũ(x) = ax + b
of u such that ũ(0) = ui and ũ(θ∆x) = uI . Then we define uG

i+1 = ũ(∆x).

2.3 Location of the Interface
Referring to figure 1, we compute the location of the interface between xi and xi+1 by finding the zero crossing of the
quadratic interpolant φ = φ(xi) + φx(xi)x + 1

2φxx(xi)x2. We note that the quadratic interpolant in φ is convex with
a positive second order derivative. The location of the interface along the x-direction is calculated as:

θ∆x =





−φx(xi)+
√

φ2
x(xi)−2φxx(xi)φ(xi)

φxx(xi)
if φxx(xi) > ε

− φ(xi)
φx(xi)

if |φxx(xi)| ≤ ε,
(5)

where ε is a small positive number to avoid division by zero. φx(xi) and φxx(xi) are approximated at xi using
second-order accurate central difference schemes.
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2.4 Computation of the Gradients
The solution gradients are computed at each node of the grid: Once we know the location of the interface as described
in section 2.3, the Dirichlet boundary value uI is either given analytically or calculated by quadratic interpolation
using neighboring nodal values. Then central-type difference schemes using the value at the interface are used to
approximate the component of ∇u = (ux, uy, uz)T . For example, we define ux as

ux =
uI − ui

θ∆x

1
1 + θ

+
ui − ui−1

∆x

θ

1 + θ
.

We note that in the case where xi−1 is outside the domain, we recourse to a first-order formula. Likewise, if θ is too
small, we set ui = uI to remove the large errors that could occur from dividing by small numbers. In practice we set
the threshold to be θ = ∆x.

Remarks:

• The GFM for the Poisson equation produces second-order accurate solutions even in the case where the interface
cuts two adjacent segments (in a least square fit sense).

• The accuracy of the gradient is also second order in the case where the interface and the extrapolation are
second-order accurate. Same conclusions are reached in the approach of Chern and Shu [2].

3 Examples
In each example, we consider a domain Ω = [−2, 2]2 and ∆u = f on Ω. The level set function φ decomposes the
domain into separate regions, with φ = 0 defining the interface Γ. The interior region Ω− is defined by φ ≤ 0 while
the exterior region Ω+ is defined by φ > 0. We impose Dirichlet boundary conditions on both the exterior boundary
∂Ω and the interface Γ. We use the BiCGSTAB algorithm with an incomplete LU preconditioner to solve the linear
systems, although one would choose more efficient solvers in practice (for example PCG in the case of symmetric
linear systems, GMRES or multigrid methods in the case of non symmetric linear systems). In the examples below,
we show the results with different combinations for the definition of the ghost cells and the interpolation to locate the
interface. In addition, we present those results in the case where the interface may or may not be smooth, as well as in
the case of perturbation of the interface on the grid.

3.1 Numerical Results for a Disk-Shaped Irregular Domain
In this example, the interface Γ is a circle. We use an exact solution of u(x, y) = eφ. We define φ as φ(x, y) =
(x − px)2 + (y − py)2 − 1, where px and py are randomly chosen perturbations. We consider the case with px = 0
and py = 0 where the circle is centered at the origin, and also the case with px = 0.691 and py = 0.357 so that the
center of the circle does not fall exactly on a grid point. Figure 2 depicts the grids used and the exact solution. The
L∞ errors in the solution and gradient are presented in tables 1 through 8.

3.2 Numerical Results for a Star-Shaped Irregular Domain
In this example, the interface Γ is a star, hence considering the case where the irregular domain has a more complex
shape. We use an exact solution of u(x, y) = sin(x) sin(y)+1. We define φ as φ(x, y) =

√
(x− px)2 + (y − py)2−

0.5 − (y−py)5+5(x−px)4(y−py)−10(x−px)2(y−py)3

3((x−px)2+(y−py)2)2 for
√

(x− px)2 + (y − py)2 ≥ 10−4 and φ(x, y) = −1 otherwise,
where px and py are randomly chosen perturbations. We consider the case with px = 0 and py = 0 where the star
is centered at the origin, and also the case with px = 0.691 and py = 0.357 so that the center of the star does not
fall exactly on a grid point. Figure 3 depicts the grids used and the exact solution. The L∞ errors in the solution and
gradient are presented in tables 9 through 16.
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3.3 Numerical Results for a Tilted Square Irregular Domain
In this example, the interface Γ is a tilted square, hence considering the case where the interface has a kink. We use an
exact solution of u(x, y) = e−x2−y2

