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Abstract

The Shortley-Weller method is a standard �nite di�erence method for solving the Poisson equation with

Dirichlet boundary condition. Unless the domain is rectangular, the method meets an inevitable problem that

some of the neighboring nodes may be outside the domain. The function values at outside nodes are extrapolated

by quadratic polynomial, and the extrapolation becomes unstable, that is, some of the extrapolation coe�cient

increases rapidly when the grid nodes are very near the boundary. A practical remedy, which we call arti�cial

perturbation, is to treat grid nodes very near the boundary as boundary points. The aim of this paper is to

reveal the adverse e�ects of the arti�cial perturbation on the condition number of the matrix and the convergence

of the solution. We show that the matrix is nearly symmetric so that the ratio of its minimum and maximum

eigenvalues can be referenced as the measure of its condition number. Our analysis shows that the arti�cial

perturbation results in a small enhancement of the condition number from O(1/(h ·hmin) to O(h−3) and triggers

an oscillatory order of convergence. Instead, we suggest using Jacobi or ILU-type preconditioner on the matrix

without applying the arti�cial perturbation. According to our analysis, the preconditioning not only reduces the

condition number from O(1/(h · hmin) to O(h−2), but also keeps the sharp second order convergence.

1 Introduction

In this article, we consider the standard �nite di�erence method for solving the Poisson equation −∆u = f in a
domain Ω ⊂ Rn with Dirichlet boundary condition u = g on ∂Ω. Let the uniform grid of step size h is denoted by
(hZ)

n
. The discrete domain is then de�ned as the set of grid nodes inside the domain, i.e. Ωh := Ω ∩ (hZ)

n
.

The standard �nite di�erence method is a dimension-by-dimension application of the central �nite di�erence,
and we present mainly the case of one dimension and report any nominal di�erences in the other dimensions, when
required. Unless Ω is rectangular, the method meets an inevitable problem that some of the neighboring nodes
may be outside Ω. As depicted in Figure 1, a neighboring node of the grid node is outside Ω. The node outside Ωh

is called ghost node [10], and the function value at the ghost node is extrapolated by the quadratic polynomial as
follows.

uGi+1,j := uhi−1,j

1− θ
1 + θ

− 2uhi,j
1− θ
θ

+ gI
2

(1 + θ) θ

Here θ · h is the distance between the grid node and the boundary to the right.
Applying the extrapolation to the second-order central di�erence scheme, we obtain a second-order discretization

in the x-direction

− (Dxxu)ij = −
ui−1,j − 2ui,j + uGi+1,j

h2
=

2

θh · h
ui,j −

2

h · (θ + 1)h
ui−1,j −

2

θh · (θ + 1)h
gI . (1)

This discretization is called the Shortley and Weller method [19] and the corresponding discrete Laplacian operator
is given in (3). On applying an iterative method to solve the discrete Poisson equation which is related to an
unsymmetric matrix, it is noted in [17] that if the related matrix is nearly symmetric, the residual norm is bounded
by the ratio of the maximum and minimum eigenvalues in absolute value. We show in this work that the matrix
induced by the Shortley-Weller method is nearly symmetric in the sense that all the eigenvalues are nearly real.
In this respect, we estimate the convergence performance by the eigenvalue ratio rather than the ratio of singular
values.
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Figure 1: uhi,j has four neighboring nodes. The one in the right is outside Ω, and the ghost value uGi+1,j is

quadratically extrapolated from inside values uhi,j and u
h
i−1,j and the boundary value gI .

From the discretization (1), we see that the extrapolation may produce large error if θ in the denominator gets
very small. This results in a large condition number for the matrix associated with the Shortley-Weller method as
an estimation |λmax/λmin| = O (1/ (h · hmin)) shown in Theorem 3.2. Here hmin is the minimum distance from
the nodes in Ω to the boundary ∂Ω. To mitigate the singularity of the extrapolation, there are two treatments in
practice: arti�cial boundary perturbation and preconditioning.

The arti�cial boundary perturbation is to treat the grid nodes near the boundary within a certain threshold
θ0 · h as boundary points and we take uhi,j = gI [7, 10, 16]. The common choice of the threshold is θ0 = h. We call
the practice as arti�cial boundary perturbation throughout this paper.

