
Journal of Computational Physics 229 (2010) 2764–2772
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Short Note

On reinitializing level set functions

Chohong Min
Mathematics Department, KyungHee University, Seoul 130-701, Republic of Korea
a r t i c l e i n f o

Article history:
Received 30 June 2009
Received in revised form 18 November 2009
Accepted 27 December 2009
Available online 4 January 2010

Keywords:
Level set method
Reinitialization
Subcell fix
ENO
Gauss–Seidel
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.12.032

E-mail address: chohong@khu.ac.kr
a b s t r a c t

In this paper, we consider reinitializing level functions through equation /tþ
sgnð/0Þðkr/k � 1Þ ¼ 0 [16]. The method of Russo and Smereka [11] is taken in the spatial
discretization of the equation. The spatial discretization is, simply speaking, the second
order ENO finite difference with subcell resolution near the interface. Our main interest
is on the temporal discretization of the equation. We compare the three temporal discret-
izations: the second order Runge–Kutta method, the forward Euler method, and a Gauss–
Seidel iteration of the forward Euler method. The fact that the time in the equation is fic-
titious makes a hypothesis that all the temporal discretizations result in the same result in
their stationary states. The fact that the absolute stability region of the forward Euler
method is not wide enough to include all the eigenvalues of the linearized semi-discrete
system of the second order ENO spatial discretization makes another hypothesis that the
forward Euler temporal discretization should invoke numerical instability. Our results in
this paper contradict both the hypotheses. The Runge–Kutta and Gauss–Seidel methods
obtain the second order accuracy, and the forward Euler method converges with order
between one and two. Examining all their properties, we conclude that the Gauss–Seidel
method is the best among the three. Compared to the Runge–Kutta, it is twice faster and
requires memory two times less with the same accuracy.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The level set method [10] represents an interface C � Rd as the zero level set of a continuous function / : Rd ! R, and
tracks the movement of the interface through a convection equation /t þ V � r/ ¼ 0, where V is the velocity of the move-
ment. In this way, the level set method converts the geometric problem into a partial differential equation, and enables
the well established technologies of partial differential equations to work in solving the geometric problem.

The evolution of /t þ V � r/ ¼ 0 often distorts the level function in a sense that its slope is too flat or too steep around the
interface. In such cases, a small pertubation of the level function may result in a big change of interface location, and the level
function may lose enough regularity near the interface. It is therefore desired to replace the level function with a better be-
haved one, the signed distance function to the interface. The signed distance function has many advantages: it is uniquely
determined as the viscosity solution of the Eikonal equation [3], and the magnitude of its gradient is uniform. Given a level
function /0 : Rd ! R, the reinitialization process finds the signed distance function to the interface C0 ¼ fxj/0ðxÞ ¼ 0g. The
reintialization can be thought of calculating two distance functions to C0. One distance function is calculated in the region
fxj/0ðxÞ > 0g with the positive sign and the other one is in the region fxj/0ðxÞ < 0g with the negative sign. The signed dis-
tance function is the viscosity solution of the following Eikonal equation
r/k k ¼ 1
sgnð/Þ ¼ sgnð/0Þ

�
: ð1Þ
. All rights reserved.
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Here sgn denotes the sign value, taking either 1, �1, or 0. In [3], Crandall et al proved the convergence of monotone finite
difference methods to the viscosity solution of the Eikonal equation. One of the most efficient methods is combine the mono-
tone Godunov Hamiltonian [1] with the ENO finite differences [13,7]. The method discretized at every grid node constitutes a
large system. There are mainly two approches for solving the system of Eq. (1). In a single pass, fast marching method [12]
solves the system by visiting grid nodes in the order of causality. The visiting order of causality is implemented by the Heap
sorting algorithm. Though it takes more than one passes, fast sweeping method [8] does not have to visit grid nodes in the
order of causility, but visit grid nodes in the simple raster-scan orderings.