. We define φ as φ(x, y) = max[max(|(x̂−px)− (ŷ−py)|−1, |(ŷ−py)− (x̂−
px)| − 1), |(x̂− px) + (ŷ − py)| − 1], where x̂(x, y) = x cos(πθ)− y sin(πθ) and ŷ(x, y) = x sin(πθ) + y cos(πθ).
θ, px, and py are randomly chosen perturbations. We consider the case with θ = 0.313, px = 0 and py = 0 where the
tilted square is centered at the origin, and also the case with θ = 0.313, px = 0.691 and py = 0.357 so that the center
of the tilted square does not fall exactly on a grid point. θ is chosen such that the tilted square is not symmetric in the
x and y directions. Figure 4 depicts the grids used and the exact solution. The L∞ errors in the solution and gradient
are presented in tables 17 through 24.

3.4 Numerical Results for a Sphere-Shaped Irregular Domain in Three Dimensions
In this example, the interface Γ is defined by a sphere in three dimensions. We use an exact solution of u(x, y, z) = eφ.
We define φ as φ(x, y, z) = (x − px)2 + (y − py)2 + (z − pz)2 − 1, where px, py and pz are randomly chosen
perturbations. We consider the case where the sphere is centered at the (0, 0, 0), and also the case where the sphere is
centered at (0.249, 0.187, 0.356) so that the center of the sphere does not fall exactly on a grid point. The L∞ errors
in the solution and gradient are presented in tables 25 through 32. The highest resolution presented is 2563 due to
memory limitations for the simulation.

4 Synthesis of the Results
In this section, we analyze the order of accuracy and the error distribution of the solution gradients produced by the
combination of (1) defining the ghost values with a linear or a quadratic extrapolation and (2) by finding the interface
location with a linear or a quadratic interpolant. We also analyze the error distribution and the condition number of
the associated linear systems. In all cases, the solution is second-order accurate as demonstrated in [1, 6, 8]. We note
that second-order accuracy is the maximum one can reach with the central difference scheme used.

4.1 Accuracy of Gradients
First, we look at the combination of a linear extrapolation for defining the ghost value and a linear interpolation to find
the location of the interface. In this case we find that the gradients converge slowly (i.e. at most first order accurate)
and their convergence rate oscillate as illustrated in tables 1, 5, 9, 13, 17, 21, 25, and 29. We reach the same conclusion
in the case where we use a quadratic interpolation to find the interface location, while still using a linear extrapolation
in the definition of the ghost cell value as detailed in tables 2, 6, 10, 14, 18, 22, 26, and 30.

Second, we consider defining the ghost value with a quadratic extrapolation. In this case the gradients are second-
order accurate only if the location of the interface is found with an interpolant that is at least quadratic as demonstrated
in tables 4, 8, 12, 16, 20, 24, 28, and 32. The accuracy drops to first order at best (in average - also the convergence
rates are oscillatory) in the case where the interface location is found with only a linear interpolant as shown in tables
3, 7, 11, 15, 19, 23, 27, and 31.

We conclude that second-order accurate gradients can only be found by defining the ghost cell values with at least
a quadratic extrapolation and finding the interface location with at least a quadratic interpolant.

4.2 Distribution of Error for the Solution and its Gradients
In general, the error of the gradient is largest close to the interface regardless of the order of interpolation for the
interface location and extrapolation for the ghost values as illustrated in figure 5. Linear extrapolation for the ghost
value produces larger errors in the solution close to the interface, while the error in the solution is smooth across all
regions for quadratic extrapolation of the ghost value as depicted in figure 6. Defining the ghost values with a linear
extrapolation, the gradient converge slowly (at most first-order accurate in average) even if we disregard the large
errors contributed by the points within a small band near the interface as demonstrated for the case of the perturbed
circle from Ex. 3.1 in tables 33 through 36. This is characteristic of an Elliptic operator, for which errors propagate
with infinite speed, and further supports our conclusion that a quadratic extrapolation for the ghost value is required
for obtaining second-order accurate gradients.
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Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 3.34× 10−3 – 9.91× 10−2 –
642 1.24× 10−3 1.43 6.63× 10−2 0.58
1282 3.66× 10−4 1.76 5.20× 10−2 0.35
2562 1.03× 10−4 1.83 2.90× 10−2 0.84
5122 2.73× 10−5 1.92 1.27× 10−2 1.19
10242 7.11× 10−6 1.94 8.10× 10−3 0.65

