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Abstract

The Shortley-Weller method is a basic �nite di�erence method for solving the Poisson equation

with Dirichlet boundary condition. The second order convergence of its solution has been long

known but it is rather recent to pay attention to its gradient. Especially in its application to �uid

�ows, the gradient plays a physical role rather than the solution itself. In this article, we �rst

review the proof that the convergence order of its numerical solution is the second order: though

consistency error is �rst order accurate at some locations, the convergence order is globally second

order. We call this increase of the order of accuracy, supra-convergence. We then discuss a discrete

divergence theorem for the Shortley-Weller method and prove that the gradient of the solution

is second order accurate in general domains. Usually, the gradient of a second order solution is

only �rst order accurate, but the gradient of the Shortley-Weller solution is second order accurate,

which is another supra-convergence.

1 Introduction

The Poisson equation −∆u = f is of primal importance in many physical problems, especially in �uid
�ows with incompressible condition. The pressure variable in the �ows satis�es the Poisson equation
with Dirichlet boundary condition at free surface and Neumann boundary condition at solid surface
[15]. One important aspect of a Poisson solver is the ability to deal with both boundary conditions,
and the other is the accuracy of the gradient of the solution, for pressure gradient is a physical variable
in �uid �ows rather than the pressure itself.

Except for some particular cases, the exact solution of the Poisson equation is unknown and needs
to be approximated. Finite di�erence methods, �nite element methods, and boundary integral methods
are main tools for the approximation. In general, �nite di�erence methods have advantages in grid
generation and may have di�culties in treating irregular boundary. The three main tools have their
own pros and cons, and the choice among them depends on the given problem. In this article, we
con�ne our discussion to �nite di�erence methods.

The Shortley-Weller method [18] is a basic �nite di�erence method for solving the Poisson equation
with Dirichlet boundary condition. It is a simple dimension-by-dimension approach that works in any
dimensions. The method results in a non-symmetric linear system whose matrix is an M-matrix. It
was proved in [18, 3] that the numerical solution is second order accuarate. The gradient of the solution
was numerically observed to be second order [13], but the observation has not been proved yet.

The work of Gibou et al. [5] is a simple modi�cation of the Shortley-Weller method. The modi�-
cation results in symmetric liner system, which can be solved more e�ciently than the non-symmetric
one. Its numerical solution is still second order accurate but the accuracy of the gradient drops to �rst
order.
∗Institute of Mathematical Sciences, Ewha Womans University, Seoul, Korea 120-750
†Mathematics Department, Ewha Womans University, Seoul, Korea 120-750, corresponding au-

thor(chohong@ewha.ac.kr)

1



The work of Purvis [16, 14] solves the Poisson equation with the homogeneous Neumann boundary
condition. It is a �nite volume approach that reads as a standard �ve-point �nite di�erence method
for the Poisson equation with a weight function which is the characteristic function of the domain. The
method results in symmetric linear system. It was numerically reported that both of the numerical
solution and its gradient are second order accurate. In the case of non-homogeneous Neumann bound-
ary condition, it was observed that the solution keeps the second order accuracy, but the gradient is
only �rst order accurate [13]. These observations have not been proved yet up to our best search.

We have listed three basic �nite di�erence methods for the Poisson equation with Dirichlet boundary
condition or with Neumann boundary condition. Contrary to their great importance, their convergence
properties of the �nite di�erence methods have just been taken for granted from numerical tests, not
from concrete proof. Convergence analysis for solution and its gradient has been well studied in �nite
element methods [9, 7, 8].

The main theme of this article is the convergence analysis for the Shortley-Weller method that
solves the Poisson equation with Dirichlet boundary condition. The second order convergence of its
solution has been well known [18, 3, 1]. Matsunaga-Yamamoto [12] improved the result by showing the
third order accuracy near the boundary. Similar results have been obtained for nonsmooth Dirichlet
problem [2] and convection-di�usion problem [4]. It is rather recent to pay attention to its gradient.
The gradient of the solution was numerically observed to be second order accurate in general domains
[13], but the mathematical proof for the observation has not been reported yet. The second order
convergence was proved in rectangular domain [11], and the order of one and a half was proved in
polygonal domains [10]. In this article, we prove the second order convergence in general domains.

