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Abstract

We introduce a robust and e�cient method to simulate strongly coupled (monolithic) �uid/rigid-body in-
teractions. We take a fractional step approach, where the intermediate state variables of the �uid and of the
solid are solved independently, before their interactions are enforced via a projection step. The projection step
produces a symmetric positive de�nite linear system that can be e�ciently solved using the preconditioned con-
jugate gradient method. In particular, we show how one can use the standard preconditioner used in standard
�uid simulations to precondition the linear system associated with the projection step of our �uid/solid algo-
rithm. Overall, the computational time to solve the projection step of our �uid/solid algorithm is similar to
the time needed to solve the standard �uid-only projection step. The monolithic treatment results in a stable
projection step, i.e. the kinetic energy does not increase in the projection step. Numerical results indicate that
the method is second-order accurate in the L∞-norm and demonstrate that its solutions agree quantitatively
with experimental results.

1 Introduction

Understanding and predicting �uid-structure interaction is crucial in many areas of science and engineering. Ex-
amples include the study of particle motion in liquids, with application to industrial solidi�cation or pertaining to
the understanding of sedimentation in geology, the study of heart valves or aneurisms, or the design of engineering
systems such as swimming structures. Considerable work has been done on the design of numerical methods to
provide an accurate predictive tool for �uid/rigid-body coupling. Arbitrary Lagrangian-Eulerian (ALE) schemes
have been successfully employed in the case where the structure deformation is low [10]. Schemes based on the
Lattice-Bolztmann method have also been used (see e.g. the recent work of [12]). Immersed boundary methods
have provided a framework for coupling �uids and rigid or elastic bodies. Several applications of such methods exist
in the literature, with maybe the most famous one being the application of blood �ow in the heart [25, 26]. Within
this framework, the coupling is expressed through the use of a delta formulation, which smears some of the variables
near the interface but provides a straightforward approach. Coquerelle and Cottet [8] introduced a vortex method
[9] for the simulation of the interaction of an incompressible �ow with rigid bodies. In particular, they consider a
single �ow and use a penalization technique to enforce continuity at the solid-�uid interface and rigid motion inside
the solid. In this case, the interface is represented by a level-set function and the quantities are smeared across the
interface.

In this paper, we are focusing on the two-way coupling between a �uid and a rigid body and present a sharp
treatment for their coupling. In this context, existing numerical methods fall into two categories: partitioned
approaches, where the equations for the �uid are �rst solved before the equations for the solid are solved, and
monolithic approaches, where the equations for the �uid and the rigid body are solved simultaneously [1, 11]. An
advantage of the partitioned approach is that existing �uid and structure solvers can be used in an iterative process.
A disadvantage is that it is di�cult to develop methods that guarantee numerical stability, which in practice can
translate into spurious numerical oscillations. Also, the accuracy may su�er from the lack of strong coupling, even
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Figure 2.1: Schematic of a typical �uid/solid computational set up.

if this can somewhat be remedied with sub-iteration procedures. Monolithic approaches have the potential of being
more stable and more accurate, but their design and analysis is not as straightforward.

In [3], Batty et al. have formulated the interactions between �uids and non-deformable solids as a kinetic energy
minimization problem, and discretized the interactions through the corresponding Euler-Lagrange equation. In [28],
Robinson-Mosher et al. have presented a monolithic approach based on a projection framework. A particularly
important feature of this approach is the design of a symmetric positive de�nite (SPD) system for the projection
step, an improvement on their previous work that produced an inde�nite system [29]. Designing a SPD system
guarantees that its solution can be computed with fast solvers. Their method also preserves momentum, which
impacts positively on the stability of the method. However the method is only �rst-order accurate in the L∞-norm
and it is not clear how to best precondition the linear system.

In the present paper, we present an SPD approach that is second-order accurate in the L∞-norm and for which
the linear system can be preconditioned easily. Our method is unconditionally stable and conserves the momentum
transfer between the �uid and the solid in the projection step. We take a fractional step approach, where the
intermediate state variables of the �uid and of the solid are solved independently, before their interactions are
enforced via a projection step. Using the Heaviside function of the �uid region, the projection is formulated as
a simple Poisson-type equation and can be easily implemented as a small addition to the standard projection
method for �uids on a MAC grid. We show how one can use the standard preconditioner used in �uid simulations
to e�ciently precondition the linear system associated with our �uid/solid coupling projection step, providing a
simulation framework as e�cient as standard �uid solvers. We present numerical results in two and three spatial
dimensions that indicate that our method is second-order accurate. We also provide simulation results that are in
agreement with the experimental results of Ten Cate [6].

2 Governing Equations

The interactions between a �uid and a rigid body are modeled by the equations of motion for the �uid and the
solid, as well as their respective boundary conditions. We consider a computational domain Ω = Ωf ∪ Ωs with
boundary ∂Ω, where a rigid body de�ned by Ωs with boundary Γ is immersed in a �uid de�ned in a region Ωf ⊂ Ω
(see �gure 2.1).

2.1 Fluid Equations

In the case where the viscosity is constant the motion of incompressible �ows is described by the incompressible
Navier-Stokes equations of the following forms:

U t + (U · ∇)U +
∇p
ρ

=
µ

ρ
∆U + g in Ωf ,

∇ ·U = 0, in Ωf .

where ρ is the �uid's density, µ is the �uid's viscosity, U = (u, v, w) is the velocity �eld and g the gravity �eld.
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2.2 Solid Equations

The solid motion is fully described by the evolution of its center of mass C (t), its linear momentum P (t), its
angular momentum L (t), and the orientation matrix R (t):

dC

dt
=

P

m
,

dP

dt
= mg + f ,

dL

dt
= τ ,

dR

dt
= ω×R,

where m is the mass of the rigid body, ω = I−1L is the angular velocity de�ning the inertia matrix I, and ω× is
the skew-symmetric matrix corresponding to the cross product of any vector x with ω, i.e. ω×x = ω×x for all x.
The force and the torque exerted by the �uid are denoted by f and τ , respectively.

2.3 Boundary Conditions

The �uid/solid two-way coupling is described by the boundary conditions: The �uid must satisfy the no-slip and
non-penetrating boundary conditions imposed by the solid, which takes into account the rigid body's linear velocity
v = 1

mP and the rigid body's angular velocity, while the solid must be correctly accelerated by the force and torque
induced by the �uid stress tensor σ = −pI + 2µD, with I the identity matrix and D the standard strain rate
tensor:

U (x, t) = U solid (x, t) :=
P (t)

m
+ ω(t)× (x−C(t)) on Γ,

f (t) =

ˆ

Γ

(
−pI + 2µD

)
· n dΓ,

τ (t) =

ˆ

Γ

(x−C)×
(
−pI + 2µD

)
· n dΓ,

where n is the outward normal to the rigid body.