In the case of solving the evolutionary equation /t þ V � r/ ¼ 0, there is a more suitable equation for the reinitialization
than the stationary Eq. (1). If the level function was reinitialized at the previous time step, the level function at the current is
already very similar to the signed distance function. For such cases, the following time dependent Eikonal equation, intro-
duced in [16], works very efficiently.
/t þ sgnð/0Þðkr/k � 1Þ ¼ 0
/ðx; 0Þ ¼ /0ðxÞ

(
ð2Þ
If a level function /0 is similar to the signed distance function, the time evolution of Eq. (2) with a tiny time span will obtain
the signed distance function. The solution /ðx; tÞ converges to the signed distance function as t !1, which can be easily
verified by solving the characteristic ordinary differential equation of the above equation. Without the signum term, Eq.
(2) is a Hamilton–Jacobi equation that has been successfully discretized by the Runge–Kutta method in time and the ENO
finite differences in space. The signum plays an important role to fix the interface during the reinitialization, but its discon-
tinuity invokes a lot of difficulties in the RK2–ENO coupling. In [16], the signum term was smeared out in a narrow band of
the interface, and Eq. (2) was treated as a standard Hamilton–Jacobi equation with smooth Hamiltonian, but the artificial
smearing moves the interface and would decrease the volume inside the interface in considerable amount. In [14], volume
conservation was imposed in reinitialization to prevent such artificial volume shrinking. A simple but very efficient treat-
ment of the signum term was achieved in [11,2] by adopting a subcell resolution technique [6]. The treatment basically
approximates the interface location in the stencil of ENO finite differences and separately solves Eq. (2) in region
f/0 > 0gand f/0 < 0g. Through the separation, the equation is treated as a Hamilton–Jacobi equation with smooth Hamil-
tonian, and the signum term need not be smoothed.

Throughout this paper, we consider reinitializing level functions through Eq. (2). The method of [9], which is a slight
improvement of Russo and Smereka [11], is taken as the spatial discretization of the equation. The spatial discretization
is, simply speaking, the second order ENO finite difference with subcell resolution near the interface. Our main interest
is on the temporal discretization of the equation. We compare the three temporal discretizations; the second order Run-
ge–Kutta method, the forward Euler method, and a Gauss–Seidel iteration of the forward Euler method. The solution of
the equation reaches a stationary state, and any temporal derivative vanishes in the stationary state. The observation
that the temporal derivative does not matter in the stationary state suggests that all the three temporal discretizations
give the same results eventually. On the other hand, note that the absolute stability region of the forward Euler method
is not wide enough to include all the linearized eigenvalues of the second order ENO spatial discretization. That obser-
vation suggests that the forward Euler temporal discretization should invoke numerical instability. Our results in this
paper contradict both the suggestions. The forward Euler and the Gauss–Seidel methods are not numerically unstable.
The solution of the Runge–Kutta method is different from that of the forward Euler, but is nearly the same as that of
the Gauss–Seidel.

2. Spatial discretization

We take the spatial discretization of Eq. (2) by the method in [9,4], which is a slight improvement of Russo and Smereka
[11]. We briefly review the discretization method in this section. Since the discretization is carried out in a dimension-by-
dimension manner, we consider only the two dimensional case.

2.1. Standard discretization of kr/k

The Hamiltonian kr/kis discretized by putting the second order ENO finite differences in the arguments of the Godunov
numerical Hamiltonian [10].
kr/kij ’ HG Dþx /ij;D
�
x /ij;D

þ
y /ij;D

�
y /ij

� �

Here D�x and D�y denote the one-sided ENO finite differences at x- and y-directions. Since it is a dimension by dimension ap-
proach, we state only the x-direction
Dþx /ij ¼
/iþ1;j � /ij

Dx
� Dx

2
minmod Dxx/ij;Dxx/iþ1;j

� �
;

D�x /ij ¼
/i;j � /i�1;j

Dx
þ Dx

2
minmod Dxx/ij;Dxx/i�1;j

� �
:



2766 C. Min / Journal of Computational Physics 229 (2010) 2764–2772
Here Dxx/ij ¼ ð/i�1;j � 2/ij þ /iþ1;jÞ=ðDx2Þ is the central approximation of the derivative /xx at ðxi; yjÞ. The minmod function is
zero when the two arguments have different signs, and takes the argument with smaller absolute value when the two have
the same sign. The Godunov Hamiltonian HG is given as
HGða; b; c;dÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðða�Þ2; ðbþÞ2Þ þmaxððc�Þ2; ðdþÞ2Þ

q
when sgnð/0ÞP 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxððaþÞ2; ðb�Þ2Þ þmaxððcþÞ2; ðd�Þ2Þ
q

when sgnð/0Þ < 0:

8><
>:
2.2. Subcell fix near interface

Near the interface, the finite differences D�x /ij and D�y /ij in the previous section are modified to impose the condition that
/ ¼ 0 whenever /0 ¼ 0. Let us first consider modifying Dþx /ij in the case /0

ij � /
0
iþ1;j < 0. On interval ½xi; xiþ1� � fyjg, there exists

an interface point ðxC; yjÞ on which /0 is zero. Using the values /0
i�1;j;/

0
i;j;/

0
iþ1;j, and /0

iþ2;j, we construct the quadratic ENO
polynomial of /0, and the root of the polynomial approximates the interface location xC. An elementary algebra solves
Dxþ ¼ xC � xi in the procedure as
Dxþ ¼
Dx � 1

2þ
/0

ij�/0
iþ1;j�sgn /0

ij�/0
iþ1;j

� � ffiffiffi
D
p

/0
xx

0
@

1
A if j/0

xxj > �;

Dx � /0
ij

/0
ij�/0

iþ1;j
else:

8>>>><
>>>>:
Here /0
xx ¼ minmodð/0

i�1j � 2/0
ij þ /0

iþ1;j;/
0
ij � 2/0

iþ1;j þ /0
iþ2;jÞ is the minmod value of the two undivided differences of

/0;D ¼ ð/0
xx=2� /0

ij � /0
iþ1;jÞ

2 � 4/0
ij/

0
iþ1;j is the discriminant of the quadratic polynomial, and sgn is either 1 or �1. The con-

dition j/0
xxj 6 � indicates that the quadratic polynomial is nearly linear, and the interface location should be linearly inter-

polated. In all tried examples, we took � ¼ 10�10. Now we impose / ¼ 0 on the calculated interface point ðxC; yjÞ, and the
finite difference Dþx /ij is modified as
Dþx /ij ¼
0� /ij

Dxþ
� Dxþ

2
minmodðDxx/ij;Dxx/iþ1;jÞ:
Since the modification works in a dimension-by-dimension manner, and we complete this section with the formula of D�x /ij

in the case of /0
ij � /

0
i�1;j < 0
Dx� ¼
Dx � 1

2þ
/0

ij�/0
i�1;j�sgn /0

ij�/0
i�1;j

� � ffiffiffi
D
p

/0
xx

0
@

1
A if j/0

xxj > �;

Dx � /0
ij

/0
ij�/0

i�1;j
else:

8>>>><
>>>>:
Here /0
xx ¼ minmodð/0

i�1j � 2/0
ij þ /0

iþ1;j;/
0
ij � 2/0

i�1;j þ /0
i�2;jÞ and D ¼ ð/0

xx=2� /0
ij � /0

i�1;jÞ
2 � 4/0

ij/
0
i�1;j.
D�x /ij ¼
/ij � 0
Dx�

þ Dx�

2
minmodðDxx/ij;Dxx/i�1;jÞ:
3. Temporal discretization

The spatial discretization in the previous section is, simply speaking, the second order ENO finite difference with subcell
resolution near the interface. As the second order accuracy in space is matched up with the same accuracy in time, we take
the following second order Runge–Kutta method (RK2) as our first choice of the temporal discretization. Among the several
versions of the second order Runge–Kutta method, we take the TVD Runge–Kutta method
~/nþ1
ij ¼ /n

ij � Dtij � sgn /0
ij

� �
� HG Dþx /n

ij;D
�
x /n

ij;D
þ
y /n

ij;D
�
y /n

ij

� �
� 1

h i
;

