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ABSTRACT. In this paper, we propose a very efficient method which reconstructs the high
resolution surface from a set of unorganized points. Our method is based on the level set method
using adaptive octree. We start with the surface reconstruction model proposed in [20]. In [20],
they introduced a very fast and efficient method which is different from the previous methods
using the level set method. Most existing methods[21, 22] employed the time evolving process
from an initial surface to point cloud. But in [20], they considered the surface reconstruction
process as an elliptic problem in the narrow band including point cloud. So they could obtain
very speedy method because they didn’t have to limit the time evolution step by the finite speed
of propagation.

However, they implemented that model just on the uniform grid. So they still have the
weakness that it needs so much memories because of being fulfilled only on the uniform grid.
Their algorithm basically solves a large linear system of which size is the same as the number
of the grid in a narrow band. Besides, it is not easy to make the width of band narrow enough
since the decision of band width depends on the distribution of point data. After all, as far as it
is implemented on the uniform grid, it is almost impossible to generate the surface on the high
resolution because the memory requirement increases geometrically.

We resolve it by adapting octree data structure[12, 11] to our problem and by introducing a
new redistancing algorithm which is different from the existing one[19].

1. INTRODUCTION

Surface reconstruction from a set of unorganized points also known as reverse engineering
is a very popular and challenging problem in many area such as medical image, computer
graphics, mechanical engineering. Since problem to find the connection between point data
is ill-posed, we can just approximate the underlying surface. Although there are so many
methodologies to do this, these methods are broadly classified into two categories: explicit
representation and implicit representation. The former consists of Delaunay triangulations,
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Voronoi diagrams, the power crust[3] and so on. The latter includes Hoppe’s methods[8],
moving least squares[1, 6], the radial basis function[4], the level set method[21, 22], etc.

The explicit method is the method which finds a graph to connect every pair of point data.
The α-shape[5], the β-skeleton[2] and the power crust[3] are examples of explicit representa-
tion. These graphs are not only based on the Voronoi diagram and the Delaunay triangulation
but also the subsets of the Delaunay triangulation.

The implicit representation uses a scalar function which describe a surface as its zero level
set.

The first and most famous algorithm using implicit representation is by Hoppe et al.[8]. It
firstly approximates the tangent plane on a point using least squares on k nearest neighboring
points. Then it considers the signed distance from the point to its projection onto the tangent
plane as the signed distance on the whole domain.

Radial basis function is very well-known function in many fields. In [4], the surface recon-
struction using radial basis function was introduced. While it can get the smooth surface, it
has some limitations. It should solve the linear system Ax = b which the matrix A is dense
and ill-conditioned. Although they employed FMM(Fast Multipole Method) for evaluations of
energy minimization, it is rather slow compared with other methods. Also, it needs additional
information called off-surface points besides given point data.

The first application of the level set method to our problem is the result by Zhao et al. in [21]
and [22]. Their models make use of the surface evolving from an closed surface of which inside
region includes all point data as the level set method comes originally from computational fluid
dynamics. The level set method has the advantages of handling topological changes easily and
not requiring the normal information on point data. But the previous models have the bounds
of speed from the CFL condition because they use time-dependent PDEs such as nonlinear
parabolic PDE and linear advection equation.

In [20], Ye et al. approached our problem from a different standpoint. They considered
the surface reconstruction as a Poisson problem. Because they became free from the CFL
condition, they could improve the efficiency of the process. However, their algorithm basically
solves a large linear system of which size is the same as the number of the grid in a narrow
band and is fulfilled only on the uniform grid. Consequently, it requires so much memories.
Therefore, it is almost impossible to generate the surface on the high resolution because the
memory requirement increases geometrically.