3 Temporal Discretization

We use a projection method, where the evolution of the di�erent state variables is performed in two stages: In-
termediate states are �rst computed (see sections 3.1 and 3.2) before being projected so that the divergence free
condition for the velocity �eld Un+1 at tn+1 is satis�ed as well as to enforce the boundary conditions for Un+1 (see
sections 3.3 and 3.4). In particular, we use a projection method with pressure guess, i.e. we use the pressure pn at
time tn when computing the intermediate states.

3.1 Intermediate States for the Fluid Equations

In the case of incompressible �ows, shocks are not present so that a standard semi-Lagrangian method is appro-
priate for discretizing the convection term of the Navier-Stokes equations. A bene�t of this approach is that it
produces second-order accurate discretizations that are unconditionally stable [36, 20]. The di�usion term µ∆U
is traditionally discretized with the Crank-Nicolson scheme. However, within the standard projection method, the
combination of the Crank-Nicolson scheme to discretize the di�usion term and the Semi-Lagrangian method to
discretize the momentum term produces solutions that are only �rst-order accurate [36]. We therefore prefer to
discretize the di�usion term with the second-order backward di�erence formula (BDF), which leads to second-order
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accurate solutions in conjunction with the semi-Lagrangian method [36, 20]: denoting U∗ the intermediate velocity
�eld sampled at a grid node xn+1, its evolution in time is given by:

ρ
3
2U
∗ − 2Un

d + 1
2U

n−1
d

∆t
+∇pnd = µ∆U∗ + ρg in Ωf,n+1, (3.1)

U∗ = U solid,n+1 on Γn+1,

where ∆t is the time step. The Lagrangian coordinates x(t) are convected back in time along the characteristic
curves according to the ordinary di�erential equation x′(t) = U(x, t) with initial data x(tn+1) = xn+1. This de�nes
a departure point xd = x(tn) for every grid node xn+1, at which the velocity �elds Un

d at time tn, the velocity �eld
Un−1
d at time tn−1 and the pressure �eld pnd at time tn are computed by the stabilized quadratic interpolation in

[21].

3.2 Intermediate States for the Solid Equations

The solid equations are evolved in such a way as to mimic the time evolution of the �uid's states, i.e. we use the
same BDF scheme. In particular, we compute intermediate states by explicitly isolating the contribution of the
pressure term in order to have a unifying framework for the projection step of section 3.4:

3
2C

n+1 − 2Cn + 1
2C

n−1

∆t
= 2

P n

m
− P

n−1

m
,

3
2P
∗ − 2P n + 1

2P
n−1

∆t
= 2f̃

n
− f̃

n−1
+

ˆ

Γn+1

pnn dΓn+1 +mg, (3.2)

3
2L
∗ − 2Ln + 1

2L
n−1

∆t
= 2τ̃n − τ̃n−1 +

ˆ

Γn+1

(
x−Cn+1

)
× pnn dΓn+1,

3
2R

n+1 − 2Rn + 1
2R

n−1

∆t
= 2

(
ω×R

)n − (ω×R)n−1
,

where f̃ =
´ (

2µD
)
ndΓ and τ̃ =

´
(x − C) ×

(
2µD

)
ndΓ, i.e. the force and torque without their pressure

component. We have also approximated P n+1, f̃
n+1

, τ̃n+1 and (ω×R)n+1 by linear extrapolation in time, e.g.

P n+1 ≈ 2P n − P n−1.

3.3 Boundary Conditions and Heaviside Formulation

The boundary conditions are given on the interface Γ and since it is more convenient to express them on the entire
domain Ω, we consider their in�uence through the use of a Heaviside formulation. Speci�cally, let H (x, t) be the
Heaviside function equal to 1 in the �uid region and 0 in the solid region. Since ∇H = δΓn , where δ is the Dirac
delta function with support on Γ and n is the outward normal vector at Γ, we can rewrite the boundary conditions
as:

f =

ˆ

Γ

(
−pI + 2µD

)
ndΓ ⇐⇒ f =

ˆ

Ω

(
−pI + 2µD

)
∇HdΩ,

τ =

ˆ

Γ

(x−C)×
(
−pI + 2µD

)
ndΓ ⇐⇒ τ =

ˆ

Ω

(x−C)×
(
−pI + 2µD

)
∇HdΩ.

Likewise, the scalar variable q, described in section 3.4 and satisfying the boundary condition ∇q · n = 0 on Γ can
be expressed as:

∇q · ∇H = 0 on Ω.
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3.4 Projection Step

The intermediate variables U∗, P ∗and L∗ must be projected to satisfy the incompressibility condition ∇·Un+1 = 0
as well as the non-penetration condition Un+1 · n = U solid,n+1 · n on Γ. The Hodge theorem allows to decompose

the intermediate velocity �eld U∗ as U∗ = Un+1 + ∆t∇q
n+1

ρn+1 , with Un+1 a divergence free velocity �eld and qn+1

a scalar function. This is the basis of the original projection method of Chorin [7], which has been extended to
higher order accuracy and analyzed by other researchers (see e.g. [18, 5, 4] and the references therein). Similarly,
we choose to decompose the intermediate linear momentum P ∗ and angular momentum L∗ in their corresponding
form so that the projection step can be uniformly written as:

Un+1 = U∗ −∆t
∇qn+1

ρn+1
(3.3a)

P n+1 = P ∗ −∆t

ˆ
qn+1 · ∇Hn+1 (3.3b)

Ln+1 = L∗ −∆t

ˆ (
x−Cn+1

)
× qn+1 · ∇Hn+1 (3.3c)

Here Hn+1 denotes the Heaviside function of the �uid's domain Ωf,n+1. The incompressibility and non-penetration
conditions provide an equation for qn+1: we have from the incompressibility condition Hn+1∇ · Un+1 = 0 in the
entire domain and since the solid is incompressible, we have ∇·U solid,n+1 = 0. From the non-penetration boundary
condition Un+1 · n = U solid,n+1 · n on Γn+1, we have (Un+1 −U solid,n+1) · ∇Hn+1 = 0. Therefore:

∇ ·
(
Hn+1

(
Un+1 −U solid,n+1

))
= Hn+1

∇ ·Un+1 +∇ ·U solid,n+1︸ ︷︷ ︸
0

+∇Hn+1 ·
(
Un+1 −U solid,n+1

)
︸ ︷︷ ︸

0

= Hn+1∇ ·Un+1︸ ︷︷ ︸
0

= 0.