~/nþ2
ij ¼ ~/nþ1

ij � Dtij � sgnð/0
ijÞ � HG Dþx ~/nþ1

ij ;D�x ~/nþ1
ij ;Dþy ~/nþ1

ij ;D�y ~/nþ1
ij

� �
� 1

h i
;

/nþ1 ¼ /n þ ~/nþ2

2
:

ð3Þ
The time is fictitious in the reinitialization equation; it just plays a role to lead the solution into a stationary state. When the
solution reaches the stationary state, any consistent temporal discretization should vanish. This observation suggests that all
the convergent temporal discretizations should result in the same accuracy. From this reason, our second choice is the for-
ward Euler method (FE) which requires only half of the computational cost of RK2
/nþ1
ij ¼ /n

ij � Dtij � sgnð/0
ijÞ � HG Dþx /n

ij;D
�
x /n

ij;D
þ
y /n

ij;D
�
y /n

ij

� �
� 1

h i
ð4Þ
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Since the time is fictitious, our third choice totally ignores the time and takes the following Gauss–Seidel iteration (GS); we
do not advance the level function, but just update it.
Table 1
Accurac
j/ij j < 1

Grid

RK2

642

1282

2562

5122

FE

642

1282

2562

5122

GS

642

1282

2562

5122
/ij ¼ /ij � Dtij � sgn /0
ij

� �
� HG Dþx /ij;D

�
x /ij;D

þ
y /ij;D

�
y /ij

� �
� 1

h i
ð5Þ
The visiting order of grid nodes in RK2 or in FE does not matter, but it does in GS. The causality visiting of fast marching
method [12] is the best one in efficiency, but the simple raster-scan visiting of fast sweeping method [17], which is our
choice, is efficient enough in practice. In a grid Nx� Ny, the following four raster-scan visitings are alternatively taken.
for i = 1:Nx
y of RK2, FE, and GS methods for
:2 � Dx, and the error in the whole do

Error in the whole domain

L1 error Rate

2:75� 10�4

7:61� 10�5 1.86

1:99� 10�5 1.94

5:33� 10�6 1.90

9:10� 10�4

3:45� 10�4 1.40

1:32� 10�4 1.38

5:01� 10�5 1.40

2:73� 10�4

7:44� 10�5 1.88

1:93� 10�5 1.94

4:90� 10�6 1.95
for i = 1:Nx
the example of 2D smooth interface: the er
main with condition /ij > �:8. Note that the

L1 error Rate

4:14� 10�3

1:53� 10�3 1.44

5:56� 10�4 1.46

1:60� 10�4 1.80

4:88� 10�3

1:98� 10�3 1.30

7:78� 10�4 1.35

3:45� 10�4 1.17

4:15� 10�3

1:52� 10�3 1.44

4:24� 10�4 1.85

1:13� 10�4 1.90
for i = Nx:1
ror near the interface is measured at node
kink point (0,0) is excluded with the latter co

Error near the interface

L1 error Rate L1 erro

3:67� 10�5 1:84�
4:42� 10�6 3.06 2:15�
5:71� 10�7 2.95 2:74�
7:13� 10�8 3.00 3:43�

3:51� 10�5 1:84�
4:43� 10�6 2.98 2:29�
6:13� 10�7 2.86 3:54�
7:28� 10�7 3.07 4:40� 1