This article is aimed at revealing the precise e�ects from the arti�cial perturbation. We review the known facts
and estimate the ratio of eigenvalues for the unperturbed linear system in section 2. In section 4, we discuss the
e�ects on the convergence of the numerical solution and the eigenvalue ratio of the linear system for the arti�cial
perturbation. In practice, we take θ0 = h for the perturbation value and we reveal in Theorem 4.2 that the eigenvalue
ratio to the corresponding treatment is shown to be O(h−3) so that the arti�cial perturbation is less e�ective than
any preconditioning. That is, we conclude from the results in section 4 that the conventional perturbation is not
recommended.

Another treatment to mitigate the dependence on the minimum grid size and condition numbers as well is
preconditioning the linear system. We estimate the e�ect of the Jacobi preconditioning in section 5 and we test the
usual other preconditioners such as SGS, ILU and modi�ed ILU (MILU) to see the e�ect of the preconditioning.
We show that the Jacobi preconditioning is is enough to completely resolve the issue of the singularity of the
extrapolation when θ is small, by proving that the Jacobi preconditioner is totally free from the e�ect of the minimum
distance hmin and its condition number is no larger than O(h−2). Consequently, we suggest the preconditioning
method rather that the arti�cial boundary perturbation in order to improve the condition number.

It is worth noting that it was observed for many second order, self-adjoint, elliptic equations that the spectral
condition numbers of the discrete operator grow as O(h−2) as the mesh size h tends to zero (see [6] for details).
Also, Dupont, Kendall and Rachford [9] observed that even though the convergence rates of the Jacobi, symmetric
Gauss-Seidel (SGS), and incomplete LU (ILU) precondioned matrices still behave as O(h−2) with a much smaller
multiplicative constant, the modi�ed ILU (MILU) preconditioned matrix drops the order to O(h−1). The MILU
improvement O(h−1) for the rectangular domain was prove in [3, 4, 14, 21] and we also refer the reader to [1, 2,
5, 12, 15] for related works on the MILU preconditioning. However, the MILU improvement of O(h−1) for general
domains is not proved yet and we leave the study for a further work.

2 Review of Shortley-Weller method

In this work, we focus both on the convergence performance of the standard �nite di�erence method for the Poisson
equation and on the e�ect of the two methods improving the performance: arti�cial boundary perturbation and
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preconditioning. In this respect, it is su�cient to compare the performances for the 2 dimensional case. Let us
introduce some discretization settings of domain for solving the Poisson problem{

−∆u = f in Ω
u = g on ∂Ω,

(2)

where Ω ⊂ R2 is an open and bounded domain with smooth boundary ∂Ω. Consider a uniform grid with step size
h, i.e. hZ2. By Ωh we denote the set of grid nodes belonging to Ω, and ∂Ωh denotes the set of intersection points
between ∂Ω and grid lines, i.e. Ωh = Ω∩

(
hZ2

)
and ∂Ωh = ∂Ω∩ {(hZ× R) ∪ (R× hZ)}. A grid node (xi, yi) ∈ Ωh

has four neighboring nodes in Ωh∪∂Ωh, namely (xi±1, yj) and (xi, yj±1) in Ωh∪∂Ωh. Let hi+ 1
2 ,j

denote the distance

from (xi, yj) to its neighbor (xi+1, yj), and other distances hi− 1
2 ,j

, hi,j± 1
2
are de�ned in the same fashion, see Figure

(1).
By applying the quadratic polynomial extrapolation for the ghost values, its discrete Laplacian ∆hu

h : Ωh → R
for uh : Ωh ∪ ∂Ωh → R reads as(

∆hu
h
)
ij

=

(
uhi+1,j−u

h
ij

h
i+1

2
,j
− uhij−u

h
i−1,j

h
i− 1

2
,j

)
2

h
i+1

2
,j

+h
i− 1

2
,j

+

(
uhi,j+1−u

h
ij

h
i,j+1

2

− uhij−u
h
i,j−1

h
i,j− 1

2

)
2

h
i,j+1

2
+h

i,j− 1
2

. (3)

Note that when hi+ 1
2 ,j

< h, we set xi+1 = xi + hi+ 1
2 ,j

so that (xi+1, yj) ∈ ∂Ωh and uhi+1,j = g(xi+1, yj) in equation

(3).
Throughout the work, we denote by u the solution to the Poisson equation (2) and by uh the solution of the

discrete equation {
−∆hu

h (xi, yj) = f (xi, yj) , (xi, yj) ∈ Ωh

uh (xi, yj) = g (xi, yj) , (xi, yj) ∈ ∂Ωh.
(4)

Now, we introduce some lemmas on the discretization in a general setting. For the proofs we refer to [22].