Now combining this expression with the equations in (3.3), we have:

0 = ∇ ·
(
Hn+1

(
U∗ −∆t · ∇q

n+1

ρn+1

))
−∇Hn+1 ·

(
vn+1 + ωn+1 ×

(
x−Cn+1

))
= ∇ ·

(
Hn+1

(
U∗ −∆t · ∇q

n+1

ρn+1

))
−∇Hn+1 · 1

m

(
P ∗ −∆t ·

ˆ
qn+1 · ∇Hn+1

)
−∇Hn+1 ·

(((
I−1

)n+1
(
L∗ −∆t ·

ˆ (
x−Cn+1

)
× qn+1 · ∇Hn+1

))
×
(
x−Cn+1

))
.

Finally, collecting all the qn+1 terms on the left-hand-side, we obtain the following linear system for qn+1:

−∇ ·
(
Hn+1

ρ
∇qn+1

)
+∇Hn+1 · 1

m

(ˆ
qn+1∇Hn+1

)
+

Jn+1 ·
((

I−1
)n+1

(ˆ
qn+1Jn+1

))
= − 1

∆t
∇ · (HU∗) +

1

∆t
∇H ·U solid,∗, (3.4)

where Jn+1 =
(
x−Cn+1

)
× ∇Hn+1 and U solid,∗ = P ∗

m +
((

I−1
)n+1

L∗
)
×
(
x−Cn+1

)
. The following theorem

demonstrates that the linear system associated with the above temporal discretization is symmetric and positive
de�nite. The spatial approximations described in section 4 will be designed to keep this property.

Theorem 1. The linear system associated with the semi-discrete equation (3.4) is symmetric and positive de�nite.

Proof. Let L (·) be the operator in the left-hand-side of (3.4) acting on qn+1. To prove the symmetry of the operator
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L, we show that
´
Rd L

(
q(1)
)
q(2) =

´
Rd L

(
q(2)
)
q(1) for any L2-integrable functions q(1) and q(2):

ˆ

Rd

L
(
q(1)
)
q(2) = −

ˆ

Rd

(
∇ ·
(
H

ρ
∇q(1)

))
q(2) +

ˆ

Rd

∇H ·

ˆ
Rd

q(1) 1

m
∇H

 q(2)

+

ˆ

Rd

I−1J ·

ˆ
Rd

q(1)J

 q(2)

=

ˆ

Rd

H

ρ
∇q(1) · ∇q(2) +

1

m

ˆ
Rd

q(2)∇H

 ·
ˆ
Rd

q(1)∇H


+

I−1

ˆ
Rd

q(2)J

 ·
ˆ
Rd

q(1)J


This is clearly a symmetric form for q(1) and q(2), since the inertia matrix and its inverse are symmetric. The
positive de�niteness of the operator L is a straightforward consequence of the fact that the inertia matrix is positive
de�nite: For any L2-integrable function q, we have:

ˆ

Rd

L (q) q =

ˆ

Rd

H

ρ
‖∇q‖2 +

1

m

∥∥∥∥∥∥
ˆ

Rd

q∇H

∥∥∥∥∥∥
2

+

I−1

ˆ
Rd

qJ

 ·
ˆ
Rd

qJ


> 0 ∀ q 6= 0 and = 0 i� q = 0.

Remark: From the Hodge decomposition (3.3a) and the divergence free condition ∇ ·Un+1 = 0, we have:

U∗ = Un+1 + ∆t
∇qn+1

ρ
in Ωf,n+1,

or

∆t

ρ
∆qn+1 = ∇ ·U∗ in Ωf,n+1,

which, when substituted into equation (3.1) for the intermediate velocity U∗, gives the following equation for the
pressure update:

pn+1 = pnd +
3

2
qn+1 − µ∇ ·U∗. (3.5)

Note that this pressure update corresponds to the projection method PM II in [5] and the rotational pressure-
correction method in [16]. There exists a simpler pressure update, e.g. pn+1 = pnd + 3

2q
n+1, which corresponds to

PM I in [5]. Both updates produce second-order accurate velocity �eld, but the pressure is second-order accurate
only in the case of PM II; PM I produces only a �rst-order accurate pressure update [5]. In contrast with �uid
simulations for which the di�erence in pressure accuracy between PM I and PM II is insigni�cant for the overall
accuracy of the method, the accuracy of the �uid/rigid-body simulation depends closely on the accuracy of the
pressure update. Indeed, the pressure plays an important role in the computation of the force and torque induced
by the �uid stress tensor σ = −pI + 2µD. Therefore, we are using the pressure update given by equation (3.5).

4 Spatial Discretization

The projection in the semi-discrete form was proven to be symmetric and positive de�nite using the integration by
parts formula. To keep the symmetric positive de�niteness in the fully discrete case, we take the standard staggered
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grid (MAC) arrangement [17], where the integration by parts can be enforced exactly at the discrete level. For each
cell, the pressure p is sampled at its center and the velocity components are sampled on its faces, i.e. in two spatial
dimensions the pressure is sampled as pij and the velocity �eld U = (u, v) is sampled as ui± 1

2 ,j
and vi,j± 1

2
. The

rigid body geometry is represented by an implicit function φ, i.e. Γ = {x : φ(x) = 0}, that is sampled at the cells'
centers.

In what follows, we give the spatial discretization used in our work. Most of the spatial derivatives are discretized
in a dimension by dimension fashion, in which case we describe the discretizations in two spatial dimensions only.
In the case where the discretizations in three spatial dimensions are not a straightforward extension of the two
dimensional case, we explicitly describe them in two as well as in three spatial dimensions.

4.1 Discretization of the Gradient and Divergence Operators

We denote by Dx the central �nite di�erences in the x-direction:

(Dxp)i+ 1
2 ,j

=
pi+1,j − pi,j

∆x
and (Dxu)ij =

ui+ 1
2 ,j
− ui− 1

2 ,j

∆x
.

Similarly, Dy denotes the central �nite di�erence in the y-direction. The gradient and divergence operators are also
approximated by central �nite di�erences, and are denoted by ∇h and ∇h·, respectively:

∇h [pij ] =
([

(Dxp)i+ 1
2 ,j

]
,
[
(Dyp)i+ 1

2 ,j

])
,

∇h ·
([
ui+ 1

2 ,j

]
,
[
vi+ 1

2 ,j

])
=

[
(Dxu+Dyv)ij

]
.

Note that the two discrete operators satisfy the integration by parts relation. Indeed consider a MAC grid with
resolution [1,M ]× [1, N ], then we have:

M−1∑
i=1

N∑
j=1

(Dxp · u)i+ 1
2 ,j

+

M∑
i=1

N−1∑
j=1

(Dyp · v)i,j+ 1
2

= −
M∑
i=1

N∑
j=1

pij
(
∇h ·U

)
ij
,

or simply
∑(
∇hp

)
·U = −

∑
p
(
∇h ·U

)
if the non-penetration boundary condition, U ·n = 0, or the zero pressure

boundary condition, p = 0, are satis�ed on the computational domain's boundary.