3:68� 10�5 1:84�
4:38� 10�6 3.07 2:15�
5:77� 10�7 2.92 2:77�
7:13� 10�8 3.02 3:43�
for i = Nx:1

for j = 1:Ny
 for j = Ny:1
 for j = 1:Ny
 for j = Ny:1

update/ij
 update/ij
 update/ij
 update/ij
In three-dimensions, there are eight raster-scan visitings, see the details in [17]. In all the three temporal discretizations, the
term sgnð/0

ijÞ strictly takes a value among 1, 0, and �1. The time step Dtij is taken as
Dtij ¼ cfl �minðDxþ;Dx�;Dyþ;Dy�Þ:
Without the presence of interface points, Dx� and Dy� are set to be Dx and Dy, respectively. With interface points present, i.e.
/0

ij � /
0
i�1;j < 0 or /0

ij � /
0
i;j�1 < 0 , they denote the distances from the grid node ðxi; yjÞ to the interface points, and are calculated

as described in the previous section. The cfl number is taken to be .45 in two-dimensions and .3 in three-dimensions. Note
that the time steps are not uniform; it becomes smaller at a grid node next to the interface.

4. Numerical experiments

We compare RK2, FE, and GS temporal discretizations in two and three dimensions. One iteration convects the distance
function in the amount of cfl �minðDx;Dy;DzÞ. The cfl numbers are .45(2D) and .3(3D). To guarantee its full convergence, each
method in a grid Nx� Ny� Nz is iterated 3 �maxðNx;Ny;NzÞ times. Each method in a grid Nx� Ny is iterated 2 �maxðNx;NyÞ
times.

4.1. 2D smooth interface

We test the reinitialization problem proposed in [15]. The initial level set function is defined in a computational domain
½�2;2�2 as
/0ðx; yÞ ¼ ððx� 1Þ2 þ ðy� 1Þ2 þ 0:1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 1

� �
:

It defines the interface as a circle with center at the origin and radius 1. The function is not a signed distance function and its
gradients vary widely. Table 1 shows that all the three methods are third order accurate near the interface. In the whole do-
s ði; jÞ with condition
ndition.

r Rate

10�4

10�5 3.10

10�6 2.97

10�7 3.00

10�4

10�5 3.00

10�6 2.69

0�7 3.01

10�4

10�5 3.09

10�6 2.96

10�7 3.02



Fig. 1. Error distribution of RK2(top), FE(middle), and GS(bottom) methods in a 1282 grid for the example of 2D smooth interface. For the visualization, the
errors are normalized so that their maximums are all one. Observe that only the error distribution of FE method is oscillatory.
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main RK2 and GS methods are second order accurate, however the accuracy of FE method drops to between one and two.
Fig. 1 depicts the error distributions, and Fig. 2 compares the speed of error decays of the three methods.

4.2. 2D interface with kinks

Two circles of radius r are placed at ð�a;0Þ on the plane. Let 0 < a < r, so that the two circles intersect each
other. The interface is taken to be the boundary of the union of the two circles. The signed distance function for the interface
is
/ x; yð Þ ¼
min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2
p� �2

r !
if a�xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða�xÞ2þy2
p P a

r and xþaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþaÞ2þy2
p P a

r ;

min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2 þ y2

q
� r

� 	
else:

8>>>><
>>>>:
We take r ¼ 1 and a ¼ :7, and the computational domain is ½�2;2�2. The initial level function is defined as /0ðx; yÞ ¼
/ðx; yÞ � ððx� 1Þ2 þ ðy� 1Þ2 þ :1Þ. Fig. 3 illustrates the reinitialization that transforms the initial level function into the signed
distance function. Fig. 4 compares the speed of error decays of the methods.

Table 2 shows that all the methods give nearly the same result near the interface. In the whole domain, RK2 and GS
methods produce nearly the same result, which is more accurate than the result of FE method. Only RK2 and GS
methods in the whole domain converge clearly with the first order rate, but the other convergence rates are fluctuating
between one and three. The signed distance function has kinks on the whole y-axis and a line segment ½�a; a� on the x-
axis. Two kink points ð0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2
p

Þ corrupts the accuracy in the quadrilateral of vertices ð0;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2
p

Þ and ð�a;0Þ.
Excluding the kinks and the region influenced by the kinks, the table shows the clear second order accuracy of RK2
and GS methods.



Fig. 2. Convergence of RK2(dashed), FE(dotted) and GS(solid) methods in a 5122 grid for the example of 2D smooth interface. The curves are the graphs of
their L1 errors in the whole domain with respect to iteration number.