Lemma 2.1 (Monotone property). For any vh, wh : Ωh ∪ ∂Ωh → R with −∆hvh ≥ −∆hwh in Ωh and vh ≥ wh on
∂Ωh, we have vh ≥ wh in Ωh ∪ ∂Ωh.

Let us de�ne the functions ph : Ωh ∪ ∂Ωh → R as the solution of

−∆hph = 1 in Ωh

with boundary condition ph = 0 on ∂Ωh. Then we have the following estimation for ph [22].

Lemma 2.2. Let p (x) be the analytic solution of −∆p = 1 in Ω with p = 0 on ∂Ω. Let Cp = Cp(Ω) be the constant
given by

Cp := max

{∣∣∣∣ ∂p∂xi (x)

∣∣∣∣ , ∣∣∣∣∂3p

∂x3
i

(x)

∣∣∣∣ , ∣∣∣∣∂4p

∂x4
i

(x)

∣∣∣∣ : x ∈ Ω ∩ ∂Ω, i = 1, 2

}
.

If h ≤ min
(

1, 3
8Cp

)
, then for each (xi, yj) ∈ Ωh, we have

0 ≤ phij ≤ 2Cp · dist
(
(xi, yj) , ∂Ωh

)
.

Therefore, there is a constant C > 0 such that we have(
2

hi+ 1
2 ,j
· hi− 1

2 ,j

+
2

hi,j+ 1
2
· hi,j− 1

2

)
phij ≤ C

1

h2

for all (xi, yj) ∈ Ωh

3 Nearly Symmetric Matrix

Since the matrix A associated with discretization is a sparse non-symmetric M-matrix [8], we solve the discrete
equation (4) by applying the generalized minmum residual method (GMRES). In particular, the matrix A = (aij)
is nearly-symmetric in the sense that aij 6= 0 i� aji 6= 0 ([18] and references therein) and the dominant majority of
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Figure 2: The eigenvalue distribution of A are nearly real. The top row depict the eigenvalues in complex plane for
the case Ω = {(x, y)|x2 + y2 < 1} and h = 3

80 , and the bottom row forΩ = {(x, y, z)|x2 + y2 + z2 < 1} and h = 3
20

. The ellipses including the eigenvalues have eccentricity 1− 2.79× 10−10 and 1− 1.70× 10−8, respectively, which
mean that all the eigenvalues are almost real.

the entries in A are symmetric about their diagonals [23]. Now, let us look more closely at the property of A. We
decompose A into the symmetric and skew-symmetic parts as

A = S + H where S =
1

2
(A + AT ) and H =

1

2
(A−AT ).

We note that H is skew-Hermitian while S and −iH are Hermitian. The non-zero entries of H come only from
the grid points whose distance to the boundary is less that or equal to the grid size h, and it implies that
rank(H)/rank(A) = O(h) so that the rank of H is very low, compared to that of A.

With the decomposition, it is not di�cult to see [17, Theorem 1.35] that any egenvalue λ = x+ iy (x, y ∈ R) of
A is bounded as

λmin(S) ≤ x ≤ λmax(S)

and
λmin(−iH) ≤ y ≤ λmax(−iH).

Also, it yields that the real and imginary parts of any eigenvalue is related to the symmetric matrix S and skew-
symmetric H, respectively. Furthermore, the experiments given in Figure 2 show that the imaginary parts of all
the eigenvalues A is very close to the real axis. When neglecting the skew-symmetric part, A is diagonalizable and
we have the following result in this case, which provides an upper bound on the convergence rate of the GMRES,
the proof of which is given in [17].

Theorem 3.1. Let B be a diagonalizable matrix, i.e., let B = XΓX−1 where Γ is the diagonal matrix of eigenvalues.
Let E(c, d, a) denote the ellipse in the complex plane with center c, focal distance d, and major semi axis a. Assume
that all the eigenvalues of B are located in E(c, d, a) which excludes the origin. Then, the residual norm achieved
at the m-th step of GMRES satis�es the inequality,

‖rm‖2 ≤ κ2(X)
Cm

(
a
d

)∣∣Cm

(
c
d

)∣∣‖r0‖2 (5)

where κ(X) = ‖X‖2‖X−1‖2 and Cm is the Chebyshev polynomial of degree m.
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It is noted in [17] that an approximation for the coe�cient Cm
(
a
d

)
/Cm

(
c
d

)
is given as

Cm
(
a
d

)∣∣Cm ( cd)∣∣ ≈
(
a+
√
a2 − d2

c+
√
c2 − d2

)m
.