In our problem, the part to be described accurately is the surface passing through points i.e.
the interface of the level set function rather than the whole domain. Therefore we have only
to capture the details near the interface. That is, we need the multi-resolution approach. The
adaptive grid can resolve that problem with refining only near the interface. The adaptive grid is
very efficient and prevalent in many fields such as computer graphics and scientific computing
and computational fluid dynamics where they need to reduce much computational costs. Also
in surface reconstruction, there are some researches[13, 17] using the adaptive grid in order
to generate high resolution. We employ the octree which is a sort of the adaptive grid. The
Poisson’s equation can be effectively solved on the octree. There are several Poisson solvers
on the octree developed up to date.
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In [15], Popinet proposed a second order non-symmetric numerical method to solve the in-
compressible Euler equations on octree. In his method, the pressure is sampled at the center
of each cell and the discretization of the Poisson equation requires interpolation procedures in-
volving the pressure values at several adjacent cells. Consequently, this discretization requires
finite difference method to use large support.

In [10], Losasso et al. proposed a first order Poisson solver using octree data structures and
applied it to the Navier-Stokes equation. They stored data except the pressure at nodes and
the pressure at the center of the cell. They perturbed the location of the pressure by a quantity
proportional to the size of a grid cell in order to obtain a symmetric linear system. So most
approximations in their scheme is second order accurate but approximations to the gradient of
the pressure is first order accurate.

In [11], Min et al. proposed a second order accurate finite difference discretization for the
variable coefficient Poisson equation on non-graded grids, which yields second order accuracy
covering the solution’s gradients. The scheme employs sampling the solution at the nodes of
a cell. The discretization at one cell’s node only uses nodes of two or three adjacent cells,
producing schemes that are straightforward to implement.

Adaptive level set method was successfully developed in Min’s paper [11]. Ghost nodes had
been treated with linear interpolation. Without increasing the support of numerical methods,
they showed a possible quadratic interpolation. We apply it to our problem.

The outline of the paper is as follows. In the next section, we explain mathematical models
using level set method. In section 3, we present numerical method to reconstruct a surface from
point cloud on the octree. In section 4, we show experimental results to demonstrate that our
method is efficient.

2. MATHEMATICAL MODELS

The most well-known variational model of surface reconstruction using the level set method
is the weighted minimal surface model[21]. Let S denote the data set which can include data
points, pieces of curves or surfaces. In our problem, S means data points. Define d(x) =
dist(x,S) to be the distance function to S, where dist(x,S) = miny∈S ∥ x− y ∥2. Then this
model begins to define the following surface energy:

E(Γ) =

[ ∫
Γ
dp(x)ds

] 1
p

, 1 ≤ p ≤ ∞, (2.1)

where Γ is an arbitrary surface and ds is the surface area. To find the surface of which energy
is minimized, they calculate the gradient descent of the functional (2.1).

dΓ

dt
= −

[ ∫
Γ
dp(x)ds

] 1
p
−1

dp−1(x)
[
∇d(x) · n +

1

p
d(x)κ

]
n, (2.2)

where n is the unit outward normal and κ is the mean curvature. The flow from the above
gradient (2.2) rules the movement of the surface. If the surface is initially far from data set,
the surface evolves into the final surface with keeping the balance between the potential force
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∇d(x) ·n and the surface tension d(x)κ. The scalar function d(x) allows the surface to be more
flexible in regions close to the data set and to be more rigid in regions distant from the data set.

Here level set method is used to handle topological changes and to obtain an implicit surface.
Let Ω(t) be the (generally multiply connected) region enclosed by Γ(t). Let ϕ(x, t) be the level
set function associated with Ω(t); i.e.,

ϕ(x, t) < 0 in Ω(t),
ϕ(x, t) = 0 on Γ(t),
ϕ(x, t) > 0 in Ω̄c(t).

Then Γ(t) is identical to the zero level set of ϕ(x, t). As [21], level set formulation of (2.1)
is

E(Γ) =

[ ∫
Γ
dp(x)ds

] 1
p

= E(ϕ) =

[ ∫
dp(x)δ(ϕ(x))|∇ϕ(x)|dx

] 1
p

, (2.3)

where δ(x) is the one-dimensional delta function and δ(ϕ(x))|∇ϕ(x)|dx is the surface area
element at the zero level set of ϕ. Also the gradient flow for ϕ corresponding to (2.2) is

∂ϕ

∂t
= |∇ϕ|

[ ∫
dp(x)δ(ϕ)|∇ϕ|dx

] 1
p
−1

dp−1(x)
[
∇d(x) · ∇ϕ

|∇ϕ|
+

1

p
d(x)∇ · ∇ϕ

|∇ϕ|

]
, (2.4)

where ∇ϕ
|∇ϕ| and ∇ · ∇ϕ

|∇ϕ| are the level set representation of the unit normal and the mean curva-
ture respectively.