Fig. 3. Contours of the level function in the example of 2D interface with kinks. RK2 method was used to reinitialize the level function in a 1282 grid. The
figures are taken when the iterations are applied 0(top-left), 20(top-right), 40(bottom-left), and 80(bottom-right) times. Drawn are contours of levels from
�2 to 1 with step size .1. The zero level set is drawn with thick solid line.
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Fig. 4. Convergence of RK2(dashed), FE(dotted) and GS(solid) methods in a 5122 grid for the example of 2D interface with kinks. The curves are the graphs
of their L1 errors in the whole domain with respect to iteration number.

Table 2
Accuracy of RK2, FE, and GS methods for the example of 2D interface with kinks. The error near the interface is measured at each node ði; jÞ with condition
j/ij j < 1:2 � Dx, the error in the whole domain is measured at all the nodes, and the error on the region without kinks is with condition jxi jP :1 and
jxi j

aþ:2þ
jyj jffiffiffiffiffiffiffiffiffi

r2�a2
p

þ:2
P 1.

Error in the whole domain Error near the interface

Grid L1 error Rate L1 error Rate L1 error Rate L1 error Rate

RK2

1282 3:38� 10�4 6:10� 10�3 1:00� 10�5 6:44� 10�4

2562 1:63� 10�4 1.05 3:33� 10�3 0.87 2:74� 10�6 1.87 5:66� 10�4 0.19

5122 8:26� 10�5 0.98 1:61� 10�3 1.05 1:01� 10�6 1.44 3:98� 10�4 0.51

10242 3:46� 10�5 1.26 7:19� 10�4 1.16 9:15� 10�8 3.46 9:72� 10�5 2.03

FE

1282 4:42� 10�4 6:85� 10�3 9:87� 10�6 6:44� 10�4

2562 2:33� 10�4 0.92 5:00� 10�3 0.45 2:75� 10�6 1.84 5:66� 10�4 0.19

5122 1:39� 10�4 0.75 3:62� 10�3 0.47 1:01� 10�6 1.45 3:98� 10�4 0.51

10242 7:87� 10�5 0.82 2:24� 10�3 0.69 9:17� 10�8 3.46 9:72� 10�5 2.03

GS

1282 3:39� 10�4 6:10� 10�3 1:00� 10�5 6:44� 10�4

2562 1:62� 10�4 1.07 3:33� 10�3 0.87 2:74� 10�6 1.87 5:66� 10�4 0.19

5122 8:19� 10�5 0.98 1:61� 10�3 1.05 1:01� 10�6 1.44 3:98� 10�4 0.51

10242 3:43� 10�5 1.26 7:17� 10�4 1.17 9:15� 10�8 3.46 9:72� 10�5 2.03

Error in the region without kinks

Iterations grid RK2 FE GS

L1 error Rate L1 error Rate L1 error Rate

1282 2:11� 10�3 2:32� 10�3 2:11� 10�3

2562 8:28� 10�4 1.35 1:10� 10�3 1.08 6:18� 10�4 1.77

5122 2:40� 10�4 1.79 4:73� 10�4 1.22 1:68� 10�4 1.88

10242 6:53� 10�5 1.88 1:96� 10�4 1.27 4:44� 10�5 1.92
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4.3. 3D smooth interface

We extend the example of 2D smooth interface to three-dimensions. The initial level function is defined in a computa-
tional domain ½�2;2�3 as
/0ðx; y; zÞ ¼ ððx� 1Þ2 þ ðy� 1Þ2 þ ðz� 1Þ2 þ 0:1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� 1

� �
:



Table 3
Accuracy of RK2, FE, and GS methods for the example of 3D smooth interface. The error near the interface is measured at nodes ði; j; kÞ with condition
j/ijk j < 1:2 � Dx, and the error in the whole domain is with condition /ijk > �:8. Note that the kink point (0,0,0) is excluded with the latter condition.