In the Shortley-Weller case, the associated matrix A is nearly symmetric and all the eigenvalues of A are almost
real so that we have an ellipse E(c, d, a) with a ≈ d (and c ≤ 2a+ 1) containing all the eigenvalues. In this respect,
we will check the eigenvalue ratio in this work for the estimation of performance rather than the ratio of singular
values.

Now, Let us estimate the eigenvalues of the matrix associated with the discretization, which is denoted by A

Theorem 3.2. Let λ be an eigenvalue of the matrix A associated with the discretization, 0 < CA ≤ |λ| ≤ 8
h·hmin

for some constant CA = CA (Ω), that is independent of grid size h.

Proof. For su�ciently small h, we may assume that whenever (xi, yj) ∈ Ωh and one of its neighbors, let us say
(xi−1, yj), is on ∂Ω, then its neighbor in the opposite side belongs to Ω inside, i.e. (xi+1, yj) ∈ Ωh. Let λ be an
eigenvalue of the matrix A associated with the discretization and v its corresponding eigenvector, that is, Av = λv.
The Gerschgorin circle theorem implies that 0 < |λ| ≤ 8

h·hmin . Since A is an M-matrix, the Perron-Frobenius

Theorem [13] applying to A−1 shows that the minimum eigenvalue λm is a positive real number and there exists
an eigenvector v = (vP )P∈Ωh with vP > 0 for all P ∈ Ωh corresponding to λm. We may assume that v is de�ned on
Ωh ∪ ∂Ωh by a trivial extension. Let vP0 = max{vP : P ∈ Ωh}. Then we can see Av = (−∆hv) and for the function
ph given in Lemma 2.2, we have

(−∆hv) = λmv ≤ λmvP0
(−∆hp

h)

Applying Lemmas 2.1 and 2.2 shows that there exists a constant C0 independent of h such that

vP ≤ C0λmvP0 ∀P ∈ Ωh.

This shows that λm ≥ CA for some constant CA, which completes the proof.

Table 1 shows that the estimation of Theorem 3.2 is tight : for the unperturbed matrix A, |λmin(A)| ≈ CA for
some constant CA and |λmax(A)| ≈ 8/hhmin.

grid
Original (unperturbed) matrix

|λmax| ratio hmin ratio 8
hhmin

rate |λmin| ratio

202 4.00× 102 5.03× 10−2 5.30× 102 5.74
402 2.17× 104 54.3 1.53× 10−3 0.0304 3.49× 104 65.8 5.77
802 1.09× 105 5.02 7.03× 10−4 0.459 1.52× 105 4.35 5.78 1.00
1602 1.59× 106 14.5 9.15× 10−5 0.130 2.33× 106 15.4 5.78 1.00
3202 2.30× 107 14.4 1.31× 10−5 0.143 3.26× 107 14.0 5.78 1.00

Table 1: Eigenvalues of the unperturbed matrix of the Shortley-Weller method in example 4.1: the results tightly
obey the estimate of Theorem 3.2, 0 < CA ≤ |λ| ≤ 8

h·hmin .

4 E�ect of the perturbation

Let uh be the numerical solution without perturbation, and ũh be the numerical solution with perturbation. While
it has been well known that

∥∥uh − u∥∥
L∞

= O
(
h2
)
[19, 22], the convergence order of the perturbed solution has

been left unclear. In this section, we investigate the convergence order of
∥∥ũh − u∥∥

L∞
. Let ∂Ω̃h be the grid nodes

that were treated as boundary points by the perturbation. Then the di�erence ũh−uh satisfy the discrete harmonic
equation,

−∆h
(
ũh − uh

)
= 0 in Ωh − ∂Ω̃h.