4.2 Discretization of the Convection Term

As already stated in section 3.1, the convection term is discretized by a standard second-order accurate semi-
Lagrangian method [36, 24]. Let xn+1 be a grid node at time tn+1, its departure point xnd is found by tracing back
the characteristic curve using a second-order Runge-Kutta method:

xn+ 1
2 = xn+1 − ∆t

2
·Un

(
xn+1

)
,

xnd = xn+1 −∆tn ·Un+ 1
2

(
xn+ 1

2

)
,

The intermediate velocity Un+1/2 is extrapolated in time using Un+ 1
2

(
xn+ 1

2

)
= 3

2U
n
(
xn+ 1

2

)
− 1

2U
n−1

(
xn+ 1

2

)
.

Finally, since the Lagrangian coordinates do not necessarily fall on grid nodes, the corresponding values for the
velocity �eld are evaluated using the quadratic interpolation introduced in [24].

4.3 Discretization of the Heaviside Function

Let H be the Heaviside function in Ωf . In the projection step described in section 3.4, the Heaviside function
serves two purposes: First, it is used to enforce the incompressible condition ∇ · U = 0 in Ωf as well as the non-
penetration boundary condition U ·n = U solid ·n on Γ. These two conditions are combined through the divergence

equation ∇ ·
(
H
(
U −U solid

))
= 0. Second, the Heaviside function is used to evaluate integrals over the interface

as an integral over the entire computational domain Ω:
´

Γ
fndΓ =

´
Ω
f∇HdΩ. The proper discretization of the

Heaviside function is one of the most important point of this work.
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There exists several e�cient second-order accurate discretizations of the Heaviside function, such as those
introduced in Towers [33], in Smereka [32] or in Min and Gibou [22]. These methods have been designed and
validated for accurately evaluating integrals over irregular domains Ωf as

´
Ωf fdΩ =

´
Ω
fH dΩ, which is one

property of the Heaviside function that we wish to use. However, the use of the Heaviside function of Min and

Gibou to enforce the divergence equation ∇ ·
(
H
(
U −U solid

))
= 0 produces results that do not converge in

L∞-norm, as we pointed out in Ng et al. [24]. We have tested the Heaviside function introduced in Towers [33]
and observed the same undesirable behavior. We have not tested the Heaviside function of [32] because it would
lead to a nonsymmetric linear system for the projection step, which we want to avoid. However, we believe that
such discretization would also produce results in the projection step that would not converge in the L∞-norm. In
contrast, a �nite volume treatment of the standard projection step for single-phase �uid in irregular domains, has
been shown to produce second-order accurate solutions in the L∞-norm [24, 27]. This implies that a correct choice

for the treatment of the divergence equation ∇ ·
(
H
(
U −U solid

))
= 0 is to de�ne the Heaviside function on each

cell as the length fraction (in two spatial dimensions; the area fraction in three spatial dimensions) of the face in
Ωf . This is therefore our choice in the present work and we will show in section 4.4 the typical order of accuracy
that one obtains when also using this discretization of the Heaviside function in the integration procedure.

In two spatial dimensions, consider a cell face xi+ 1
2 ,j
×
[
yj− 1

2
, yj+ 1

2

]
with the level function taking values

φi+ 1
2 ,j±

1
2
at its two end points. Assuming a linear interpolation of φ, the Heaviside function (length fraction) is

simply computed as:

Hi+ 1
2 ,j

=
φ+
i+ 1

2 ,j+
1
2

− φ+
i+ 1

2 ,j−
1
2

φi+ 1
2 ,j+

1
2
− φi+ 1

2 ,j−
1
2

,

where φ+ = max(φ, 0). In the case where both φ's are positive, we set H = 1; if both φ's are negative, we set
H = 0. Thus, if the numerator equals zero, which means that the two φ's have the same sign, the fraction is
correctly treated as 1 or 0.

In three spatial dimensions, consider a cell face xi+ 1
2 ,j,k
×
[
yj− 1

2
, yj+ 1

2

]
×
[
zk− 1

2
, zk+ 1

2

]
with the level function

taking values φi+ 1
2 ,j±

1
2 ,k±

1
2
at its four corners. We �rst decompose the rectangular face into two triangles and

apply a linear interpolation procedure on each triangle to �nd their areas: Consider a triangle ∆P0P1P2 with level
function values φ0, φ1, φ2 at its three vertices. The area fraction covered by Ωf is calculated as:

H
(
φ0, φ1, φ2

)
=


φ+

0 −φ
+
1

φ0−φ1
· φ

+
0 −φ

+
2

φ0−φ2
if φ0 > 0, φ1 < 0, and φ2 < 0

1− φ+
0 −φ

+
1

φ0−φ1
· φ

+
0 −φ

+
2

φ0−φ2
if φ0 < 0, φ1 > 0, and φ2 > 0.

By symmetry, the other cases are treated similarly. The area fraction of the face occupied by Ωf is then de�ned as:

Hi+ 1
2 ,j,k

=
1

2

 H
(
φi+ 1

2 ,j−
1
2 ,k−

1
2
, φi+ 1

2 ,j+
1
2 ,k−

1
2
, φi+ 1

2 ,j+
1
2 ,k+ 1

2

)
+H

(
φi+ 1

2 ,j−
1
2 ,k−

1
2
, φi+ 1

2 ,j−
1
2 ,k+ 1

2
, φi+ 1

2 ,j+
1
2 ,k+ 1

2

)  .

4.4 Integral Computation Using the Heaviside Function

As pointed out in section 4.3, our choice for the Heaviside discretization enforces the divergence condition ∇ ·(
H
(
U − Usolid

))
= 0 with second-order accuracy (see [24]). In this section, we provide typical accuracy results for

the computation of integrals over an irregular interface as:
ˆ

Γ

f dΓ =

ˆ

Ω

f ‖∇H‖ dΩ '
∑
ij

fij

√
(DxH)

2
ij + (DyH)

2
ij∆x∆y.

We consider the evaluation of the integral
´
x2+y2=1

3x2 − y2 = 2π on a computational domain [−2, 2]
2
in two

spatial dimensions and the computation of the integral
´
x2+y2+z2=1

(
4− 3x2 + 2y2 − z2

)
= 40

3 π on [−2, 2]
3
. These

examples are taken from [32]. Table 1 indicates that the Heaviside de�ned as the length fraction in two spatial
dimensions approximates the integral with a convergence rate slightly superior to 1.5. Table 2 indicates that the
area fraction in three spatial dimensions approximates the integral with a convergence rate of 2. The Heaviside
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grid ||L− Lexact||∞ order
402 3.74× 10−2

802 1.23× 10−2 1.60
1602 4.37× 10−3 1.49
3202 1.50× 10−3 1.54
6402 5.36× 10−4 1.48

Table 1: Accuracy of the integral computation of section 4.4 using a discretized Heaviside function in two spatial
dimensions (length L).

grid ||A−Aexact||∞ order
203 1.01× 100

403 2.27× 10−1 2.15
803 5.43× 10−2 2.06
1603 1.32× 10−2 2.04

Table 2: Accuracy of the integral computation of section 4.4 using the discretized Heaviside function in three spatial
dimensions (area A).

approximations given by Towers [33] or Min and Gibou [22] produce second-order accurate results in both two and
three spatial dimensions. Of course, it would be conceivable to use those approximations for the discretization of the
integral part only, but this would lead to a non-symmetric linear system in the projection step, which we want to
avoid. We will show in section 7 that our choice of approximations of the Heaviside function produces second-order
accurate solutions in the L∞-norm for the �uid/solid interactions.