We �rst brie�y review the proof that the convergence order of its numerical solution is the second
order. Though consistency error is �rst order accurate at some locations. The convergence order is
globally second order. We call this increase of the order of accuracy, supra-convergence. We then
discuss a discrete divergence theorem for the Shortley-Weller method and prove that the gradient of
the solution is second order accurate. Usually, the gradient of a second order solution is only �rst order
accurate, but the gradient of the Shortley-Weller solution is second order accurate, which is another
supra-convergence.

2 Discretization Setting

In this section, we de�ne discretizations of domain and di�erential operators for solving the Poisson
problem {

−∆u = f in Ω
u = g on Γ,

where Ω ⊂ R2 is an open and bounded domain with smooth boundary Γ. Consider a uniform grid with
step size h, i.e. hZ2. By Ωh we denote the set of grid nodes belonging to Ω, and Γh denotes the set of
intersection points between Γ and grid lines, i.e. Ωh = Ω∩

(
hZ2

)
and Γh = Γ∩{(hZ× R) ∪ (R× hZ)}.

As illustrated in Figure 1, a grid node (xi, yi) ∈ Ωh has four neighboring nodes in Ωh ∪ Γh, namely
(xi±1, yj) and (xi, yj±1) in Ωh ∪ Γh. Let hi+ 1

2 ,j
denote the distance from (xi, yj) to its neighbor

(xi+1, yj), and other distances hi− 1
2 ,j

, hi,j± 1
2
are de�ned in the same fashion.

Now we move on to the discretization of di�erential operators. Given a discrete function u :
Ωh ∪ Γh → R, its derivative in x-direction is naturally calculated as

(Dx
hu)i+ 1

2 ,j
=
ui+1,j − ui,j
hi+ 1

2 ,j

,

and it is de�ned at the middle point
(

xi+xi+1

2 , yj

)
whenever (xi, yj) ∈ Ωh or (xi+1, yj) ∈ Ωh. The
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Figure 1: Grid nodes in Ωh are marked by ◦ and nodes in Γh by •. A grid node (xi, yj) ∈ Ωh has four
neighboring nodes in Ωh ∪ Γh.

second derivative Dxx
h u : Ωh → R is calculated as

(Dxx
h u)ij =

(Dx
hu)i+ 1

2 ,j
− (Dx

hu)i− 1
2 ,j

h
i+1

2
,j

+h
i− 1

2
,j

2

, (1)

for each (xi, yj) ∈ Ωh. (Dy
hu)

ij+ 1
2
and (Dyy

h u)
ij

are similarly de�ned. The Shortley-Weller dis-

cretization of the Laplace operator is then de�ned as ∆h = Dxx
h + Dyy

h . In speci�c, given a function
u : Ωh ∪ Γh → R, its Laplacian ∆hu : Ωh → R is de�ned as

(∆hu)ij =

(
ui+1,j−uij

h
i+1

2
,j
− uij−ui−1,j

h
i− 1

2
,j

)
2

h
i+1

2
,j

+h
i− 1

2
,j

+

(
ui,j+1−uij

h
i,j+1

2

− uij−ui,j−1

h
i,j− 1

2

)
2

h
i,j+1

2
+h

i,j− 1
2

.

3 Supra-convergence of Solution

Let u : Ω→ R be the continuous solution of the Poisson equation{
−∆u (x) = f (x) , x ∈ Ω

u(x) = g(x), x ∈ Γ,
(2)

and let uh : Ωh ∪ Γh → R be the solution of the discrete equation{
−∆huh (P ) = f (P ) , P ∈ Ωh

uh(P ) = g(P ), P ∈ Γh.
(3)

In this section, we brie�y review the proof in [3, 18] that the discrete solution approximates the
continuous solution with the second order accuracy. Though the consistency order of the discretization
ranges from the �rst to the second, its convergence order is the second order everywhere. In some
regions, that we will specify shortly later, convergence order is one more than consistency order. we
call such gain of order supra-convergence, or super-convergence. Most of lemmas and theorems in this
section will be just stated without proofs, which we refer to [3] for details, for our main theme of this
work is to introduce the supra-convergence of the gradient of the discrete solution.

De�nition Ω∗h ⊂ Ωh denotes the set of grid nodes adjacent to Γh, and Ω◦h = Ωh \ Ω∗h.

