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PAPER TEMPLATES FOR TRIANGULATED SURFACES
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ABSTRACT. We introduce an algorithm that acutomatically generates paper templates of a tri-
angulated surface. The surface can be built by cutting, folding, and pasting the paper templates.
The algorithm is branched to two strategies : one is to select the longest neighboring edge
among many choices, and the other is to select the largest neighboring triangle. Three sur-
faces, whose triangulation sizes widely range, are successfully built by the algorithm. The two
strategies are empirically evaluated in building the surfaces with respect to paper consumption,
a measure of cost efficiency, and boundary length, a measure of speed efficiency. Strategy 1
performs in most cases better than the other one with respect to boundary length, but sometimes
wins and sometimes loses with respect to paper consumption.

1. INTRODUCTION

In many cases, a surface is represented as a triangulation, i.e. a set of non-overlapping tri-
angles whose union is hole free [13]. The triangulation is efficient in storing and maneuvering,
since it deals with only the triangle vertices. In some cases, surface is implicitly represented by
a three dimensional function as the zero level set of the function. The implicit representation
has many advantages in calculating surface normal, curvature, and other surface geometries.
The level set function is sampled on a grid, and stored and manipulated by a three dimensional
array. In the implicit representation, surface resolution can be easily controlled; surface is de-
scribed with more details and accuracy with finer grid. There have been developed successful
algorithms such as Marching Cubes [7, 9] and Marching Tetrahedrons [2, 8] that can transform
the level set representation to triangulation. In other cases, a surface is given just with densely
sampled points on it. It often happens, when real objects such as sculptures and architectures
are scanned. There also have been many successful algorithms converting the dense points
to triangulation. There have also been developed successful algorithms converting the dense
points to a triangulation such as Delanay triangulation [1, 6], level-set method [12, 11], and
radial-basis-function interpolation [3, 4].

Among the surface representations, the triangulation represents a surface by triangles which
can be printed out in flat material such as paper and metal sheets. There are fore-mentioned
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FIGURE 1. Paper templates for cube and tetrahedron

conversion algorithms from the other representations to the triangulation. With these reasons,
we assume surfaces to be given as triangulations throughout this paper.

Consider the paper templates in fig 1 of which cube and tetrahedron can be made by cutting,
folding and pasting the templates. In this paper, like-wisely we introduce an algorithm that
generates paper templates for triangulated surfaces, enabling their manufacturing by cutting,
folding, and pasting.

2. ALGORITHM

Assume a triangulated surface that consists of triangles T1, T2, · · · , TN . In this section,
we present an algorithm that generates paper templates for the surface, and enables building
the surface by cutting, folding, and pasting the templates. By a paper template, we mean
a set of triangles that are connected to each other along their shared edges. For clarity, we
mathematically define it below.

Definition 1. A set of triangles in R2 is called triangle template, if each triangle shares at least
one edge with another one in the set, and their union has one connected component.

We assume paper sheets of uniform dimension w× h on which paper templates are printed.
The dimension is assumed to be large enough so that each triangle in the triangulation can be
printed in a paper sheet. A trivial algorithm is to consume a paper sheet for each triangle. Then
each edge is cut once on each of its two adjacent triangles, and the two triangles are pasted
together along the edge in building the three dimensional surface. When the two triangles were
printed together, the work of twice cutting and pasting could be alleviated by one folding. We
are aimed to construct an algorithm to meet two objects: one is to decrease the length of the
edges that need cutting and pasting, to be effective in speed, and the other is to consume less
paper sheets, to be effective in cost.

Our algorithm starts with a triangle, for example T1, from the triangulation and form a paper
template with it as described in section 2.2. It has three neighboring triangles by which the
template can be extended. Each neighbor is tested if the enlarged template does not exceed
the rectangle of dimension w × h by the method in section 2.1. If none passes the test, the
template is done and printed out on a paper sheet. Among the passed ones, one is selected and
added to the template. The process of selection and addling goes on until the paper sheet can
contain the template. In the addition process, each neighboring triangle should increase the
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template within the rectangle dimension, checked by the method in 2.1, and should not overlap
the existing triangles, checked by the method in 2.2. In the selection process, we suggest the
following two strategies that are very simple to implement.

Strategy 1 : select the neighboring triangle with the longest edge shared with the template.

Strategy 2 : select the neighboring triangle with the largest area.

Strategy #1 is divided to reduce the length of edges needing cut-and-paste pursuing the
speed efficiency, and strategy #2 is devised in the sense that smaller triangles would more
easily intervene triangles. Algorithm 1 shows the overall process.