On ∂Ω̃h, the perturbed value ũhi is assigned by g (xI) = u (xI). It is known that the unperturbed numerical solution
is third order accurate near the boundary [22], so that uhi = u (xi) +O

(
h3
)
. Applying the mean-value theorem, we
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have ũhi − uhi = u (xI) − u (xi) − O
(
h3
)
= ∂u

∂x (ξ) θ0h + O
(
h3
)
, for some ξ between xi and xI . Thus the boundary

value of the discrete harmonic solution ũh − uh is given as

ũh − uh =

{
0 on ∂Ωh\{xΓ ∈ ∂Ωh : dist(xΓ,Ω

h) ≤ θh}
∂u
∂x (ξ) θ0h+O

(
h3
)

on ˜∂Ωh
.

The discrete maximum principle [22] states that the discrete harmonic solution should have its maximum or mini-
mum on the boundary, therefore we have∥∥ũh − uh∥∥

L∞(Ωh)
≤ ‖∇u‖L∞(∂Ωε)

θ0h+O
(
h3
)
,

for an ε−neighborhood ∂Ωε of ∂Ω and su�ciently small h with θ0h ≤ ε. It is well known that the unperturbed
numerical solution shows a very clean second order convergence rate [8, 22],

∥∥uh − u∥∥
L∞(Ωh)

' C · h2. Using the

above inequality and the triangle inequality, we obtain the estimate:∥∥ũh − u∥∥
L∞(Ωh)

≤ C · h2 + ‖∇u‖L∞(∂Ωε)
θ0h+O

(
h3
)
.

When θ0 = h, note that the perturbed solution is still second order accurate, however, Table 3 shows that
while the unperturbed solution has the clean second order accuracy as h is varied, that of the perturbed one would
�uctuate around the second order.

Let us now turn our attention to the statistics that show how often the perturbation occurs. The edge length of
each grid cell is h and the boundary ∂Ω is a curve of �nite length. Therefore the number of grid cells intersecting
the boundary can be said to be about O

(
h−1

)
. Similarly, the number of grid edges intersecting the boundary is

O
(
h−1

)
. We may assume that O

(
h−1

)
number of intersection points are randomly distributed on grid edges of

length h. The intersection points that are within distance θ0h = h2 from the ends are classi�ed as 'too near' points
on which the perturbation is applied. The edge length h is divided into h−1 number of subintervals of length h2.
When the O

(
h−1

)
number of intersection points are randomly distributed on the edge length h, the number of

points lying on the end subintervals is therefore O (1).
Similarly as above, we deduct that if θ0 were taken larger as a constant such as .001, the number of perturbation

points would increase unboundedly as O
(
h−1

)
and if θ0 taken smaller as h2, the perturbation points would not

appear for su�ciently small h.

Example 4.1. Consider the Poisson problem −∆u = 0 in Ω =
{

(x, y) |x2 + y2 < 1
}
with u = y/

(
(x+ 2)

2
+ y2

)
.

The arti�cial boundary perturbation was carried out with θ0 = h. Figure 3 shows the errors of the unperturbed and
perturbed solutions.

Our argument in this section indicates that the choice θ0 = h is marginal so that perturbation points may
sometimes appear and sometimes not. When perturbation points do appear, the convergence order

∥∥uh − u∥∥
L∞(Ωh)

would �uctuate between C · h2 and C · h2 + ‖∇u‖L∞(∂Ω) h
2, which are well observed in �gure 3.

We have discussed how much the perturbation a�ects the convergence order and how often it occurs. The linear
system associated with the Poisson solver has a notoriously large condition number ' 8

hhmin
. The third issue of our

discussion is to show that the perturbation slightly decreases the condition number as below.

Theorem 4.2. Let λ be an eigenvalue of the matrix of the Poisson solver with the perturbation, then we have

0 < C̃ ≤ |λ| ≤ 8

θ0h2
≤ 8

h · hmin

for some constant C̃ = C̃ (Ω) .

Proof. The matrix obtained in this perturbation setting is also an M-matrix. In this case, we have hmin ≥ θ0 · h
and applying the same argument used for the proof of Theorem 3.2 gives the above result.