Lemma 3.1 (Consistency error) A simple Taylor series expansion shows that

(−∆h (u− uh)) (P ) =

{
O
(
h2
)
, P ∈ Ω◦h

O (h) , P ∈ Ω∗h.
(4)
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The discrete equation (3) for each P ∈ Ωh form a non-symmetric linear system whose matrix is
an M -matrix [17]. An important property of an M -matrix is that its inverse is non-negative in every
entry, from which the following discrete maximum principle follows.

Lemma 3.2 (Discrete maximum principle) If −∆hu ≥ 0 then the minimum value of u should be
achieved on Γh. Similarly, if −∆hu ≤ 0 then the maximum value of u should be achieved on Γh.

De�nition (Discrete Green's function) For eachQ ∈ Ωh, we de�ne the functionGh (P,Q), P ∈ Ωh∪Γh

as the solution of the discrete problem−∆huh (P ) =

{
0, P 6= Q
1
h2 , P = Q

, P ∈ Ωh

uh (P ) = 0, P ∈ Γh.

(5)

Since −∆huh ≥ 0, the minimum should be achieved on Γh, and therefore Gh (P,Q) ≥ 0 for any
P ∈ Ωh ∪ Γh. The Green functions G(·, Q) generate all functions uh on Ωh ∩ Γh which is zero on Γh

as follows :

Lemma 3.3 (Expansion by Green's function ) Let uh be a function de�ned on Ωh ∩ Γh with uh ≡ 0
on Γh, then we have the representation for uh,

uh (P ) =
∑

Q∈Ωh

(−∆huh (Q))Gh (P,Q)h2, for all P ∈ Ωh ∪ Γh. (6)

Using the maximum principle in comparison between uh and a continuous function U satisfying
−∆hU = 1 in Ωh and U = 0 on Γh, the following estimates are obtained.

Lemma 3.4 (Bounds for Green's function)

(i) There is a constant C independent of h such that∑
Q∈Ωh

Gh (P,Q)h2 ≤ C, for all P ∈ Ωh ∪ Γh.

(ii) ∑
Q∈Ω∗h

Gh(P,Q) ≤ 1, for all P ∈ Ωh ∪ Γh.

Now, combining the lemmas leads to the proof for the supra-convergence of solution.

Theorem 3.5 (Supra-convergence of solution) Let u be a continuous solution to the problem (2) and
uh a discrete solution to the problem (3). For any P ∈ Ωh ∪ Γh, we have that u(P ) − uh(P ) = 0 if
P ∈ Γh and

u (P )− uh (P ) = O
(
h2
)
, for all P ∈ Ωh.

Proof Since u− uh = 0 on Γh, the summation formula holds for all P ∈ Ωh ∪ Γh, and we have

(u− uh) (P ) =
∑

Q∈Ωh

(−∆h (u− uh) (Q))Gh (P,Q)h2

=
∑

Q∈Ω∗h

(−∆h (u− uh) (Q))Gh (P,Q)h2 +
∑

Q∈Ω◦h

(−∆h (u− uh) (Q))Gh (P,Q)h2

= O (h)

 ∑
Q∈Ω∗h

Gh (P,Q)

h2 +O
(
h2
) ∑

Q∈Ω◦h

Gh (P,Q)h2


= O

(
h3
)

+O
(
h2
)

= O
(
h2
)
,

and this proves the theorem. �
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4 Supra-Convergence of Gradient

The gradient of a second order accurate solution is usually �rst order accurate, but in some methods
for elliptic problems the gradient keeps the second order accuracy, which we also call this gain of order
supra-convergence. Both solutions of the Gibou's method [5] and the Shortley-Weller's method [18] are
second order accurate, but the solution gradient of Shortley-Weller's preserve the second order accuracy
while that of Gibou's drops to the �rst order. These were observed in thorough numerical tests [13].
In this section, we analyze and prove the supra-convergence on the gradient of the Shortley-Weller's.

A classical reference [19] shows the supra-convergence in rectangular domains whose boundaries
are aligned at grid lines. Though its presentation was complicated with Fourier analysis, its main idea
is to simply take a discrete divergence theorem on error e = u− uh,√√√√ˆ

Ωh

|∇he|2dΩh =

√√√√ˆ
Ωh

e · (−∆he) dΩh =

√√√√O (h2)O (h2)

ˆ

Ωh

dΩh = O
(
h2
)
.