In [22], Zhao et al. proposed the following convection model which is similar to the previous
minimal surface model in methodology but uses the different physical model. The convection
of a flexible surface Γ in a velocity field v(x) is described by

dΓ(t)

dt
= v(Γ(t)). (2.5)

If the velocity field is created by a potential field F , then v = −∇F . Because the distance
function d(x) to the data set S means the potential field in this convection model, the convection
equation can be represented by

dΓ(t)

dt
= −∇d(x). (2.6)

The level set formulation of the equation (2.6) is

∂ϕ

∂t
= ∇d(x) · ∇ϕ. (2.7)

The evolution equation (2.2) is a nonlinear parabolic equation because it has the mean curvature
of the surface. Since the convection equation (2.5) is a first order linear differential equation
which has a time step ∆t = O(h) where h is the grid size, it saves the time over parabolic
∆t = O(h2) time step restrictions.

The above two models handle the surface reconstruction problem as the time evolution equa-
tion. In [20], Ye et al. considered our problem as Poisson’s equation. They introduced the
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following energy functional of ϕ :
Given point data {xl}l=1,...,N ⊂ S,

E(ϕ) =

∫
G(ϕ(x))dx+

J∑
l=1

βl(Plϕ)
2, (2.8)

where the projection operator Plϕ =

∫
pl(x)ϕ(x)dx and

∫
pl(x)dx = 1.

In case the data is uniformly distributed, they set G(ϕ(x)) = |∇ϕ(x)|2. Then the first term
play a role as the diffusion term which determines the smoothness of the surface and the second
term functions as the fidelity term which fits the surface to point data. In the second term the
weight parameter βl affects the accuracy of fitting the surface. If enough large βl is chosen,
even crude initial boundary conditions result in very successful fitting.

Without getting the Euler-Lagrange equation from the energy functional (2.8) directly, they
addressed the equation discretized from (2.8). In the case of two-dimensional, the equation is
as follows.

Ē(ϕ) =
∑
i

∑
j

(ϕi+1,j − ϕi,j

h

)2
+
(ϕi,j+1 − ϕi,j

h

)2
+

∑
l

βl[P̄lϕ]
2, (2.9)

where P̄lϕ =
∑
k,n

p̄lk,nϕk,n and
∑
k,n

p̄lk,n = 1.

Differentiating the energy functional (2.9) with respect to ϕ(i, j) at the grid point (i, j), they
obtain the Euler-Lagrange equation as follows

1

2

δĒ

δϕi,j
= −ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1 − 4ϕi,j

h2
+

J∑
l=1

βlp
l
i,jPlϕ = 0, (2.10)

where J is the total number of neighboring points of grid point (i, j), operator Pl is a bilinear
interpolation operator and Plϕ represents the interpolated value of function ϕ at a point xl.

Plϕ = pli,jϕi,j + pli,j+1ϕi,j+1 + pli+1,jϕi+1,j + pli+1,j+1ϕi+1,j+1, (2.11)

where pli,j =
(h− r1)(h− r2)

h2
, pli,j+1 =

(h− r1)r2
h2

, pli+1,j =
r1(h− r2)

h2
,

pli+1,j+1 =
r1r2
h2

.

In three dimension, this model can be extended using trilinear interpolation operator instead
of bilinear operator.

After they set initial boundary conditions in the narrow band with tagging algorithm such as
the Breadth-First Search, they approximated the underlying surface fitting point data by solving
the Poisson’s equation (2.10).