Table 1: Ex.3.1 centered circle. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a linear extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 6.17× 10−3 – 1.99× 10−1 –
642 2.05× 10−3 1.59 1.17× 10−1 0.76
1282 5.68× 10−4 1.85 9.92× 10−2 0.24
2562 1.57× 10−4 1.85 5.28× 10−2 0.91
5122 4.13× 10−5 1.93 2.37× 10−2 1.16
10242 1.07× 10−5 1.95 1.53× 10−2 0.63

Table 2: Ex.3.1 centered circle. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a linear extrapolation and the interface location is found with a quadratic interpolant.

4.3 Condition Number and Symmetry of the Linear Systems
Defining the ghost cell value with a linear extrapolation has one advantage over the quadratic extrapolation case: The
linear system is symmetric, which allows the use of fast (and straightforward to implement) linear solvers like the
preconditioned conjugate gradient [9, 16]. Indeed, the ghost value uG

i+1 is given by

uG
i+1 =

uI + (θ − 1)ui

θ
(6)

and

uG
i+1 =

2uI + (2θ2 − 2)ui + (−θ2 + θ)ui−1

θ2 + θ
(7)

for linear and quadratic extrapolation respectively. Substituting uG
i+1 from Eq. (6) into Eq. (4) with β = 1 yields the

symmetric discretization of
uI

θ − (1 + 1
θ )ui + ui−1

(∆x)2
= fi (8)

while substituting Eq. (7) with β = 1 yields the non-symmetric discretization of

2uI

θ2+θ − 2
θ ui + 2

θ+1ui−1

(∆x)2
= fi (9)

Also, observe that for linear extrapolation, the coefficient of ui, which corresponds to the diagonal element of the
matrix, is increased from 2 to (1 + 1

θ ) > 2 since θ ∈ [0, 1]. This increase in the diagonal element is beneficial for
iterative methods to converge faster. In the case of a quadratic extrapolation, the diagonal element is increased by
a factor of 1

θ but the off-diagonal elements are also increased from 1 to 2
θ+1 . In both cases the linear systems are

diagonally dominant. Defining the ghost values with quadratic extrapolations produces consistently larger condition
numbers in the matrices than in the case of a linear extrapolation, as demonstrated in figure 7 for the case of the
centered circle from Ex. 3.1. Not surprisingly, the order of interpolation for finding the interface location has a
negligible effect on the condition number.
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Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 7.59× 10−3 – 7.69× 10−2 –
642 2.12× 10−3 1.84 4.51× 10−2 0.77
1282 5.30× 10−4 2.00 4.29× 10−2 0.07
2562 1.37× 10−4 1.95 2.37× 10−2 0.86
5122 3.42× 10−5 2.00 1.09× 10−2 1.11
10242 8.66× 10−6 1.98 6.95× 10−3 0.65

Table 3: Ex.3.1 centered circle. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a quadratic extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 5.43× 10−3 – 2.08× 10−2 –
642 1.44× 10−3 1.91 6.46× 10−3 1.69
1282 3.81× 10−4 1.92 2.10× 10−3 1.62
2562 9.72× 10−5 1.97 5.59× 10−4 1.91
5122 2.46× 10−5 1.98 1.30× 10−4 2.11
10242 6.19× 10−6 1.99 3.76× 10−5 1.78

Table 4: Ex.3.1 centered circle. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a quadratic extrapolation and the interface location is found with a quadratic interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 5.57× 10−3 – 2.46× 10−1 –
642 1.44× 10−3 1.95 1.27× 10−1 0.95
1282 4.34× 10−4 1.73 6.39× 10−2 0.99
2562 1.09× 10−4 2.00 3.21× 10−2 0.99
5122 2.93× 10−5 1.89 1.67× 10−2 0.94
10242 7.41× 10−6 1.99 8.37× 10−3 1.00