Algorithm 1 Main algorithm
take a triangle from the triangulation and queue it to a list Ltodo
while Ltodo is not empty do

repeat
dequeue T from Ltodo

until T was not printed.
form a paper template S = {T}.
mark that T is printed.
repeat

prepare a list Lngbd = ∅.
for each neighboring triangle Tngbd of S do
bbounding: S ∪ Tngbd can be printed within w × h. (section 2.1)
boverlapping: Tngbd does not overlap the triangles of S. (section 2.3)
if Tngbd is not printed and bbounding and boverlapping then

queue Tngbd to Ltodo
queue Tngbd to Lpass

end if
end for
select one Tngbd among Lngbd by the strategy.
mark that Tngbd is printed.
add Tngbd to S (section 2.2)

until Lngbd is empty
print out the template S

end while

In the algorithm, the queue operation adds an element to a list, and the dequeue operation
takes out from the list the element added in the earliest [5]. Unselected neighboring triangles
are queued to the list Ltodo, and a new paper template begins with the dequeued triangle from
the list, so that the new template is connected to the previous one of the templates. Thus the
printed paper templates are cut and folded, and then sequentially built: the second template is
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FIGURE 2. The bounding rectangle slanted with angle θ : two parallel lines in
the diagonal direction satisfy cos θ · y− sin θ ·x = b, and the other two satisfy
sin θ · y + cos θ · x = c.

pasted to the first one, and the third one is pasted to the union of the first and the second, and
this sequential building goes on. The details of the main algorithm are described as follows.

2.1. Bounding Test. In this section, we introduce a test to check whether a paper template
can be placed inside a rectangle of dimension w× h or not. Fig 2 depicts a bounding rectangle
slanted with angle θ to the x-axis. A pair of parallel lines satisfies equation cos θ·y−sin θ·x = b
and the other pair does sin θ · y+ cos θ · x = c. The template is inside the rectangle if and only
if all of its vertices are so, thus we measure the ranges of b and c for the vertices.

convex hull {b = cos θ · y − sin θ · x| (x, y) is a vertice of template} = [bmin, bmax]

convex hull {c = sin θ · y + cos θ · x| (x, y) is a vertice of template} = [cmin, cmax]

The dimension of the bounding rectangle is (bmax − bmin)× (cmax − cmin). The template
can be placed inside the rectangle with slanted angle θ if and only if bmax − bmin ≤ w and
cmax− cmin ≤ h, or bmax− bmin ≤ h and cmax− cmin ≤ w. This test needs be done for each
angle θ ∈

[
0, π4

]
. In all our examples, we tried 20 uniformly sampled θ’s in the interval, which

practically worked well.

2.2. Embedding Formula. In this section, we introduce a formula embedding a triangle T ⊂
R3 into a paper template in R2. Let T have its neighbor Tngbd ⊂ R3 along edge P1P2, and
Tngbd be already embedded as T̃ngbd ⊂ R2, see figure 3 for the setting. let the other vertice of T
be P3 ∈ R3 and that of Tngbd be P4 ∈ R3, accordingly T = ∆P1P2P3 and Tngbd = ∆P1P2P4,
and let T̃ngbd = ∆P̃1P̃2P̃4. To preserve the common edge, the vertices P1 and P2 should be
mapped to P̃1 and P̃2. The other vertice P3 is mapped to P̃3 such that T = ∆P1P2P3 and
T̃ = ∆P̃1P̃2P̃3 are equivalent.
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FIGURE 3. Embedding a triangle T = ∆P1P2P3 ⊂ R3 into a paper template:
Tngbd = ∆P1P2P4 ⊂ R3 is its neighborhood and embedded as T̃ngbd =

∆P̃1P̃2P̃4 into the paper template. P̃3 is decided from the equivalence of T
and T̃ .

d =
(
l22 + l23 − l21

)
/ (2l3)

h =
√
l22 − d2

P̃3 =
d

l3
P̃2 +

(
1− d

l3

)
P̃1 ±

h

l3
(0, 0, 1)×

(
P̃2 − P̃1

)
Here li denotes the length of the edge opposite Pi in triangle T for each i = 1, 2, 3. The

cross product (0, 0, 1)×
(
P̃2 − P̃1

)
is evaluated as a vector in R2. Since P̃3 and P̃4 are placed

in the opposite sides to edge P̃1P̃2, the sign is taken to be positive if
(
P̃4 − P̃1

)
· (0, 0, 1) ×(

P̃2 − P̃1

)
< 0, and negative otherwise.

