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1. Introduction

Incomplete factorization preconditioners such as ILU and MILU are robust tech-
niques for solving linear systems, and they are well-known to be very effective for
M-matrices, discrete analalog of the Laplace operator. However they are difficult to
parallelize efficiently. Various techniques have been developed to parallelize these
preconditioners, such as multi-colour ordering and subdomain partitioning. In this
paper, we consider the standard central finite differences for the Poisson equation
∆u = f , and focus on a diagonal ordering that naturally enables parallel computa-
tions.

Consider the standard 5-point finite difference method for solving the Poisson
equation −∆u = f

−ui+1,j − ui,j+1 + 4ui,j − ui,j−1 − ui−1,j
h2

= fi,j .

The variables [uij ] form a linear system Au = f . The matrix A, which is a
discretization of the negative Laplace operator, satisfy many useful properties: its
diagonal elements are all positive, its off-diagonal elements are all negative, and it
is symmetric positive definite and diagonally dominant. In short, it is an M-matrix
and its ILU factorization is guranteed to exist ? ]. We take the standard lexico-
graphic ordering for the variables as depicted in the left picture of figure ??. With
the ordering and the regular stencil structure of the finite difference method, the
ILU preconditioner for the matrix takes a simple form M = (L+D)D−1 (D + U),
where L and U are the stric lower and upper triangular matrices of A and D is a
diagonal matrix that is determined as

D := D0

for (i, j) = (1, 1) , (1, 2) , · · · , (imax, jmax)

D(i+1,j),(i+1,j) := D(i+1,j),(i+1,j) −
(
A(i,j),(i+1,j)

)2
/D(i,j),(i,j)

D(i,j+1),(i,j+1) := D(i,j+1),(i,j+1) −
(
A(i,j),(i,j+1)

)2
/D(i,j),(i,j),

where D0 is the diagonal matrix of A and the index increases in the lexicographic
ordering ? ? ]. Consider the ILU preconditioned conjugate gradient method, one of
the most efficient ways to solve generic Poisson problems together with multi-grid
method ? ].
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memory accusess arithematic operations total
inner product (r · z) 2N3 2N3 4N3

matrix-by-vector multiplication (Ap) 15N3 13N3 28N3

vector linear sum (z + βp) 2N3 2N3 4N3

preconditioning
(
M−1r

)
18N3 16N3 34N3

Table 1. Operation counts of the PCG routine in N3 grid

u := 0, r := f, z := M−1r, p := z
Until r · z is small enough
α := r · z/p ·Ap, rzold := r · z
u := u+ αp
r := r − αAp
z := M−1r
β := r · z/rzold
p := z + βp

One iteration spends one inner product, one matrix-by-vector multiplication,
three vector linear summations, and one preconditioning. All the calculations but
the preconditioing are trivial to parallelize, and the preconditioning consumes the
largest of computation time, as shown in table ??.

The preconditioner M =
(
I + LD−1

)
(D + U) is the product of a lower trian-

gular matrix and a upper triangular matrix, and the preconditioning z := M−1r is
implemented by forward substitution followed by backward substitution. In either
sustitution, the vector elements are sequentially updated following their ordering,
thus its direct parallelization is not possible in the general setting. Using the
specific stencil structure of the finite difference method, however, its parallization
becomes possible. We introduce a simple and efficient parallelization algorithm of
the preconditioning in the next section.

2. Method

With the lexicographic ordering, the support of the lower triangular matrix(
I + LD−1

)
is the two points to lower left direction and that of the upper triangular

matrix (D + U) is the other two points to upper right direction, as depicted in figure
??. The forward substitution of the lower triangular matrix updates grid nodes in
the increasing lexicographic ordering, so that a grid node should be updated after
all the grid nodes with smaller indices.

The two orderings in figure ?? are equivalent to the forward substitution, because
each grid node is updated after its two neighboring to lower left direction. Notably
in the diagonal ordering the grid nodes of each group are indenpendent to each
other according to the binary relation defined by the graph of the matrix, and can
be updated in parallel.

• things to say :
• diagonal groups vary in sizes
• many forks and merging in multi-threading
• in 3d the shape is hexagon
• not restricted to rectangular domains,
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Figure 2.1. stencil points of the matrices A(left),(
I + LD−1

)
(middle), and (D + U)(right)

Figure 2.2. the lexicographic ordering and a digonal-scan ordering

In three dimensions, the Poisson equation −∆u = f is approximated by the stan-
dard 7-point finite difference equation,

−ui−1,j,k − ui,j−1,k − ui,j,k−1
−ui+1,j,k − ui,j+1,k − ui,j,k+1

+ 6ui,j,k

h2
= fi,j,k.

We assume the Dirichlet boundary condition, so that the value of uijk is given
whenever each index i, j, k is zero or the maximum of the index. In the lexicographic
ordering, the forward substitution precedes as the following iterations.

for i = 1 : imax
for j = 1 : jmax
for k = 1 : kmax
ui,j,k := f (ui,j,k, ui−1,j,k, ui,j−1,k, ui,j,k+1)

As in two dimensions, we group grid nodes (i, j, k) by their index sum i+ j + k,
and perform the forward substitution in the following iterations.

for s = 3 : imax+ jmax+ kmax
for each (i, j, k) such that i+ j + k = s
ui,j,k := f (ui,j,k, ui−1,j,k, ui,j−1,k, ui,j,k+1)
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Figure 2.3. diagonal ordering for three dimensional grid

Lemma 1. The Gauss-Seidel updates in the lexicographic and diagonal ordering
are equivalent.