This model has the distinct characteristic compared to the previous models as it is a different
type of PDE. It doesn’t need to be constrained by the CFL condition and its implementation
can be improved because there are many efficient algorithms for solving Poisson’s equation.
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FIGURE 1. The description of 2D interpolation on the uniform grid

However, their method still has the limitation that it needs so much memories because of
being fulfilled only on the uniform grid. Their algorithm basically solves a large linear system
of which size is the same as the number of the grid in a narrow band. If it is possible to make
the width of band narrow enough, a small-sized linear system can be obtained. But in the above
model, the decision of band width depends on the distribution of point data, more specifically,
the maximum of distances between point data. It means that if point data are ranged sparsely
or there is a big hole in the data, the width of band cannot help but become broad. Surely, these
cases always exist because most point data from real objects are unorganized. Therefore, as far
as it is implemented on the uniform grid, it is almost impossible to generate the surface on the
high resolution because the memory requirement increases geometrically. So we needs adap-
tive grid because it result in the linear system of reasonable size even on high resolution grid.
We employ data structures of octree to implement multi-resolution adaptively. Our scheme is
based on Min’s[11].

3. NUMERICAL METHOD

We denote a (rectangular) cell in quadtree or octree by C and the node of cell by v.

3.1. Tree Generation and Splitting Condition. We use a standard quadtree(resp. octree)
data structure to represent the spatial discretization of the two(resp. three)-dimensional do-
main. Starting from the root of tree corresponding to the whole domain, each cell is split into
four(resp. eight) children until the desired level of detail is achieved. We refer the reader to the
books of Samet[16] for more details on quadtree/octree data structures.

In our case, the above process stops after the finest resolution for each cell containing at
least a point is fulfilled. Details of the process is as follows.
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First, for a point we start to split all children cell Cs from a root cell according to the splitting
condition

dist(x, ∂C) ≤ 1

2
min{width of C, height of C}. (3.1)

After finishing the splitting for a point, we split cells satisfying the above condition starting
from the root cell for another point. Of course during this process, we don’t split cells which is
already split.

In our problem, we need the graded tree, which limits the difference of level between two
adjacent cells to at most one, in order to secure the uniform grid near the interface. Otherwise,
incorrect information on the nodes of big cells compared with neighboring cells can corrupt
values at not only neighboring nodes but distant nodes.

Lemma 1. The splitting condition (3.1) ensures the finest resolution in not only the cell con-
taining the point, but also its neighboring cells. (e.g. 5 cells in quadtree or 7 cells in octree
)

Proof. At first, we consider quadtree case. If a point x is inside a cell, it is obvious that
the condition (3.1) is satisfied. Thus the finest resolution is guaranteed for the cell con-
taining the point x. We denote the finest cell containing the point x by Cc. For cells not
having the point, we can consider four directional neighboring cells of Cc. We call those
CN
c (north),CS

c (south),CE
c (east),CW

c (west), respectively. We have only to show that the levels
of CN

c ,CS
c ,CE

c ,CW
c are equal to the level of Cc.

Consider the parent cell Cp of Cc. Then Cc is one of four quadrants in Cp. In case that
Cc is the first quadrant(i.e. north-east quadrant) in Cp, The north neighboring cell CN

p and the
east neighboring cell CE

p of Cp satisfy the condition (3.1). Therefore, there are CN
c and CE

c of
which level equal the level of Cc. Moreover, since CS

c and CW
c are children of Cp, the levels

of CS
c and CW

c are evidently the same as the level of Cc. For the other quadrants, we can get
the same result by symmetry.

We also can extend the above discussion to octree easily.
�

3.2. Distance Function. After the generation of octree, we calculate the distance from point
data x at each node vi. This process progresses in a similar way as generating octree but with
a condition different from the splitting condition.

To begin with, for a point x1 chosen arbitrarily, we calculate the distances at nodes of the
root cell. Then we check the following condition for each children of the root cell.

dist(x, ∂C) ≤ max{
√

(2l1)2 + l22,
√
l21 + (2l2)2}+min{l1, l2}, (3.2)

where l1 is a half of the width of C and l2 is a half of the height of C. If a cell satisfies
the condition (3.2) and distance values at nodes of the cell are less than the existing ones, the
distances at nodes of the cell are updated. This job continues until it reaches the level of the
finest cell containing the point x1 along the hierarchy of the octree. Then with another point
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x2, we again calculate the distances at nodes of the cells satisfying the above condition (3.2).
It stops after it is carried out for all points {x}.