Table 5: Ex.3.1 perturbed circle. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a linear extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 9.15× 10−3 – 4.98× 10−1 –
642 2.30× 10−3 1.99 2.53× 10−1 0.98
1282 6.63× 10−4 1.80 1.23× 10−1 1.04
2562 1.66× 10−4 2.00 6.08× 10−2 1.02
5122 4.42× 10−5 1.90 3.24× 10−2 0.91
10242 1.11× 10−5 1.99 1.62× 10−2 1.00

Table 6: Ex.3.1 perturbed circle. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a linear extrapolation and the interface location is found with a quadratic interpolant.
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Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 7.86× 10−3 – 1.75× 10−1 –
642 2.07× 10−3 1.92 1.04× 10−1 0.75
1282 5.48× 10−4 1.92 5.30× 10−2 0.97
2562 1.38× 10−4 1.98 2.69× 10−2 0.98
5122 3.50× 10−5 1.99 1.53× 10−2 0.81
10242 8.79× 10−6 1.99 7.70× 10−3 0.99

Table 7: Ex.3.1 perturbed circle. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a quadratic extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 5.19× 10−3 – 3.46× 10−2 –
642 1.45× 10−3 1.84 8.92× 10−3 1.96
1282 3.78× 10−4 1.94 2.36× 10−3 1.92
2562 9.71× 10−5 1.96 6.01× 10−4 1.98
5122 2.46× 10−5 1.98 1.50× 10−4 2.00
10242 6.18× 10−6 1.99 3.85× 10−5 1.96

Table 8: Ex.3.1 perturbed circle. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a quadratic extrapolation and the interface location is found with a quadratic interpolant.
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Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 3.64× 10−4 – 1.35× 10−2 –
642 1.19× 10−4 1.61 1.40× 10−2 -0.05
1282 2.54× 10−5 2.23 7.54× 10−3 0.89
2562 8.08× 10−6 1.65 3.18× 10−3 1.25
5122 2.01× 10−6 2.01 1.64× 10−3 0.95
10242 4.91× 10−7 2.03 9.87× 10−4 0.73

Table 9: Ex.3.2 centered star. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a linear extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 4.12× 10−4 – 1.59× 10−2 –
642 1.20× 10−4 1.78 1.56× 10−2 0.03
1282 2.67× 10−5 2.17 4.78× 10−3 1.71
2562 8.06× 10−6 1.73 3.35× 10−3 0.51
5122 2.01× 10−6 2.00 1.67× 10−3 1.00
10242 4.91× 10−7 2.03 9.94× 10−4 0.75

Table 10: Ex.3.2 centered star. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a linear extrapolation and the interface location is found with a quadratic interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 3.41× 10−5 – 1.40× 10−3 –
642 5.86× 10−6 2.54 4.06× 10−4 1.79
1282 9.44× 10−7 2.63 5.34× 10−4 -0.40
2562 1.21× 10−7 2.97 4.01× 10−5 3.74
5122 1.73× 10−8 2.80 1.05× 10−5 1.93
10242 8.51× 10−9 1.02 2.17× 10−5 -1.05

Table 11: Ex.3.2 centered star. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a quadratic extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 3.30× 10−5 – 1.46× 10−3 –
642 6.02× 10−6 2.46 4.25× 10−4 1.78
1282 9.55× 10−7 2.66 1.13× 10−4 1.92
2562 1.22× 10−7 2.97 3.36× 10−5 1.74
5122 1.81× 10−8 2.75 8.02× 10−6 2.07
10242 6.18× 10−9 1.55 2.21× 10−6 1.86

Table 12: Ex.3.2 centered star. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a quadratic extrapolation and the interface location is found with a quadratic interpolant.
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Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 9.73× 10−4 – 2.45× 10−2 –
642 2.53× 10−4 1.94 3.95× 10−2 -0.69
1282 6.39× 10−5 1.98 2.82× 10−2 0.49
2562 1.74× 10−5 1.87 3.01× 10−2 -0.10
5122 4.46× 10−6 1.97 7.66× 10−3 1.98
10242 1.11× 10−6 2.00 1.30× 10−2 -0.77