Proof. Note that each iteration visits every grid node, and once for each. We prove
it by mathematical indeuction on the sum. When the sum s = 3, u111 is updated
from its value and given boundary values, so the calculations in both orderings are
the same. Assume that the argument is true with index sum s. Now consider a
grid index (i, j, k) with i + j + k = s + 1. The update of uijk depends on itself,
which is not updated yet, and the three grid nodes whose index sum is s. By the
assumption, all the arguments of the update function are the same, and the update
of uijk are the same. Since the index is arbitrary with index sum s+1, the argument
is true for the index sum s+ 1.

�

2.1. Irregular domain. The parallel implementaion of ILU preconditioner is not
restricted to rectangular domains. As depicted in figure ??, the diagonal ordering
and grouping is taken to all the grid nodes while grid nodes inside the domain are
maked black. In the process of forward and backward subtitutions, only marked
nodes are updated in parallel. Since marked nodes are irregularly distributed, it is
not a simple matter how to divide the band into several subbands of equal workload
for parallel process. We simply divide the band into equally sized subbands. Surely
the efficiency depends on the diagonal alignment of the domain. Since the Laplace
operator is rotational invariant, we may take diagonal or anti-diagonal ordering
depending on the shape of the irregular domain.

3. Examples

3.1. Dirichlet boundary condition. domain :
{

(x, y, z) ∈ [−1, 1]
3 |
√
x2 + y2 + z2 ≤ .7

}
exact solution : u (x, y, z) = sin (x) cos (y) e−x

2−z2

weight : w (x, y, z) = 1 + 1
2 sin (x+ y + z)
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Figure 2.4. Grid nodes inside the domain are marked black, and
the nodes outside white. The parallelization efficiency depends on
the diagonal alignment of the domain.

we solve −∇ · (w∇u) = f with Dirichlet boundary condition on the domain.
PCG routine is iterated until the convergence criteria rn · zn < 10−14r0 · z0.

grid L1 error order L∞ error order iteration
253 1.25× 10−3 4.59× 10−4 17
503 3.29× 10−4 1.92 1.05× 10−4 2.12 33
1003 7.53× 10−5 2.12 2.63× 10−5 1.99 60
2003 1.95× 10−5 1.95 6.48× 10−6 2.02 107

PC Cluster
# of threads 1 2 3 4 1 2 4 8 16
run time 86.9 53.7 48.2 42.7 154 77.2 40.1 23.2 15.6
speed up 1 1.62 1.80 2.03 1 1.99 3.82 6.61 9.85

3.2. Neumann boundary condition. We solve −∆u = f in a circular domain
of center (0, 0) and radius 1

2 . The exact solution is taken as u =
(
r2 − 1

4

)3 , and the
right hand side is taken accordingly. PCG routine is iterated until the convergence
criteria rn ·zn < 10−14r0 ·z0. The linear system of the Neumann boundary condition
is nonsingular with one dimensional kernel. We solve the linear system on the vector
space of sum zero which elliminates the Kernel thus guaranteeing a unique solution.

grid L1 error order L∞ error order iteration
253 2.14× 10−3 6.85× 10−4 24
503 4.33× 10−4 2.30 1.82× 10−4 1.91 62
1003 8.98× 10−5 2.27 3.59× 10−5 2.34 63
2003 2.40× 10−5 1.90 9.27× 10−6 1.95 98

PC Cluster
# of threads 1 2 3 4 1 2 4 8 16
run time 82.0 51.4 46.2 41.1 154 74.2 38.0 21.9 14.4
speed up 1 1.59 1.77 2.00 1 2.07 4.05 7.03 10.7



A SIMPLE AND EFFICIENT PARALLEL IMPLEMENTATION OF THE ILU PRECONDITIONER FOR POISSON EQUATIONS6

References

[1] M Benzi. Preconditioning Techniques for Large Linear Systems: A Survey.
Journal of Computational Physics, 182(2):418–477, November 2002.

[2] A Chorin. A Numerical Method for Solving Incompressible Viscous Flow Prob-
lems. J. Comput. Phys., 2:12–26, 1967.

[3] Iain S. Duff and Gérard a. Meurant. The effect of ordering on preconditioned
conjugate gradients. Bit, 29(4):635–657, December 1989.

[4] F Gibou. A Second-Order-Accurate Symmetric Discretization of the Pois-
son Equation on Irregular Domains. Journal of Computational Physics,
176(1):205–227, February 2002.

[5] C Min and F Gibou. Geometric Integration Over Irregular Domains with
Application to Level Set Methods. J. Comput. Phys., 226:1432–1443, 2007.

[6] Yen Ting Ng, Chohong Min, and Frédéric Gibou. An efficient fluid–solid
coupling algorithm for single-phase flows. Journal of Computational Physics,
228(23):8807–8829, December 2009.

[7] S Osher and R Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer-Verlag, 2002.

[8] S Osher and J Sethian. Fronts Propagating with Curvature-Dependent Speed:
Algorithms Based on {H}amilton-{J}acobi Formulations. J. Comput. Phys.,
79:12–49, 1988.

[9] Y Saad. Iterative methods for sparse linear systems. PWS Publishing, 1996.
[10] J A Sethian. Level set methods and fast marching methods. Cambridge Uni-

versity Press, 1999.