In the process of updating the distances, it is better to search as many nodes as possible
because there are some nodes of which distances are not minimum. Of course, if we choose
enough large region, updating process will guarantee the minimum distances at all nodes. But
distancing gets too time-consuming chore. Thus we need the least area guaranteeing a complete
distance function in the entire domain. The condition (3.2) guarantees it.

The distancing on the octree is more efficient compared to that on the uniform grid. Denote
the one side resolution of the uniform grid discretized in the entire domain by N and the number
of point data by L. On the uniform grid, the time required to obtain the distance function in
the whole domain is O(N3) + L. This time came from the fast sweeping algorithm in [23]
which is the most efficient algorithm on the uniform grid as far as we know. Meanwhile, we
achieved the time of O(L log(N)) in the octree. We can usually regard L ≈ N2 because L
is the number of points on the interface in some domain. Then the time of distancing on the
uniform grid is approximately O(LN) while O(L log(N)) in octree. We will demonstrate this
results in section 4.

3.3. Initial Guess of Signed Distance Function. We need to initialize boundary conditions
in order to solve the Poisson’s equation. In addition, boundary condition should contain the
information about whether nodes are inside or outside the underlying surface of point data
because we want to represent the surface by the zero level set of the level set function ϕ. To
achieve it, we employ the fast tagging method in [22] in order to set boundary conditions.
Here, we consider just two-dimensional case because it is easy to extend the process to three-
dimension. In a way similar to [20], we start from a node v1 on the boundary of the entire
domain to mark the outside region. The node v1 is unconditionally in the outside region.
We check if the distances at neighboring nodes {vNi}Ni=1,..,8 of v1 satisfies the condition
d(vNi) > ϵ where ϵ is a bandwidth-related constant. If there is a node satisfying this condition,
we denote the node by the outside. After searching all neighboring nodes of v1, we pass
another node v2 and do the same job again. When finishing this process for all nodes, we can
get the outside region. Then, we set the distances for the outside region to ϵ and the distances
for {x : d(x) < ϵ} to 0. Finally, the remaining nodes becomes the inside region and the
distances for it is set to −ϵ.

The ϵ in the above algorithm is required to satisfy ϵ > 1
2ϵdata, where ϵdata = maxi{mini̸=j |xi−

xj |}, to ensure that the region {x : d(x) > ϵ} has two topological components. The above
choice has some problems. In some data sets, i.e. a set having a large hole, the ϵdata may be
large. Then this initial guess can be very rough because of large bandwidth. In this case, our
method cannot guarantee appropriate result.

3.4. Basic Finite Difference Methods on Octree. In the case of non uniform Cartesian grids,
the main difficulty comes from deriving discretizations at T-junction nodes, i.e. nodes for
which there is a missing neighboring node in one of the Cartesian directions. For example,
Figure 2 depicts a T-junction node v0, with three neighboring nodes v1, v2 and v3 aligned in
the Cartesian directions and one ghost neighboring node v4 replacing the missing grid node in
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FIGURE 2. Neighboring nodes of a T-junction node, v0.

the positive Cartesian direction. The value of a node-sampled function ϕ : {vi} → R at the
ghost node v4 could for example be defined by linear interpolation:

ϕG
4 =

ϕ5s6 + ϕ6s5
s5 + s6

. (3.3)

However, instead of using this second order accurate interpolation, one can use the following
third order accurate interpolation: First, note that a simple Taylor expansion demonstrates that
the interpolation error in equation (3.3) is given by:

ϕG
4 =

ϕ5s6 + ϕ6s5
s5 + s6

= ϕ(v4) +
s5s6
2

ϕyy(v0) +O(△xsmallest)
3, (3.4)

where △xsmallest is the size of the smallest grid cell with vertex v0. The term ϕyy(v0) can

be approximated using the standard first order accurate discretization 2
s2+s3

(
ϕ2−ϕ0

s2
+ ϕ3−ϕ0

s3

)
and canceled out in equation (3.4) to give:

ϕG
4 =

ϕ5s6 + ϕ6s5
s5 + s6

− s5s6
s2 + s3

(
ϕ2 − ϕ0

s2
+

ϕ3 − ϕ0

s3

)
. (3.5)

We also point out that this interpolation only uses the node values of the cells adjacent to v0,
which is particularly beneficial since access to cells not immediately adjacent to the current
cell is more difficult and could add on CPU time and/or memory requirement.
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FIGURE 3. Neighboring vertices of a vertex in three spatial dimensions.

In three spatial dimensions, similar interpolation procedures can be used to define the value
of ϕ at ghost nodes. Referring to Figure 3, a T-junction node v0 has four regular neighboring
nodes and two ghost nodes. The values of a node-sampled function ϕ : {vi} → R at the ghost
nodes v4 and v5 can be defined by second order linear and bilinear interpolations as:

ϕG
4 =

s7ϕ8 + s8ϕ7

s7 + s8
,

ϕG
5 =

s11s12ϕ11 + s11s9ϕ12 + s10s12ϕ9 + s10s9ϕ10

(s10 + s11)(s9 + s12)
.

(3.6)

As in the case of quadtrees, third order accurate interpolations can be derived by canceling out
the second order derivatives in the error term to arrive at:

ϕG
4 =

s7ϕ8 + s8ϕ7

s7 + s8
− s7s8

s3 + s6

(
ϕ3 − ϕ0

s3
+

ϕ6 − ϕ0

s6

)
,

ϕG
5 =

s11s12ϕ11 + s11s9ϕ12 + s10s12ϕ9 + s10s9ϕ10

(s10 + s11)(s9 + s12)

− s10s11
s3 + s6

(
ϕ3 − ϕ0

s3
+

ϕ6 − ϕ0

s6

)
− s9s12

s1 + s4

(
ϕ1 − ϕ0

s1
+

ϕG
4 − ϕ0

s4

)
.

(3.7)
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We emphasize that Figure 3 represents the general configuration of neighboring nodes in the
case of an octree as described in Min [12].

The third order interpolations defined above allow us to treat T-junction nodes in a same
fashion as a regular node, up to third order accuracy. Here, we refer to a regular node as a node
for which all the neighboring nodes in the Cartesian directions exist. Therefore, we can then
define finite differences for ϕx, ϕy, ϕz , ϕxx, ϕyy and ϕzz at every nodes using standard finite
difference formulas in a dimension by dimension framework. For example, referring to Figure
4, we use the standard discretization for ϕx and ϕxx, namely the central difference formulas:

D0
xϕ0 =

ϕ2 − ϕ0

s2
· s1
s1 + s2

+
ϕ0 − ϕ1

s1
· s2
s1 + s2

,

D0
xxϕ0 =

ϕ2 − ϕ0

s2
· 2

s1 + s2
− ϕ0 − ϕ1

s1
· 2

s1 + s2
,

(3.8)

the forward and backward first order accurate approximations of the first order derivatives:

D+
x ϕ0 =

ϕ2 − ϕ0

s2
,

D−
x ϕ0 =

ϕ0 − ϕ1

s1
,

(3.9)

and the second order accurate approximations of the first order derivatives:

D+
x ϕ0 =

ϕ2 − ϕ0

s2
− s2

2
minmod

(
D0

xxϕ0, D
0
xxϕ2

)
,

D−
x ϕ0 =

ϕ0 − ϕ1

s1
+

s1
2

minmod
(
D0

xxϕ0, D
0
xxϕ1

)
,

(3.10)

where we use the minmod slope limiter [9, 18] because it produces more stable results in region
where ϕ might present kinks. Similarly, approximations for first and second order derivatives
are obtained in the y and z directions.