Error in the whole domain Error near the interface

Grid L1 error Rate L1 error Rate L1 error Rate L1 error Rate

RK2

323 1:96� 10�3 2:00� 10�2 2:27� 10�4 9:32� 10�4

643 4:74� 10�4 2.05 6:93� 10�3 1.53 3:06� 10�5 2.89 1:18� 10�4 2.98

1283 1:17� 10�4 2.02 2:20� 10�3 1.66 4:04� 10�6 2.92 1:67� 10�5 2.82

2563 2:91� 10�5 2.01 5:96� 10�4 1.88 5:15� 10�7 2.97 2:10� 10�6 2.99

FE

323 3:22� 10�3 2:00� 10�2 2:45� 10�4 9:53� 10�4

643 1:17� 10�3 1.46 6:92� 10�3 1.53 3:08� 10�5 2.99 1:30� 10�4 2.87

1283 4:10� 10�4 1.52 2:20� 10�3 1.65 4:10� 10�6 2.91 2:36� 10�5 2.46

2563 1:21� 10�4 1.76 8:07� 10�4 1.45 5:26� 10�7 2.96 2:94� 10�6 3.00

GS

323 1:91� 10�3 2:00� 10�2 2:19� 10�4 1:02� 10�3

643 4:67� 10�4 2.04 6:93� 10�3 1.53 3:00� 10�5 2.87 1:25� 10�4 3.03

1283 1:15� 10�4 2.01 2:19� 10�3 1.67 3:97� 10�6 2.92 1:73� 10�5 2.86

2563 2:87� 10�5 2.01 5:95� 10�4 1.88 5:10� 10�7 2.96 2:17� 10�6 3.00

Fig. 5. Convergence of RK2(dashed), FE(dotted) and GS(solid) methods in a 1283 grid for the example of 3D smooth interface. The curves are the graphs of
their L1 errors in the whole domain with respect to iteration number.
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Table 3 shows that all the methods are third order accurate near the interface. In the whole domain RK2 and GS methods are
second order accurate, however the accuracy of FE method drops to between one and two. Fig. 5 compares the error decays
of the three methods.
5. Conclusion

We have considered the three temporal discretizations : the second order Runge–Kutta method (RK2), the forward Euler
method (FE), and the Gauss–Seidel update of the forward Euler method (GS). Each of the temporal discretizations was com-
bined with the second order ENO finite difference in [11,9]. We tried various examples to verify the two hypotheses in the
introduction: one is that all the temporal discretizations give the same result eventually, and the other one is that FE method
invokes numerical instability.
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All the results indicate the following two facts. The three methods are all third order accurate near the interface, when
measured in smooth region. RK2 and GS methods are second order accurate in the whole domain, but the accuracy of FE
method drops to between one and two.

FE method did not invoke any numerical instability, however its oscillatory nature can be seen in the magnified view of
Fig. 1. The absolute stability region of FE method does not include all the eigenvalues of the linearized system of the second
order ENO finite difference. When FE method in the combination of the ENO is applied to convection problems, it would in-
voke numerical instability typically in the form of oscillation, but the effect was very weak in its application to reinitializa-
tion; the oscillation can be observed only when the level functions are magnified about a thousand times. Though small, the
oscillation should hinder the solution of FE method from reaching a stationary state. This explains why FE and RK2 methods
produce different results.

The Gauss–Seidel method for linear system is well-known to play a role of relaxation, or smoothing, if the linear system is
diagonally dominant [5]. The system discretized by the ENO finite difference with subcell resolution is non-linear, and its
stability analysis is far beyond the scope of this article, but it seems almost certain that the Gauss–Seidel method also plays
the role of relaxation in the non-linear system. One empirical evidence is that there is no oscillation in the error of GS method
in Fig. 1. The relaxation kills the oscillation of FE method, and the solution of GS method reaches its stationary state. This
explains why GS and RK2 methods produced almost identical results in all the tried examples.

Examining these facts, we conclude that GS method is the best among the three temporal discretizations. Compared to
RK2 method, it is twice faster and requires memory two times less with the same accuracy.
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