Table 13: Ex.3.2 perturbed star. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a linear extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 1.03× 10−3 – 2.81× 10−2 –
642 2.57× 10−4 2.01 3.30× 10−2 -0.23
1282 6.46× 10−5 1.99 1.67× 10−2 0.98
2562 1.74× 10−5 1.89 7.63× 10−3 1.13
5122 4.47× 10−6 1.96 4.46× 10−3 0.78
10242 1.11× 10−6 2.01 2.18× 10−3 1.03

Table 14: Ex.3.2 perturbed star. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a linear extrapolation and the interface location is found with a quadratic interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 6.35× 10−5 – 2.08× 10−3 –
642 8.15× 10−6 2.96 2.33× 10−3 -0.16
1282 1.29× 10−6 2.66 1.13× 10−3 1.05
2562 1.93× 10−7 2.74 1.66× 10−4 2.76
5122 5.47× 10−8 1.82 1.16× 10−3 -2.81
10242 2.14× 10−8 1.35 1.96× 10−4 2.56

Table 15: Ex.3.2 perturbed star. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a quadratic extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 6.45× 10−5 – 2.09× 10−3 –
642 7.84× 10−6 3.04 5.91× 10−4 1.82
1282 1.29× 10−6 2.60 1.60× 10−4 1.89
2562 2.02× 10−7 2.68 3.92× 10−5 2.02
5122 5.21× 10−8 1.96 1.06× 10−5 1.89
10242 1.82× 10−8 1.52 2.70× 10−6 1.97

Table 16: Ex.3.2 perturbed star. Maximum error for the solution and its gradients in the case where the ghost value is
defined by a quadratic extrapolation and the interface location is found with a quadratic interpolant.
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Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 3.22× 10−3 – 1.56× 10−2 –
642 7.75× 10−4 2.06 5.75× 10−3 1.44
1282 1.91× 10−4 2.02 2.89× 10−3 1.00
2562 4.71× 10−5 2.02 3.30× 10−4 3.13
5122 1.17× 10−5 2.01 2.74× 10−4 0.27
10242 2.93× 10−6 2.00 2.34× 10−2 -6.42

Table 17: Ex.3.3 centered tilted square. Maximum error for the solution and its gradients in the case where the ghost
value is defined by a linear extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 3.07× 10−3 – 1.20× 10−2 –
642 7.74× 10−4 1.99 8.53× 10−3 0.50
1282 1.94× 10−4 2.00 8.78× 10−3 -0.04
2562 4.82× 10−5 2.01 2.18× 10−3 2.01
5122 1.21× 10−5 1.99 1.91× 10−3 0.19
10242 2.99× 10−6 2.02 2.03× 10−3 -0.08

Table 18: Ex.3.3 centered tilted square. Maximum error for the solution and its gradients in the case where the ghost
value is defined by a linear extrapolation and the interface location is found with a quadratic interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 3.15× 10−3 – 1.45× 10−2 –
642 7.75× 10−4 2.03 5.75× 10−3 1.34
1282 1.91× 10−4 2.02 2.89× 10−3 0.99
2562 4.71× 10−5 2.02 3.30× 10−4 3.13
5122 1.17× 10−5 2.01 1.35× 10−4 1.29
10242 2.93× 10−6 2.00 2.34× 10−2 -7.43

Table 19: Ex.3.3 centered tilted square. Maximum error for the solution and its gradients in the case where the ghost
value is defined by a quadratic extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 2.74× 10−3 – 7.65× 10−3 –
642 7.15× 10−4 1.94 2.14× 10−3 1.84
1282 1.83× 10−4 1.97 5.97× 10−4 1.84
2562 4.62× 10−5 1.98 1.35× 10−4 2.15
5122 1.16× 10−5 1.99 3.79× 10−5 1.83
10242 2.91× 10−6 2.00 8.50× 10−6 2.16