The above theorem shows that the eigenvalue ratio of the perturbed matrix is smaller than that of the un-
perturbed matrix. Since θ0 = h, the estimate indicates that the two eigenvalue ratios are bounded above by
8
h3 /C̃ = O

(
h−3

)
and 8

hhmin
/C̃ ≥ O

(
h−3

)
, respectively. Figure 4 veri�es the theorem: the perturbed ratio is

smaller than the unperturbed ratio and the ratios of both data are between the second order and the third order.
In the following section, however, we show that the Jacobi preconditioning drops down the ratio no larger than
O
(
h−2

)
.
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Figure 3: The error plot of the numerical solutions in Example 4.1. The perturbation occurs sometimes (marked
×) and sometimes not (marked ◦). The lower bound (Ch2) and upper bound (C · h2 + ‖∇u‖L∞(∂Ω) h

2) are drawn
as lines.
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Figure 4: The eigenvalue ratio of the perturbed (marked ×) and unperturbed (marked ◦) linear systems in Example
4.1. The perturbed ratio is smaller than the unperturbed ratio as expected in Theorem 4.2. The ratios of both
data are between the second order (dotted line) and the third order (solid line) .
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5 E�ect of the Jacobi preconditioning

For a linear system Ax = b, the Jacobi preconditioner is the diagonal matrix D whose diagonal entries are the same
as A. The Jacobi preconditioning on the linear system results in D−1Ax = D−1b. The preconditioning is, in other
words, to scale each equation so that its diagonal entry becomes one. Applying the Jacobi preconditioning on its
linear equation, the standard �nite di�erence method now reads

uij −
hi− 1

2 j
hij− 1

2
hij+ 1

2(
hi− 1

2 j
+ hi+ 1

2 j

)(
hi− 1

2 j
hi+ 1

2 j
+ hij− 1

2
hij+ 1

2

)ui+1,j

−
hi+ 1

2 j
hij− 1

2
hij+ 1

2(
hi− 1

2 j
+ hi+ 1

2 j

)(
hi− 1

2 j
hi+ 1

2 j
+ hij− 1

2
hij+ 1

2

)ui−1,j

−
hij− 1

2
hi− 1

2 j
hi+ 1

2 j(
hij− 1

2
+ hij+ 1

2

)(
hi− 1

2 j
hi+ 1

2 j
+ hij− 1

2
hij+ 1

2

)ui,j+1

−
hij+ 1

2
hi− 1

2 j
hi+ 1

2 j(
hij− 1

2
+ hij+ 1

2

)(
hi− 1

2 j
hi+ 1

2 j
+ hij− 1

2
hij+ 1

2

)ui,j−1 =
fij
2

hi− 1
2 j
hij+ 1

2
hij− 1

2
hij+ 1

2

hi− 1
2 j
hi+ 1

2 j
+ hij− 1

2
hij+ 1

2

.

In brief, the Jacobi preconditioner D−1A acts on u as(
D−1Au

)
ij

= uij − αijui−1,j − βijui+1,j − γijui,j1 − δijui,j+1

with nonnegative constants αij , βij , γij , δij satisfying 0 < αij + βij + γij + δij ≤ 1. This means that the Jacobi
preconditioner eliminates completely the adverse e�ect of hmin. Also we show in the following that the Jacobi
preconditioning reduces the ratio magnitude to O

(
h−2

)
.

Theorem 5.1. For any eigenvalue λ of the Jacobi-preconditioned matrix D−1A, we have 0 < CJ · h2 ≤ |λ| ≤ 2 for
some constant CJ = CJ (Ω).

Proof. Let λ be an eigenvalue of the Jacobi-preconditioned matrix D−1A and v its corresponding eigenvector, that
is, Av = λDv. Since all the diagonal entries of D are positive and A is an M-matrix, the Jacobi -preconditioned
matrix D−1A is also an M-matrix. The Gerschgorin circle theorem for D−1A shows |λ| ≤ 2, and it remains to
show that |λ| ≥ CJh

2 for some constant CJ independent of h. We may assume that λ = λmin is a minimum
eigenvalue. Since D−1A is an M-matrix, the Perron-Frobenius Theorem applied to A−1D shows that there exists
an eigenvector v = (vP )P∈Ωh with vP > 0 for all P ∈ Ωh corresponding to λ. We may assume that v is de�ned on
Ωh ∪ ∂Ωh by a trivial extension as setting values of v equal to 0. Let aP0P0vP0 = max{(Dv)P : P ∈ Ωh}. Then we
can see Av = (−∆hv) and for the function ph given in Lemma 2.2, we have

(−∆hv) = λminDv ≤ λminaP0P0vP0(−∆hp
h).

Applying Corollary 2.1 and Lemma 2.2 give that there exists a constant C independent of h such that

vP0 ≤ λminaP0P0vP0p
h(P0) ≤ C

h2
λminvP0 .