In the case when the triangle T is the first one embedded into the paper template, we arbi-
trarily set P̃1 = (0, 0) and P̃2 = (l3, 0), and the other vertice P̃3 is set by the above formula.

2.3. Overlapping Test. In the previous section, a triangle T ⊂ R3 is embedded into a paper
template. The embedded triangle T̃ ⊂ R2 may overlap the existing triangles of the paper
template, in which case the embedding is not possible. In this section, we introduce a test
to check whether two triangles in R2 overlap or not. The intersection of T̃ and triangles of
the template is then tested by applying the algorithm to the pair of T̃ and each triangle in
the template. Let two triangles ∆P̃1P̃2P̃3 and ∆Q̃1Q̃2Q̃3 be given in R2. We denote their
coordinates by P̃i = (xi, yi) and Q̃i = (ai, bi) for i = 1, 2, 3. The two triangles may overlap in
two ways: one triangle is included in the other, or a pair of their edges intersect. The inclusion
can be tested as follows.  1 1 1

x1 x2 x3
y1 y2 y3

 λi1
λi2
λi3

 =

 1
ai
bi
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Str #1 Str #2
number of sheets 4 3
boundary length 28.02 20.63

TABLE 1. Evaluation of the two strategies in building the sphere

∆Q̃1Q̃2Q̃3 $ ∆P̃1P̃2P̃3 if and only if λij > 0 for each i and j . The other direction
∆P̃1P̃2P̃3 $ ∆Q̃1Q̃2Q̃3 can be similarly checked. Two edges P̃1P̃2 and Q̃1Q̃2 intersect each
other if and only if{

[(y1 − y2) (a1 − x1)− (x1 − x2) (b1 − y1)] · [(y1 − y2) (a2 − x1)− (x1 − x2) (b2 − y1)] < 0

[(b1 − b2) (x1 − a1)− (a1 − a2) (y1 − b1)] · [(x1 − x2) (x2 − a1)− (a1 − a2) (y2 − b1)] < 0
.

Similarly tested are the other eight pairs: P̃1P̃2 and Q̃2Q̃3, P̃1P̃2 and Q̃3Q̃1, P̃2P̃3 and
Q̃1Q̃2, and et cetera.

3. EXAMPLES

Three surfaces are tested: sphere, bunny-shaped surface, and dinosaur-shaped surface. Their
triangulation sizes widely range from tens of triangles to thousands. Their level set functions
are given either by formula or by sampled data on grids. The surfaces are triangulated by
isosurfacing algorithms. All of their paper templates were printed in A4 paper and actually
built. To do so, the ratio of the dimensions of paper sheets is taken 1.5, the ratio of the A4
dimensions. In each example, the two strategies are evaluated with respect to the number of
consumed paper and the length of edges needing cut-and-paste. There is a randomness in
choosing the initial triangle in the main algorithm, so several ones are tried as the initial one to
see if the evaluation depends on the randomness.

3.1. Sphere. The level function
√
x2 + y2 + z2−1 is sampled on a domain [−1.5, 1.5]3 with

uniform grid 53. Its isosurface, which is a sphere, is then triangulated by Marching Cubes
algorithm [9]. The triangulation has 56 triangles and 30 vertices. Its paper templates are
embedded in paper sheets of dimension 3× 2, and then printed in A4 paper and actually built,
as seen in figure 6. Figure 4 shows the paper templates generated by strategy 1, and figure
5 by strategy 2. Table 1 shows that the second strategy is more efficient in cost and speed:
it consumes fewer paper sheets and the boundary length, needing the time consuming cut-
and-paste, is shorter. Sphere is convex everywhere, and the evaluation may be partial. In the
following examples, we take more general surfaces and try more thorough evaluations.

3.2. Bunny. The Stanford bunny is one of the most commonly used test models in computer
graphics and computer modeling [10]. The surface consists of 69451 triangles, which are
too many in its actual building. Its signed distance function is numerically calculated on a grid
150×150×120 taking computational domain as [−0.094690, 0.061009]×[0.032987, 0.187321]×
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FIGURE 4. Paper templates of the sphere generated by strategy 1 : the ver-
tices are indexed in hexadecimal , reducing printing space than decimal, and
each edge is marked +(or −) if it goes upward (or downward) in the three
dimensional folding.