In general irregular domains, the boundary of domain is not aligned with grid lines, which makes a
residue in the application of a discrete divergence theorem. In our review paper [20], we pointed out
that the discrete divergence theorem is not valid any more in irregular domains, and suggested that a
new discrete divergence theorem suiting with the Shortley-Weller discretization may lead to the proof
of the supra-convergence of gradient.

In the beginning of this section, we de�ne discrete integrals in irregular domains. The de�nition
copes with the de�nition of the discrete Laplacian in Section 2, and we can derive a discrete divergence
theorem to identify the residue term. Then we extend the estimates of Green's function in Section 3
for treating the residue, and �nally proceed to the proof of the supra-convergence on gradient.

4.1 Discrete Divergence Theorem

A grid node (xi, yj) in Ωh has four neighboring nodes (xi±1, yj) and (xi, yj±1) in Ωh ∪ Γh, and ac-
cordingly we de�ne its control volume such that its border line is up to the middle of the node and its
neighbor in each four direction,

Cij :=

[
xi + xi−1

2
,
xi + xi+1

2

]
×
[
yj + yj−1

2
,
yj + yj+1

2

]
.

The control volume is a rectangle of size 1
2

(
hi+ 1

2 ,j
+ hi− 1

2 ,j

)
× 1

2

(
hi,j+ 1

2
+ hi,j− 1

2

)
. The control

volumes of two neighboring nodes are adjacent along the border at their middle point. In overall, their
union Ch = ∪(xi,yj)∈Ωh

Cij seamlessly �lls up the domain Ω inside, but some margins between C and
Ω appear near the boundary Γ, as depicted in Figure 2.

The L2 inner-product between two discrete functions u, v : Ωh → R is de�ned as the multiplication
of their values and the area of the control volume for each grid node,

ˆ

Ωh

u · v dΩh :=
∑

(xi,yj)∈Ωh

uijvij
hi+ 1

2 ,j
+ hi− 1

2 ,j

2

hi,j+ 1
2

+ hi,j− 1
2

2
. (7)

Now let us proceed to the de�nition of the H1 semi-inner-product
´

Ωh
∇hu · ∇hv dΩh. Consider

two discrete functions u, v : Ωh ∪ Γh → R. For each grid node (xi, yj) ∈ Ωh, we have two one-

sided approximations,
ui+1,j−uij

h
i+1

2
,j

and
uij−ui−1j

h
i− 1

2
,j

for ∂u
∂x (xi, yj). In calculating

´
Cij

∂u
∂x

∂v
∂x dxdy, we split

the control volume into the region
[
xi− 1

2
, xi

]
×
[
yj− 1

2
, yj+ 1

2

]
left to the grid node and the region[

xi, xi+ 1
2

]
×
[
yj− 1

2
, yj+ 1

2

]
right, and match the left region to the approximation from the left and the

right region to the one from the right,
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Figure 2: Each control volume Cij is depicted in dotted lines. A union of control volumes Ch =
∪(xi,yj)Cij �lls up seamlessly inside the domain Ω with some margin near Γ. The boundary of the
union, ∂Ch, is depicted in solid straight lines.

ˆ

Ωh

(Dx
hu) (Dx

hv) dΩ :=
∑

(xi,yj)∈Ωh

 ui+1,j−uij

h
i+1

2
,j

vi+1,j−vij
h
i+1

2
,j

h
i+1

2
,j

2

h
i,j+1

2
+h

ij− 1
2

2

+
uij−ui−1j

h
i− 1

2
,j

vij−vi−1j

h
i− 1

2
,j

h
i− 1

2
,j

2

h
i,j+1

2
+h

ij− 1
2

2

 . (8)

In the same fashion,
´

Ωh
(Dy

hu) (Dy
hv) dΩ is de�ned. Our treatment of uij , (Dx

hu)i+ 1
2 j

and (Dy
hu)

ij+ 1
2

is similar to the Marker-and-Cell discretization in staggered grids [6]. For each control volume Cij , we
have uij at the grid node inside, (Dx

hu)i+ 1
2 ,j

and (Dx
hu)i− 1

2 ,j
at its left and right borders, respectively,

and (Dy
hu)

ij± 1
2
at its top and bottom borders.