1v 0v 2v1s 2s

FIGURE 4. One dimensional adaptive grid

3.5. Numerical Discretization of Model (2.8) on Octree. We discretize equation (2.8) based
on the scheme in the previous section. While the coefficients of the discretized fitting term on
octree differs little from that on the regular nodes, the coefficients of the discretized Laplacian
term are distinct compared with those on the uniform grid because of T-junction nodes. We
need the following process in order to discretize the Laplacian term on octree. Let us consider
the conditions of Figure 3. In Figure 3, only v5 was considered as the ghost node which
needs bilinear interpolation. We extend this situation to all neighboring nodes of v0, that is,
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v1,v2,v3,v4,v6. Then in a similar way as the case of v5, we can get the values of a node-
sampled function at v1,v2,v3,v4,v6 as follows.

ϕG
1 =

s18s20ϕ17 + s18s19ϕ18 + s17s20ϕ19 + s17s19ϕ20

(s17 + s18)(s19 + s20)

= ϕ(v1) +
1

2
(s17s18ϕzz(v0) + s19s20ϕxx(v0))

(3.11)

ϕG
2 =

s13s16ϕ13 + s14s16ϕ14 + s13s15ϕ15 + s14s15ϕ16

(s13 + s14)(s15 + s16)

= ϕ(v2) +
1

2
(s15s16ϕzz(v0) + s13s14ϕyy(v0))

(3.12)

ϕG
3 =

s28s29ϕ27 + s27s29ϕ28 + s28s30ϕ29 + s27s30ϕ30

(s27 + s28)(s29 + s30)

= ϕ(v3) +
1

2
(s27s28ϕxx(v0) + s29s30ϕyy(v0))

(3.13)

ϕG
4 =

s8s22ϕ7 + s8s21ϕ8 + s7s22ϕ21 + s8s21ϕ22

(s7 + s8)(s21 + s22)

= ϕ(v4) +
1

2
(s7s8ϕzz(v0) + s21s22ϕxx(v0))

(3.14)

ϕG
6 =

s23s26ϕ24 + s23s25ϕ25 + s24s26ϕ26 + s24s25ϕ27

(s23 + s24)(s25 + s26)

= ϕ(v6) +
1

2
(s25s26ϕxx(v0) + s23s24ϕyy(v0))

(3.15)

Then, we obtain the following equations through simple manipulation.

(
ϕG
2 − ϕ0

s2
+

ϕG
5 − ϕ0

s5

)
2

s2 + s5
= ϕxx(v0) +

(
s9s12

(s2 + s5)s5
+

s13s14
(s2 + s5)s2

)
ϕyy(v0)

+

(
s10s11

(s2 + s5)s5
+

s15s16
(s2 + s5)s2

)
ϕzz(v0)

(3.16)(
ϕG
4 − ϕ0

s4
+

ϕG
1 − ϕ0

s1

)
2

s1 + s4
=

(
s19s20

(s1 + s4)s1
+

s21s22
(s1 + s4)s4

)
ϕxx(v0) + ϕyy(v0)

+

(
s17s18

(s1 + s4)s1
+

s7s8
(s1 + s4)s4

)
ϕzz(v0)

(3.17)(
ϕG
6 − ϕ0

s6
+

ϕG
3 − ϕ0

s3

)
2

s3 + s6
=

(
s27s28

(s3 + s6)s3
+

s25s26
(s3 + s6)s6

)
ϕxx(v0)

+

(
s29s30

(s3 + s6)s3
+

s23s24
(s3 + s6)s6

)
ϕyy(v0) + ϕzz(v0)

(3.18)
By multiplying equations (3.16),(3.17),(3.18) by some weights w1,w2,w3, respectively, we

can get a third order accurate approximation of ∆ϕ in three dimensions.
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FIGURE 5. The left picture represents the initial narrow band with the bound-
ary condition. The right picture is the magnified concave part of five-leafed
clover. The red thick lines denote the outside boundaries and the blue thick
line denote the inside boundaries. The black dots represent point data. The red
squares show the grid on the octree. The fine grids cluster near the point data
while the coarse grids is far from points.