4.5 Discretization of the Di�usion Term

The combination of the semi-Lagrangian and BDF schemes for approximating the intermediate velocity �eld in the
Navier-Stokes equations reads:

ρ
3
2U
∗ − 2Un

d + 1
2U

n−1
d

∆t
+∇pnd = µ∆U∗ + g in Ωf,n+1,

U∗ = U solid,n+1 on Γn+1.

We considered two methodologies for treating implicitly the di�usion tensor with Dirichlet boundary condition: The
symmetric discretization of Gibou et al. [14] and the non-symmetric discretization of Shortley and Weller [31, 13].
Both methods produce second-order accurate solutions. However, only the non-symmetric discretization produces
second-order accurate gradients; the symmetric approach produces �rst-order accurate gradients only [23, 19]. In

the case of �uid/solid coupling, the traction force
(
−pI + µ

(
∇U + (∇U)

T
))
· n requires an accurate evaluation

of ∇U , the gradient of the solution. For this reason, we discretize the di�usion term µ∆U∗ by the non-symmetric
discretization, and solve the linear system by the BiCGSTAB iteration with incomplete LU preconditioning [30].

4.6 Discretization of the Projection Step

In section 3.4, we derived the following equation for the scalar qn+1 used in the projection step:

−∇ ·
(
H

ρ
∇q
)

+∇H · 1

m

(ˆ
q∇H

)
+ J · I−1

(ˆ
qJ

)
= − 1

∆t

(
∇ · (HU∗) +∇H ·U solid,∗

)
,

where we omitted the superscript n+1 for convenience. All the spatial derivatives in the equation are approximated
by central �nite di�erences as discussed in section 4.1, the Heaviside function is approximated by the �nite volume
discretization described in section 4.3 and the integrals are approximated as detailed in section 4.4. For each grid
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index i and j, we then have:

−
(
∇h ·

(
H

ρ
∇hq

))
i,j

+
(
∇hH

)
i,j
· 1

m

∑
k,l

(
q∇hH

)
k,l
dV

+ J i,j · I−1

∑
k,l

(qJ)k,l dV

 =

− 1

∆t

(
∇h ·

(
HU∗ −HU solid,∗

))
i,j
, (4.1)

where dV denotes the volume element ∆x ·∆y.

Theorem 2. The linear system associated with the fully discrete equation (4.1) is symmetric and positive de�nite.

Proof. Let Lh (·) be the discrete operator on the left-hand-side of (4.1) acting on qn+1
i,j . For arbitrary

[
q

(1)
ij

]
and[

q
(2)
ij

]
, we have:

[
q

(1)
ij

]
·
[(

Lh
(
q(2)
))

ij

]
= −

∑
i,j

q
(1)
i,j

(
∇h ·

(
H

ρ
∇hq(2)

))
i,j

+
∑
i,j

q
(1)
ij

(
∇hH

)
i,j
· 1

m

∑
k,l

(
q(2)∇hH

)
k,l
dV


+
∑
i,j

(
q(1)J

)
i,j
· I−1

∑
k,l

(
q(2)J

)
k,l
dV


= −

∑
i,j

Hi,j

ρ

(
∇hq(1)

)
i,j

(
∇hq(2)

)
i,j

+
dV

m

∑
i,j

(
q(1)∇hH

)
i,j

 ·
∑

k,l

(
q(2)∇hH

)
k,l


+

dV · I−1

∑
i,j

(
q(1)J

)
i,j

 ·
∑

k,l

(
q(2)J

)
k,l

 .

Note that we can apply the integration by parts formula of section 4.1, since ∇hq ·n = 0 is assumed at the boundary
of the computational domain. This is clearly a symmetric form for q(1) and q(2), since the inertia matrix and its
inverse are symmetric. The positive de�niteness of the operator Lh is a straightforward consequence of the fact
that the inertia matrix is positive de�nite. For any L2-integrable function q, we have:

[qij ] ·
[(
Lh (q)

)
ij

]
= −

∑
i,j

Hi,j

ρ

∥∥∇hq∥∥2

i,j
+
dV

m

∑
i,j

(
q∇hH

)
i,j

2

+

dV · I−1

∑
i,j

(qJ)i,j

 ·
∑

k,l

(qJ)k,l


> 0 ∀ q 6= 0 and = 0 i� q = 0.

Remark: It is clear that if the Heaviside functions of [22, 33, 32] were used as discussed in section 4.3, the linear
system would not be symmetric.

Finally, once q is solved the states variables (U∗,P ∗,L∗) are projected as:

Un+1 = U∗ −∆t
∇hq
ρ
,

P n+1 = P ∗ −∆t
∑
i,j

(
q∇hH

)
i,j
dV,

Ln+1 = L∗ −∆t
∑
i,j

(qJ)i,j dV.

The following theorem demonstrates that the projection is stable in the sense that it does not increase the kinetic
energy:

Theorem 3. The projection step does not increase the kinetic energy of the �uid and the solid.
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Proof. The kinetic energy of the �uid and the solid is de�ned as K =
´

Ω
ρ
2U

2 + 1
2mP ·P + 1

2I
−1L ·L, and discretized

as:

K (U ,P ,L) =
1

2
[ρHU ] · [U ] +

1

2m
P · P +

1

2
I−1L ·L,

where
[
U (1)

]
·
[
U (2)

]
=
∑
ij u

(1)

i+ 1
2 ,j
u

(2)

i+ 1
2 ,j
dV +

∑
ij v

(1)

i,j+ 1
2

v
(2)

i,j+ 1
2

dV denotes the inner product for the vector �elds

U (1) = (u(1), v(1)) and U (2) = (u(2), v(2)). Similarly,
[
q(1)
]
·
[
q(2)
]

=
∑
ij q

(1)
ij q

(2)
ij dV denotes the inner product

between scalar quantities q(1) and q(2). Combining K (U∗,P ∗,L∗) with equations (3.3a), (3.3b), and (3.3c) we
have:

K (U∗,P ∗,L∗) = K
(
Un+1,P n+1,Ln+1

)
+ ∆t ·

[
ρHUn+1

]
·
[
∇hq
ρ

]

+ ∆t ·

P n+1 · 1

m

∑
ij

(
q∇hH

)
ij
dV

+Ln+1 · I−1

∑
ij

(qJ)ij dV


+

∆t2

2

([
ρH
∇hq
ρ

]
·
[
∇hq
ρ

])
+

∆t2

2

 1

m

∑
ij

(
q∇hH

)
ij
dV

2

+ I−1

∑
ij

(qJ)ij dV

2


≥ K
(
Un+1,P n+1,Ln+1

)
+ ∆t ·

[
HUn+1

]
·
[
∇hq

]
+ ∆t ·

P n+1 · 1

m

∑
ij

(
q∇hH

)
ij
dV

+Ln+1 · I−1

∑
ij

(qJ)ij dV

 .