[−0.061874, 0.058800] [12]. The function is then resampled on a coarser grid 18×18×15. The
function values in the raster-scan order can be downloaded at www.math.ewha.ac.kr/˜chohong/bunny.txt.
Its isosurface is triangulated by Marching Cubes [9]. Now, the triangulation size is reduced to
1628 triangles and 816 vertices. Its paper templates are embedded in paper sheets of dimension
0.0681×0.0454. Figure 6 shows the actual building of the bunny surface. Table 2 evaluates the
two strategies applied to building the bunny surface. The algorithm was tried with six different
initial triangles. Strategy 1 generated shorter boundary edges in all the trials, and consumed
fewer paper sheets five times out of six.
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FIGURE 5. Paper templates of the sphere by strategy 2 : vertices are indexed
and edges are marked ± as in figure 4.

begin with T1 begin with T51 begin with T101
Str #1 Str #2 Str #1 Str #2 Str #1 Str #2

number of sheets 89 92 87 79 77 88
boundary length 9.10 10.20 9.02 9.85 8.54 9.68

begin with T151 begin with T201 begin with T251
Str #1 Str #2 Str #1 Str #2 Str #1 Str #2

number of sheets 80 89 82 94 85 98
boundary length 9.17 10.03 8.82 10.25 9.41 10.31

TABLE 2. Evaluations of the two strategies in building the bunny surface : the
algorithm was tried with six different initial triangles.
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FIGURE 6. The sphere and bunny surfaces actually built: vertices are indexed
and edges are marked ± as in figure 4.

3.3. Dinosaur. We try a dinosaur-shaped surface. As described in the previous example,
its level set function is numerically calculated and sampled on a coarse grid. The computa-
tional domain is [−0.0246, 0.0246] × [−0.0631, 0.0631] × [−0.0541, 0.0541] with grid res-
olution 11 × 30 × 26. The function values in the raster-scan order can be downloaded at
www.math.ewha.ac.kr/˜chohong/dinosaur.txt. Its isosurface is triangulated by the simplicial
isosurfacing algorithm [8]. The triangulation has 5496 triangles and 2750 vertices. Its paper
templates are embedded in paper sheets of dimension 0.0349 × 0.0233. Figure 7 shows the
actual building of the dinosaur surface. Table 3 evaluates the two strategies applied to building
the surface. The algorithm was tried with six different initial triangles. Strategy 1 generated
shorter boundary edges in all the trials, and consumed fewer paper sheets four times out of six.

4. CONCLUSION

We have introduced an algorithm that automatically generates paper templates of a triangu-
lated surface. The paper templates enable the building of the surface by cutting, folding, and
pasting. The algorithm is branched into two strategies : strategy 1 takes the longest neigh-
boring edge among many choices, and strategy 2 takes the largest neighboring triangle. Three
surfaces, whose triangulation sizes widely range, were successfully built by the algorithm. The
two strategies were evaluated in building the surfaces with respect to paper consumption, a
measure of cost efficiency, and boundary length, a measure of speed efficiency. Strategy 1 per-
formed in most cases better than the other one with respect to boundary length, and sometimes
won and sometimes lost with respect to paper consumption.
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FIGURE 7. The dinosaur surface built and a detailed view around its right
shoulder : vertices are indexed and edges are marked ± as in figure 4.

begin with T1 begin with T1001 begin with T2001
Str #1 Str #2 Str #1 Str #2 Str #1 Str #2

number of sheets 333 323 330 337 354 337
boundary length 7.76 8.91 7.81 8.91 7.83 8.91

begin with T3001 begin with T4001 begin with T5001
Str #1 Str #2 Str #1 Str #2 Str #1 Str #2

number of sheets 330 331 327 330 320 333
boundary length 7.90 9.11 7.84 9.04 7.60 8.90

TABLE 3. Evaluations of the two strategies in building the dinosaur surface :
the algorithm was tried with six different initial triangles.

In cases when surfaces need be built fast, our empirical evidences suggest strategy 1. In
general, we suggest trying both strategies with different initial triangles and selecting the choice
suiting one’s needs. We implemented the algorithm by C++ language and ran it on a regular
PC. It would take only a few minutes in generating the paper temples of the examples. The
time of running the algorithm is negligible to that of building the surface by cutting, folding,
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and pasting. The manual work with our clumsy hands took about twenty mininutes for the
sphere, five days for the bunny, and about thirty days for the dinosaur.

As far as we know, this paper is one of the papers shedding a new light on the subject of
building triangulated surfaces with a viewpoint of algorithms and mathematics. We hope this
work provides a foundation for future research in the area.
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