Table 20: Ex.3.3 centered tilted square. Maximum error for the solution and its gradients in the case where the ghost
value is defined by a quadratic extrapolation and the interface location is found with a quadratic interpolant.
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Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 1.51× 10−3 – 7.77× 10−2 –
642 4.43× 10−4 1.77 3.40× 100 -5.45
1282 7.26× 10−5 2.61 4.23× 10−1 3.00
2562 1.99× 10−5 1.87 5.24× 10−2 3.01
5122 8.45× 10−6 1.23 3.37× 10−1 -2.69
10242 1.41× 10−6 2.59 4.24× 10−2 2.99

Table 21: Ex.3.3 perturbed tilted square. Maximum error for the solution and its gradients in the case where the ghost
value is defined by a linear extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 3.36× 10−3 – 1.18× 10−1 –
642 8.37× 10−4 2.01 9.31× 10−2 0.34
1282 2.09× 10−4 2.00 3.76× 10−2 1.31
2562 4.98× 10−5 2.07 1.85× 10−2 1.02
5122 1.26× 10−5 1.98 1.01× 10−2 0.88
10242 3.22× 10−6 1.97 5.02× 10−3 1.00

Table 22: Ex.3.3 perturbed tilted square. Maximum error for the solution and its gradients in the case where the ghost
value is defined by a linear extrapolation and the interface location is found with a quadratic interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 1.02× 10−3 – 6.10× 10−2 –
642 2.55× 10−4 2.00 3.36× 100 -5.78
1282 6.04× 10−5 2.08 4.19× 10−1 3.00
2562 1.47× 10−5 2.04 5.23× 10−2 3.00
5122 3.64× 10−6 2.01 3.37× 10−1 -2.69
10242 9.03× 10−7 2.01 4.25× 10−2 2.99

Table 23: Ex.3.3 perturbed tilted square. Maximum error for the solution and its gradients in the case where the ghost
value is defined by a quadratic extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
322 8.90× 10−4 – 1.03× 10−2 –
642 2.26× 10−4 1.98 2.60× 10−3 1.99
1282 5.71× 10−5 1.99 6.70× 10−4 1.96
2562 1.43× 10−5 1.99 1.69× 10−4 1.99
5122 3.59× 10−6 2.00 4.36× 10−5 1.96
10242 8.96× 10−7 2.00 1.07× 10−5 2.03

Table 24: Ex.3.3 perturbed tilted square. Maximum error for the solution and its gradients in the case where the ghost
value is defined by a quadratic extrapolation and the interface location is found with a quadratic interpolant.
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Figure 2: Ex.3.1 grids and exact solution at 2562 resolution. The figure on the left depicts the case where the circle is
centered, while the figure on the right depicts the case where the center of the circle is perturbed.

Figure 3: Ex.3.2 grids and exact solution at 2562 resolution. The figure on the left depicts the case where the star is
centered, while the figure on the right depicts the case where the center of the star is perturbed.

Figure 4: Ex.3.3 grids and exact solution at 2562 resolution. The figure on the left depicts the case where the tilted
square is centered, while the figure on the right depicts the case where the center of the tilted square is perturbed.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
323 7.98× 10−3 – 2.01× 10−1 –
643 1.98× 10−3 2.01 1.51× 10−1 0.41
1283 5.05× 10−4 1.97 9.36× 10−2 0.69
2563 1.26× 10−4 2.01 5.28× 10−2 0.83

Table 25: Ex.3.4 centered sphere. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a linear extrapolation and the interface location is found with a linear interpolant.
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Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
323 1.07× 10−2 – 2.52× 10−2 –
643 2.66× 10−3 2.01 3.11× 10−2 -0.30
1283 6.66× 10−4 2.00 2.44× 10−2 0.35
2563 1.67× 10−4 2.00 1.59× 10−2 0.62

Table 26: Ex.3.4 centered sphere. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a linear extrapolation and the interface location is found with a quadratic interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
323 8.02× 10−3 – 2.37× 10−1 –
643 2.05× 10−3 1.97 1.63× 10−1 0.54
1283 5.30× 10−4 1.95 1.04× 10−1 0.64
2563 1.32× 10−4 2.00 5.99× 10−2 0.80

Table 27: Ex.3.4 centered sphere. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a quadratic extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
323 1.08× 10−2 – 2.23× 10−2 –
643 2.74× 10−3 1.97 5.67× 10−3 1.98
1283 6.92× 10−4 1.99 1.56× 10−3 1.86
2563 1.74× 10−4 1.99 4.10× 10−4 1.93