Using the discrete integration by parts formula on MAC grids (see section 4.1), we have:[
HUn+1

]
·
[
∇hq

]
= −

[
∇h ·

(
HUn+1

)]
· [q]

= −
[
∇hH ·U solid,n+1

]
· [q]

= −
∑
ij

(
q∇hH ·

(
1

m
P n+1 + I−1Ln+1 ×

(
x−Cn+1

)))
ij

dV

= −Pn+1 · 1

m

∑
ij

(
q∇hH

)
ij
dV

− Ln+1 · I−1

∑
ij

(qJ)ij dV

 .

Thus we obtain that K (U∗,P ∗,L∗) ≥ K
(
Un+1,P n+1,Ln+1

)
.

5 Preconditioning the SPD Linear System of the Projection Step

If we denote by A the matrix associated with the standard discretization of the Poisson operator −∇h ·
(
Hn+1

ρ ∇
h
)
,

then the matrix of the linear system for the projection step of the �uid/solid coupling problem at hand is de�ned
as:

AFSC := A+
(
∇hH

)
· dV
m

(
∇hH

)T
+ J · dV · I−1JT .

Let M be the modi�ed incomplete LU preconditioner for A. Since M ' A, we take the preconditioner for the

matrix AFSC as:

MFSC := M +
(
∇hH

)
· dV
m

(
∇hH

)T
+ J · dV · I−1JT .

Note that since ∇hH and J have support only near the interface, they are stored as sparse matrices for the sake of
preserving computational resources.

Now we derive a formula for the inversion of the system MFSCqh = RHS, where qh is the vector whose
components are the qi,j 's and RHS the vector associated with the sampling of the right-hand-side of equation
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(a) Standard �uid simulations (b) Present �uid/solid coupling

Figure 5.1: Convergence history of the residual |rn| for the CG and PCG algorithms in the case of the projection
step. Standard �uid projection (left) and the present �uid/solid interaction algorithm (right).

(4.1). It is convenient to write the equation in the following block linear system, which is then solved by a standard
block LU factorization:  M ∇hH J(

∇hH
)T − m

dV I 0

JT 0 − 1
dV · I

−1


 qh

v
ω

 =

 RHS
0
0



⇔

 I 0 0(
∇hH

)T
M−1 I 0

JTM−1 U1D1
−1 I


 M ∇hH J

0 D1 U1

0 0 D
2

 qh
v
ω

 =

 RHS
0
0


The block matrices D

1
, D

2
, and U

1
are of size 3 × 3 in three spatial dimensions, and of size 2 × 2, 1 × 1 and

2 × 1, respectively in two spatial dimensions. The matrices are de�ned as D
1

= − m
dV I −

(
∇hH

)T
M−1

(
∇hH

)
,

U
1

= −JTM−1
(
∇hH

)
, andD

2
= − 1

dV ·I
−1−JTM−1J−U

1
D1
−1U

1
. These matrices are evaluated and stored,

whereas M−1 is not stored but only applied when needed as for �uid-only solvers [15].
The MILU preconditioner M is known to be a very e�cient preconditioner for the matrix A associated with

standard �uid-only simulations. In order to quantify the performance of our preconditioner MFSC for the matrix

AFSC, we consider the following example in two spatial dimensions: Consider a �uid with uniform intermediate

velocity �eld U∗ = (0,−1) on a computational domain [−.02, .02]
2
. A cylindrical solid object with center (0, 0)

and radius r = .005 is immersed in the surrounding �uid. The densities of the �uid and the solid are set to be
ρf = 1000 and ρs = 2000, respectively. The solid has linear momentum P ∗ = ρsπr

2 (0,−1) and angular momentum
L∗ = 0. Non-slip boundary conditions are imposed on the boundary of the computational domain. The �uid and
solid velocity �elds are projected by solving the linear system AFSCqh = RHS.

Figure 5.1 illustrates the reduction in the number of iterations between the CG and the PCG algorithms in
the case of the standard �uid-only and the present �uid/solid projection methods on a grid with resolution 5002.
These results indicate that the computational complexity of the projection step of our �uid/solid coupling is on
a par with that of a standard �uid-only solver. In particular, in the case of the conjugate gradient, the norm of
the residual |rn| in log scale decreases linearly with the number of iterations n with slope − 2√

κ
, where κ is the

condition number of the matrix [34]. Figure 5.1(a) compares the CG and PCG iterations for the standard projection
method; the slope for the CG iterations is about −0.015 and that of PCG is about −0.066, which means that the

M preconditioner reduces the condition number of A by a factor
(
−0.066
−0.015

)2

' 19. Likewise, �gure 5.1(b) compares

the CG and PCG iterations for the present projection method; the slope for the CG iteration is about −0.016 and
that of PCG is about −0.074, which means that the MFSC preconditioner reduces the condition number of AFSC
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Figure 5.2: Computational resources necessary in the projection step versus the number of nodes (the right column
is in log-log scale). The PCG routine for each case was iterated until the residual |rn| < 10−12.

by a factor
(
−0.074
−0.016

)2

' 21. Figure 5.2 illustrates that the number of iterations and the computational time of

the present projection step grow at a similar rate as those of the standard projection under grid re�nement. This
further indicates that the computational complexity of the projection step of our �uid/solid coupling is on a par
with that of a standard �uid-only solver.

6 Summary: Outline of the Method

For each time step tn, the following steps are sequentially carried out:

Step 1. Solve for Cn+1, P ∗, L∗, and Rn+1 using the evolution equation (3.2).

Step 2. Calculate φn+1 (x) = φ0
(
Rn+1

(
R0
)−1 (

x−C0
)

+Cn+1
)
and Hn+1, as described in section 4.3.

Step 3. Calculate Un
d , U

n−1
d , and pnd via the semi-Lagrangian method described in section 4.2.

Step 4. Solve for U∗ in equation (3.1).