TABLE 1. The processing time and the required memory for reconstructing
the two-dimensional five-leafed clover

Resolution Uniform Grid Octree
Time(sec) Memory(MB) Time(sec) Memory(MB)

5122 0.15 9.7 0.35 2.6
10242 0.52 66.4 0.42 4.5
20482 2.05 234.4 0.53 15

4. EXPERIMENTAL RESULTS

We tested our method and Ye’s[20] with some two-dimensional and three-dimensional ex-
amples. These tests were executed on a PC with 3.16GHz Intel Core 2 Duo CPU and 4GB
RAM. We adopted the Biconjugate Gradient Stabilized (BICGSTAB) algorithm to the process
of minimizing the functional (2.8). The stopping criterion used is that 2-norm of the residual
is less than 10−8.

4.1. Five-leafed clover. First, we generated an artificial point data of which shape is five-
leafed clover on two-dimension. The data is made up of 5000 uniformly distributed points. We
reconstructed the contour from the data by varying the finest resolution from 5122 to 20482.
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FIGURE 6. The left picture shows the reconstructed five-leafed clover from
point cloud. The right picture is the magnified concave part of five-leafed
clover. This indicates that the curve is well-fitted to even the structure with
high curvature.

Of course, our method can be implemented with quadtree in two-dimension. We compares
the processing time and the required memory on quadtree with on the uniform grid in Table
1. Like Table 1 shows, the processing time on quadtree gets shorter than on the uniform grid
as the resolution increases. Furthermore, the difference of the memory requirement is much
greater than the difference of the time.

As this example was comparatively smooth in shape, the qualities of the curves reconstructed
on several different resolutions made no difference. So we show one of those in Figure 6.
Figure 5 represents the initial condition for solving the minimization of the functional (2.8),
that is, the initial narrow band.

4.2. Bunny, Dragon, Happy Buddha. In three dimensional, we reconstructed the Stanford
bunny and the Stanford dragon and happy Buddha. Figure 8 and Figure 9 show results on
grids of which maximum resolution is 2563 for the Stanford bunny and the Stanford dragon,
respectively. Actually, although we obtained the result of 10243 resolution with octree on our
PC, the difference of the quality was not noticeable in the case of bunny and dragon. So we
demonstrate just 2563 case among those. But we could confirm the improvement of detail
according to an increase in the resolution from the reconstruction for happy Buddha(Figure
10).

In Table 2, the table on the top shows the processing time and the required memory on the
uniform grid and the table on the bottom demonstrates the time and the memory on octree. In
case the resolution is higher than 2563, we could not execute the algorithm on the uniform grid
in our test environment because of memory depletion. Likewise two-dimensional case, octree
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FIGURE 7. We consider all neighboring nodes of a vertex v0 as the ghost
nodes in our scheme. But this situation never happens actually.

structure saved much processing time compared with uniform grid as the resolution get higher.
Only in low resolution on octree structure, e.g. 1283, the time for calculating the unsigned
distances is longer than on the uniform grid, in particular, for dragon and Buddha. As we
mentioned it in the last paragraph of section 3.2, it is because the distancing on octree depends
on the number of point data while the distancing on the uniform grid depends on the number of
grids only. But this weak point is overcome as the resolution increases. Moreover, this process
which comprises a large portion of the whole process can be improved. In this test, we didn’t
adapt the k-d tree to the storage of the point data. But we expect that this will help to speed up
that process.

Finally, one thing that we need to remark is that in the experiment for Stanford bunny, a large
amount of memory was needed for the number of point. The reason is the sparse distribution of
point data. As we referred in the end of section 2, the sparsity of point data bring about a broad
initial band, that is, many grid points which need to be processed. This experimental result for
Stanford bunny reflects the fact.
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FIGURE 8. Three dimensional surface reconstruction for Stanford bunny on
the grid of which maximum resolution is 2563. The number of point is 35947.

5. CONCLUSION AND FUTURE WORK

We introduced a new surface reconstruction algorithm using level set method and octree.
Although our mathematical model is based on Ye’s[20], ours resolves the drawback that Ye’s
has. Furthermore, our algorithm is more efficient than the previous and can generate the high
resolution.

Future research will address a new mathematical model which employs not Laplacian term
but the term related to curvature for smoothing.
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