Table 28: Ex.3.4 centered sphere. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a quadratic extrapolation and the interface location is found with a quadratic interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
323 7.89× 10−3 – 2.98× 10−1 –
643 2.00× 10−3 1.98 2.02× 10−1 0.56
1283 5.02× 10−4 2.00 1.07× 10−1 0.92
2563 1.26× 10−4 2.00 5.51× 10−2 0.96

Table 29: Ex.3.4 perturbed sphere. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a linear extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
323 1.06× 10−2 – 9.39× 10−2 –
643 2.66× 10−3 1.99 1.62× 10−1 -0.79
1283 6.66× 10−4 2.00 6.19× 10−2 1.39
2563 1.66× 10−4 2.00 2.45× 10−2 1.34

Table 30: Ex.3.4 perturbed sphere. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a linear extrapolation and the interface location is found with a quadratic interpolant.
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Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
323 7.97× 10−3 – 4.03× 10−1 –
643 2.08× 10−3 1.94 1.81× 100 -2.17
1283 5.26× 10−4 1.98 4.53× 10−1 2.00
2563 1.33× 10−4 1.99 3.36× 10−1 0.43

Table 31: Ex.3.4 perturbed sphere. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a quadratic extrapolation and the interface location is found with a linear interpolant.

Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
323 1.07× 10−2 – 2.46× 10−2 –
643 2.74× 10−3 1.96 6.70× 10−3 1.88
1283 6.92× 10−4 1.99 1.70× 10−3 1.98
2563 1.74× 10−4 1.99 4.27× 10−4 1.99

Table 32: Ex.3.4 perturbed sphere. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a quadratic extrapolation and the interface location is found with a quadratic interpolant.

Band Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
2562 1.11× 10−4 – 3.18× 10−2 –

0 5122 2.96× 10−5 1.91 1.66× 10−2 0.94
10242 7.44× 10−6 1.99 8.35× 10−3 0.99
20482 1.85× 10−6 2.00 4.19× 10−3 0.99
2562 1.05× 10−4 – 4.70× 10−4 –

5 5122 2.68× 10−5 1.97 2.29× 10−4 1.04
10242 6.91× 10−6 1.96 1.27× 10−4 0.85
20482 1.69× 10−6 2.03 6.63× 10−5 0.94
2562 1.05× 10−4 – 3.77× 10−4 –

10 5122 2.60× 10−5 2.01 1.08× 10−4 1.80
10242 6.53× 10−6 1.99 5.75× 10−5 0.91
20482 1.65× 10−6 1.98 3.07× 10−5 0.90

Table 33: Ex. 3.1 perturbed circle. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a linear extrapolation and the interface location is found with a linear interpolant, when points within a
band of 0, 5, and 10 grid cell-width excluded near interface.
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Band Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
2562 1.46× 10−4 – 1.33× 10−2 –

0 5122 3.62× 10−5 2.01 6.67× 10−3 1.00
10242 9.10× 10−6 1.99 3.60× 10−3 0.89
20482 2.28× 10−6 2.00 1.87× 10−3 0.94
2562 1.46× 10−4 – 2.95× 10−4 –

5 5122 3.62× 10−5 2.01 1.09× 10−4 1.44
10242 9.10× 10−6 1.99 6.25× 10−5 0.80
20482 2.28× 10−6 2.00 3.32× 10−5 0.91
2562 1.46× 10−4 – 2.93× 10−4 –

10 5122 3.62× 10−5 2.01 7.38× 10−5 1.99
10242 9.10× 10−6 1.99 2.88× 10−5 1.36
20482 2.28× 10−6 2.00 1.50× 10−5 0.94

Table 34: Ex. 3.1 perturbed circle.. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a linear extrapolation and the interface location is found with a quadratic interpolant, when points within
a band of 0, 5, and 10 grid cell-width excluded near interface.