Step 5. Solve for qn+1 in equation (4.1).

Step 6. Perform the projection of U∗, P ∗ and L∗:

13



Figure 7.1: Convergence of the solid velocity in the case of the analytical example of [28].

Un+1 = U∗ −∆t
∇hq
ρ
,

P n+1 = P ∗ −∆t
∑
i,j

(
q∇hH

)
i,j
dV,

Ln+1 = L∗ −∆t
∑
i,j

(qJ)i,j dV.

Step 7. Extrapolate Un+1 and qn+1 from Ωf,n+1 to the entire computational region using Aslam's quadratic
extrapolation procedure [2, 21].

Step 8. Update pn+1 = pnd + 3
2q
n+1 − µ∇h ·U∗.

Step 9. Go back to Step 1.

7 Numerical Examples

In this section, we provide numerical evidence that our method is second-order accurate in the L∞-norm and can
reproduce known experimental results.

7.1 Sliding Rectangular Structure

We consider the analytical example proposed in [28], where a solid rectangular structure immersed in �uid is �owing
along the center of an in�nite channel under the action of gravity. A simple analytical formula is derived in [28] for
the settling velocity of the solid:

vs = −(M + ρwh)
gw

2hµ
, (7.1)

where h = 1 m is the height of the channel, w = 1/3 m is the width of the rigid body, M = 150 kg its mass,
g = 9.8 m s−1 is the gravity constant and ρ = 100 kg m−2 and µ = 100 kg s−1 are the �uid's density and viscosity,
respectively. The analytic velocity pro�le for the left �uid region [0, w]× [0, h] is u = 0 and v = ρg

2µx (x− w) + vs
w x,

therefore a quadratic form in x. Figure 7.1 depicts the convergence of our numerical solution to the analytical
formula (7.1) with ∆t = ∆x. Table 3 demonstrates the second-order convergence for solid velocity at t = .5.

14



t = .5 t = 40
grid resolution ||v − v1280||∞ rate ||v − vs||∞ rate

202 1.22× 10−3 8.05× 10−9

402 3.32× 10−4 1.88 6.49× 10−9 -
802 8.68× 10−5 1.93 5.94× 10−9 -
1602 2.16× 10−5 2.00 9.34× 10−9 -

Table 3: Accuracy of the vertical component of the velocity �eld of solid in the example of section 7.1. For calculating
the error, the analytic formula for the settling velocity vs = − (M + ρwh) gw

2hµ was used at steady-state (t = 40)

and the numerical solution on a very �ne 12802 grid was used in the transient region (t = .5).

The error at steady-state (t = 40) is near machine precision, which is characteristic of a second-order accurate
approximation to a quadratic polynomial.

7.2 Falling Cylinder

Consider the classical problem of an in�nite solid cylinder with density ρs falling in a �uid with density ρf and
viscosity µ, enclosed in a channel. In the case where the in�nite section of the cylinder is perpendicular to the
direction of motion, this problem can be treated in a two-dimensional setting. We take the dimensions of the channel
to be 2L× 8L and the radius of the cylinder to be r. Balancing the frictional force on the cylinder by the force due
to the di�erence of the weight of the cylinder and its buoyancy, an analytical form for the terminal velocity can be
derived using the Stokes assumption of low Reynolds number [35]:

vterminal =
(ρs − ρf )gr2

4µ

(
− ln

( r
L

)
− .9157 + 1.7244

( r
L

)2

− 1.7302
( r
L

)4
)

(7.2)

We take L = 2×10−2 m, r = 5×10−3 m, ρs = 2×103 kg m−2, ρf = 1×103 kg m−2 and g = 9.8 m s−1. We apply
no-slip boundary conditions at the walls of the channel and apply an out�ow boundary condition at the top of the
channel. The time step is ∆t = 2∆x. Figure 7.2 depicts our numerical results for the vertical velocity of the cylinder
for di�erent values of the �uid's viscosity µ = .05 kg s−1, µ = .1 kg s−1, µ = .2 kg s−1 and µ = .5 kg s−1. These
values for the viscosity correspond to Reynolds numbers of Re ≈ 140.18, Re ≈ 35, Re ≈ 8.74 and Re ≈ 1.4. Here,
we take Re = ρV d

µ with the characteristic velocity V to be the analytical terminal velocity and the characteristic

length d = 2r. It is well known that the Stokes assumption is valid for Reynolds number Re / .1 and in that
case the terminal velocity formula given by (7.2) is accurate to within about 1%. However, the increasing e�ects of
inertia invalidate (7.2) for increasing value of Re. This explains the deviation from the analytical prediction. Our
results are consistent with the results of [28] who also pointed out the source of the deviation.

In terms of accuracy analysis, we �rst follow the work of Apte et al. [1], who performed a standard convergence
analysis by comparing their numerical results to a reference solution obtained by their numerical method on a more
re�ned grid. Figure 7.3 illustrates such a convergence analysis for our method, in which the numerical solutions
obtained on a 320×1280 grid is taken as the reference solution and where numerical solutions on grid resolutions of
40×160, 60×240, 80×320, 120×480, 160×640 and 180×720 are used for the analysis. This analysis, however, can
be misleading in the case where the reference solution is not computed on a signi�cantly more re�ned grid than the
other solutions. In this case, the order of accuracy is overestimated since the results from successive computations
get closer and closer to the reference solution. For example in our case, such an analysis indicates a convergence
rate of 2.89, as illustrated in �gure 7.3 (top-right), which is clearly excessive for an algorithm with second-order
accurate approximations all around. In fact, table 4 shows a second-order accuracy when the numerical solutions
on rather coarse 40 × 160, 60 × 240 and 80 × 320 grids are compared to a reference solution on a relatively �ne
grid of 320 × 1280, whereas the accuracy is overestimated to third-order accuracy as the numerical solutions are
computed on �ner grids of 120× 480, 160× 640 and 180× 720.

A more accurate procedure to measure the rate of convergence is as follows: Let p be the order of convergence
of our numerical method, then the numerical solution v satis�es v = vexact +C (∆x)

p
for some constant C. Writing

this equation in the case where we take 320 grid nodes in the x-direction, we have v320 = vexact +C (∆x320)
p
. The

measured error with the reference solution then satis�es e = C ((∆x)
p − (∆x320)

p
). The constants C and p can

then be extracted from the available data. In our case, we �nd C = 2.02 × 104 and p = 2.02 using the nonlinear
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(a) µ = .05 (b) µ = .1

(c) µ = .2 (d) µ = .5

Figure 7.2: Velocity of a falling cylinder in a channel over time (dashed lines) compared with the theoretical terminal
velocity obtained under the Stokes assumption (solid lines).
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grid ‖v − v320×1280‖∞ rate
40× 160 1.38× 10−2

60× 240 6.14× 10−3 1.99
80× 320 3.38× 10−3 2.07
120× 480 8.80× 10−4 3.31
160× 640 2.88× 10−4 3.88
180× 720 1.95× 10−4 3.31

Table 4: Convergence study for the falling cylinder example of section 7.2. The convergence rate for the nth row is

computed as log∣∣∣∆xn−1
∆xn

∣∣∣
∣∣∣ vn−1−vref

vn−vref

∣∣∣, where vref is the computed solution on a �ne 320× 1280 grid.

least-square �t command nlinfit in MATLAB, as illustrated in �gure 7.3 (bottom). This analysis con�rms that
our numerical method is second-order accurate in the maximum norm.