This shows that λmin ≥ CJ · h2 where CJ = 1
C , which completes the proof.

Note that the eigenvalue estimate for the Jacobi-preconditioned matrix is independent of hmin, while that for
the original matrix is dependent. Thus the presence of grid nodes too near the boundary is not problematic in the
Jacobi-preconditioned matrix.

Remark

Theorem 3.6 in [20] shows the ILU-type preconditioners are actually applied on top of the application of the Jacobi
preconditioner. Hence we can expect that their e�ects are at least as good as Jacobi; See Table 2.
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grid
Jacobi preconditioned SGS preconditioned

|λmax| ratio |λmin| ratio |λmax| ratio |λmin| ratio
202 1.96 3.56× 10−2 1.00 1.29× 10−1

402 1.99 0.98 8.53× 10−3 0.24 1.00 0.98 3.33× 10−2 0.26
802 1.99 1.00 2.08× 10−3 0.24 0.999 1.00 8.28× 10−3 0.25
1602 1.99 1.00 5.14× 10−4 0.25 0.999 1.00 2.05× 10−3 0.25
3202 1.99 1.00 1.27× 10−4 0.25 0.999 1.00 5.11× 10−4 0.25

grid
ILU preconditioned MILU preconditioned

|λmax| ratio |λmin| ratio |λmax| ratio |λmin| ratio
202 1.18 2.08× 10−1 3.28 0.999
402 1.20 0.98 5.60× 10−2 0.26 6.64 2.02 1.00 1.00
802 1.20 1.00 1.40× 10−2 0.25 13.4 2.02 1.00 1.00
1602 1.20 1.00 3.50× 10−3 0.25 27.2 2.03 0.999 1.00
3202 1.20 1.00 8.72× 10−4 0.25 55.0 2.02 0.999 1.00

Table 2: Eigenvalues of the preconditioned matrices in Example 4.1: the results of Jacobi tightly obeys the estimate
O
(
h−2

)
< |λ| < O(1) of Theorem 5.1, and the other results are at least as good as |λmax/λmin| = O

(
h−2

)
.

6 Conclusion

The matrix derived from the standard �nite di�erence method called as the Shortley-Weller method is sparse and
non-symmetric, and nearly symmetric. Hence the ratio |λmax/λmin|, an accurate measure of condition number,
is a very important factor in solving its associated linear system. We showed the estimation |λmax/λmin| =
O (1/ (h · hmin)) that is proved and veri�ed through numerical tests. Furthermore, the tests suggest that the
estimate is optimal. Therefore the presence of even a single grid node that is too near the boundary, i.e. hmin ' 0,
severely e�ects the convergence accuracy of the linear system.

As an attempt to mitigate the adverse e�ect, a conventional approach has set a certain threshold θ0, and treated
grid nodes within distance θ0 · h from the boundary as boundary points. The perturbation of the boundary results
in an erroneous modi�cation of the Shortley-Weller method. In practice we take θ0 = h. Our analysis shows that the
ratio of the related eigenvalues still su�ers from the ine�cient order O(h−3). On the other hand, a simple statistics
computation shows that the number of grid nodes treated as boundary points becomes zero as θ0 < h. Therefore
these arguments lead us to a conclusion that the boundary perturbation is not recommended.

Instead, we considered the e�ect of preconditioning to relieve the large ratio O (1/ (h · hmin)). Since precondi-
tionings do not change the solution of linear system, there is no loss of convergence. We proved that the Jacobi
preconditioner turns the large ratio into O

(
h−2

)
. Note that the ratio O

(
h−2

)
is what we get in rectangular domains

that are totally free of the grid nodes too close to the boundary [11]. With this regard, we can say that the Jacobi
preconditioner completely eliminates the adverse e�ect from hmin. Numerical tests in Table 2 showed that while
SGS and ILU have the same clustering ratio O

(
h−2

)
as Jacobi, MILU outperforms the others by reducing the

ratio to O
(
h−1

)
. The excellence was proved only in rectangular domains [12, 21], but not yet in general irregular

domains, which we aim to prove in future work.
In terms of condition number, the analysis on singular values is prefered to that on eigenvalues for non-symmetric

matrices. We derived the estimate of eigenvalues, and we realized that the singular value treatment is quite di�erent
from the eigenvalue. Due to our limit in time and ability, we put o� the discussion of singular values to future work.
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