Band Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
2562 1.24× 10−4 – 2.77× 10−2 –

0 5122 3.10× 10−5 2.00 1.55× 10−2 0.84
10242 7.77× 10−6 2.00 7.74× 10−3 1.00
20482 1.96× 10−6 1.99 3.84× 10−3 1.01
2562 1.24× 10−4 – 4.04× 10−4 –

5 5122 3.10× 10−5 2.00 1.58× 10−4 1.35
10242 7.77× 10−6 2.00 7.29× 10−5 1.12
20482 1.96× 10−6 1.99 3.55× 10−5 1.04
2562 1.24× 10−4 – 3.18× 10−4 –

10 5122 3.10× 10−5 2.00 9.12× 10−5 1.80
10242 7.77× 10−6 2.00 3.51× 10−5 1.38
20482 1.96× 10−6 1.99 1.89× 10−5 0.90

Table 35: Ex. 3.1 perturbed circle. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a quadratic extrapolation and the interface location is found with a linear interpolant, when points within
a band of 0, 5, and 10 grid cell-width excluded near interface.
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Band Effective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ Order
2562 1.65× 10−4 – 2.61× 10−4 –

0 5122 4.14× 10−5 2.00 6.53× 10−5 2.00
10242 1.04× 10−5 2.00 1.66× 10−5 1.98
20482 2.60× 10−6 1.99 4.43× 10−6 1.91
2562 1.65× 10−4 – 2.61× 10−4 –

5 5122 4.14× 10−5 2.00 6.52× 10−5 2.00
10242 1.04× 10−5 2.00 1.63× 10−5 2.00
20482 2.60× 10−6 1.99 4.27× 10−6 1.93
2562 1.65× 10−4 – 2.61× 10−4 –

10 5122 4.14× 10−5 2.00 6.52× 10−5 2.00
10242 1.04× 10−5 2.00 1.63× 10−5 2.00
20482 2.60× 10−6 1.99 4.27× 10−6 1.93

Table 36: Ex. 3.1 perturbed circle. Maximum error for the solution and its gradients in the case where the ghost value
is defined by a quadratic extrapolation and the interface location is found with a quadratic interpolant, when points
within a band of 0, 5, and 10 grid cell-width excluded near interface.

Figure 5: Ex.3.1 centered circle at 2562 resolution. Normalized error for the gradients of the solution ∇u in the L∞

norm. The ghost cell values are defined by linear extrapolation of the solution in the top figures and by quadratic
extrapolation of the solution in the bottom figures. The interface location is found by linear interpolation φ in the left
figures and by quadratic interpolation of φ in the right figures.
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Figure 6: Ex.3.1 centered circle at 2562 resolution. Normalized error for the solution u in the L∞ norm. The ghost
cell values are defined by linear extrapolation of the solution in the top figures and by quadratic extrapolation of the
solution in the bottom figures. The interface location is found by linear interpolation of φ in the left figures and by
quadratic interpolation of φ in the right figures.
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Figure 7: Ex. 3.1 centered circle. Condition numbers versus the grid size. The four curves illustrate the impact of
the extrapolation used to define the ghost values and the order of the interpolation for finding the interface location.
The two (superimposed) curves with the smallest condition numbers are associated with the linear extrapolation for
defining the ghost cells.
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6 Conclusions
We have presented numerical evidence for the order of accuracy that can be achieved by the Ghost-Fluid Method for
Poisson equations on irregular domains with Dirichlet boundary conditions introduced by Gibou et al. [8, 6]. This
paper can therefore serve as a guide on how to define ghost values and on how to define the interface location for
those interested in the solution of Poisson problems on irregular domains. The same guide can be used for diffusion
problems as well as Stefan-type problems. We have shown that a quadratic extrapolation for defining the ghost values
and a quadratic interpolation for finding the interface location are necessary to obtain second-order accurate gradients,
which in turn may be of interest when considering diffusion dominated moving boundary problems where the interface
velocity is defined by the solution gradients. When linear approximation is used for either or both the extrapolation
and the interpolation, the gradients converge slowly (at most first-order accurate in average and the convergence
rate is oscillatory) across the entire domain, including at locations far away from the interface. In both cases the
solution is second-order accurate. We also demonstrated that the symmetric discretization matrix produced by a linear
extrapolation for the ghost value is significantly better conditioned relative to the non-symmetric discretization matrix
produced by a quadratic extrapolation.
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