7.3 Falling Sphere

Case name ρf (kg/m3) µf (10−3 Ns/m2) u∞ (m/s) Rep
C1 970 373 .038 1.5
C2 965 212 .06 4.1
C3 962 113 .091 11.6
C4 960 58 .128 31.9

Table 5: Parameters used in the sedimentation problem of section 7.3.

Consider a container with dimension 10 × 10 × 16 cm3 �led with a �uid with density ρf and viscosity µf . A
solid particle with diameter dp = 15 mm and density ρs = 1120 kg m−3 is released from a height of H = 12 cm
from the bottom of the tank and falls under the action of gravity. The �uid characteristics are varied to obtain
di�erent Reynolds number Re =

ρfu∞dp
µf

based on the terminal velocity u∞ of the particle, as detailed in table 5.

No slip boundary conditions are applied on all the walls of the container. Neumann boundary conditions for the
velocity components are imposed on the top of the tank. We apply the algorithm described in this paper with grid
spacings ∆x = ∆y = ∆z and a time step of ∆t = 5∆x.

Figure 7.4 depicts the results of our numerical predictions for the vertical velocity of the particle and for the

normalized height
(
H−dp

2dp

)
with the parameters given in table 5. Those results show good agreement with the

experimental results of Ten Cate et al. [6]. Figure 7.5 depicts the contour of the normalized velocity magnitude
||u||
u∞

. Those results are in agreement with those obtained with the simulations in Apte et al. [1].

For accuracy analysis, numerical solutions are calculated on grid resolutions of 802× 120, 902× 144, 1002× 160,
1102 × 176, 1202 × 196, and 1402 × 224. The �nest one among them is taken as the reference solution. Table 6
shows about fourth order convergence of the numerical solutions. The order is obviously overestimated since the
reference solution is not computed with suitably �ne resolution. Thus, we follow the analysis of section 7.2 and
use the data to �t the following error e = C ((∆x)

p − (∆x140)
p
), where ∆x140 represent the grid spacing when

140 grid points are used in the x-direction. We �nd C = 0.7567 and p = 1.9667 using the nonlinear least-square
�t command nlinfit in MATLAB, as illustrated in �gure 7.6 (right). This analysis con�rms that our numerical
method is second-order accurate in the maximum norm.

7.4 Falling Star-Shaped Object in 2D

In this example, we provide the results of a simulation of an arbitrary shaped rigid body falling in a liquid. The
rigid body is described by the following level-set function:

φ (x, y) =
r

0.005
− 1− y5 + 5x4y − 10x2y3

3r5
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Figure 7.3: Convergence study for the falling cylinder example of section 7.2 with µ = .05 kg s−1. The top-left
�gure depicts the convergence under grid re�nement. The top-right �gure depicts the error versus ∆x in a log-log
scale when the numerical solution on a 320 × 1280 grid is used as the reference solution. In this case the order
of accuracy is found to be 2.89, which is misleading. The bottom �gure depicts the curve �tting of the error
e = C ((∆x)

p − (∆x320)
p
) with C = 2.02 × 104 and p = 2.05. Here the order of accuracy is found to be 2.05. In

each case, the error is measured over the time interval t ∈ [0, 0.56] in the L∞-norm.

grid ‖v − v1402×224‖∞ rate
802 × 120 8.44× 10−3

902 × 144 5.98× 10−3 2.92
1002 × 160 3.73× 10−3 4.47
1102 × 176 2.49× 10−3 4.24
1202 × 192 1.75× 10−3 4.05

Table 6: Convergence study for the falling sphere example of section 7.3. The convergence rate for the nth row is

computed as log∣∣∣∆xn−1
∆xn

∣∣∣
∣∣∣ vn−1−vref

vn−vref

∣∣∣, where vref is the computed solution on a 1402 × 224 grid.
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Figure 7.4: Comparisons with the experimental data of Ten Cate et al. [6] of the computed vertical velocity (left)
and normalized height (right) in the case of the falling sphere example of section 7.3. The symbols represent the
experimental data while the solid lines depict the simulation results on a 1202 × 192 grid.

Figure 7.5: Contours of the normalized velocity magnitude
(
‖U‖
U∞

)
when the particle's center is at location .1, .08,

.04, and .02, from left to right. The top �gures correspond to the case where Re = 1.5, while the bottom �gures
correspond to the case where Re = 31.9. The contour values range between 0 and 1 with equal spacing of .1.
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Figure 7.6: Convergence study on particle setting velocity for the Re = 31.9 case. The left �gure depicts the
convergence under grid re�nement. The right �gure depicts the curve �tting of the error e = C ((∆x)

p − (∆x140)
p
)

with C = 0.7577 and p = 1.97. Here the order of accuracy is found to be 1.97. In each case, the error is measured
over the time interval t ∈ [0, 1] in the L∞-norm.

on a computational domain [−.2, .2]× [−.6, .2], and r =
√
x2 + y2. The �uid density is taken as ρf = 1000 kg m−2,

while the density of the rigid body is ρs = 2000 kg m−2. The gravity constant is g = 9.8 and the viscosity of the
�uid is µ = .05 kg s−1. Non-slip boundary conditions are imposed on the left, right, and bottom walls; the out�ow
boundary condition is imposed on the top wall. Figure 7.7 and 7.8 depict the streamlines and the vorticity contours
obtained on a 80× 320 uniform grid. In this simulation, we use a time step of ∆t = 2∆x.

8 Conclusion

We have introduced a novel numerical method to simulate the two-way �uid/solid coupling. Our approach is
monolithic since it takes into account the full coupling between the �uid and the rigid body in a single step. It
produces a linear system for the projection step that is symmetric positive de�nite and we have described how we
can use the preconditioner of standard �uid simulations to e�ciently solve the linear system in the case of �uid/solid
coupling using a conjugate gradient method. The monolithic treatment results in a stable projection step, i.e. the
kinetic energy does not increase in the projection step. Numerical results indicate that the method is second-order
accurate in the L∞-norm and agrees quantitatively with experimental results.
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contour lines whose contour values are evenly sampled between the minimum and maximum values of the stream
function.
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