Before we state and prove a discrete divergence theorem, we need to deal with another discretization,
how to approximate line integral

´
Γ

∂u
∂xv (n · e1) dΓ, one of the two components in

´
Γ

(∇u · n) v dΓ. As
depicted in Figure 2, the margin between Ω and Ch = ∪(xi,yj)Cij is present only near Γ. Hence we
approximate the support Γ by ∂Ch. For each control volume Cij , the integral over its boundary is
de�ned as the sampled value times the length summed over its four sides,

ˆ

∂Cij

(Dx
hu) v (n · e1) dΓ :=

 +
ui+1,j−uij

h
i+1

2
,j

vi+1,j+vij
2

h
i,j+1

2
+h

ij− 1
2

2

− uij−ui−1j

h
i− 1

2
,j

vij+vi−1j

2

h
i,j+1

2
+h

ij− 1
2

2

 .

Note that n · e1 = 0 at the top and bottom sides, so the above sum has only two terms from the
left and right borders. Summing up the oriented line integrals over all the control volumes, we have

ˆ

∂Ch

(Dx
hu) v (n · e1) dΓ =

∑
(xi,yj)∈Ωh

 +
ui+1,j−uij

h
i+1

2
,j

vi+1,j+vij
2

− uij−ui−1j

h
i− 1

2
,j

vij+vi−1j

2

 hi,j+ 1
2

+ hij− 1
2

2
. (9)

Inside the domain, an edge appears twice in the summation with di�erent signs and the two terms
cancel out each other. Hence the support of the summation actually runs only over ∂Ch. The terms
with the dotted lines in Figure 2 are all canceled out.

Theorem 4.1 (Discrete integration-by-parts) For any u, v : Ωh ∪ Γh → R,
ˆ

Ωh

(Dxx
h u) v dΩh +

ˆ

Ωh

(Dx
hu) (Dx

hv) dΩh =

ˆ

∂Ch

(Dx
hu) v (n · e1) dΓ.
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Proof From the de�nitions (1) and (7),

ˆ

Ωh

(Dxx
h u) v dΩh =

∑
(xi,yj)∈Ωh

(Dxx
h u)ij vij

hi+ 1
2 ,j

+ hi− 1
2 ,j

2

hi,j+ 1
2

+ hij− 1
2

2

=
∑

(xi,yj)∈Ωh

(
ui+1,j − uij
hi+ 1

2 ,j

− uij − ui−1j

hi− 1
2 ,j

)
vij

hi,j+ 1
2

+ hij− 1
2

2

=
∑

(xi,yj)∈Ωh

(
ui+1,j − uij
hi+ 1

2 ,j

vij + vij
2

− uij − ui−1j

hi− 1
2 ,j

vij + vij
2

)
hi,j+ 1

2
+ hij− 1

2

2

From the de�nition (8),

ˆ

Ωh

(Dx
hu) (Dx

hv) dΩh =
∑

(xi,yj)∈Ωh

 ui+1,j−uij

h
i+1

2
,j

vi+1,j−vij
h
i+1

2
,j

h
i+1

2
,j

2

+
uij−ui−1j

h
i− 1

2
,j

vij−vi−1j

h
i− 1

2
,j

h
i− 1

2
,j

2

 hi,j+ 1
2

+ hij− 1
2

2

=
∑

(xi,yj)∈Ωh

 ui+1,j−uij

h
i+1

2
,j

vi+1,j−vij
2

+
uij−ui−1j

h
i− 1

2
,j

vij−vi−1j

2

 hi,j+ 1
2

+ hij− 1
2

2

and then the sum of two integrals is calculated as

ˆ

Ωh

(Dxx
h u) v dΩh +

ˆ

Ωh

(Dx
hu) (Dx

hv) dΩh =
∑

(xi,yj)∈Ωh

 +
ui+1,j−uij

h
i+1

2
,j

vi+1,j+vij
2

− uij−ui−1j

h
i− 1

2
,j

vi−1j+vij

2

 hi,j+ 1
2

+ hij− 1
2

2

=

ˆ

∂Ch

(Dx
hu) v (n · e1) dΓ.

This shows the discrete version of integration-by-parts. �

Repeating the above process in y-direction, we obtain the discrete divergence theorem.

Corollary 4.2 (Discrete divergence theorem) For any u, v : Ωh ∪ Γh → R,
ˆ

Ωh

(∆hu) v dΩh +

ˆ

Ωh

(∇hu) (∇hv) dΩh =

ˆ

∂Ch

(∇hu · n) v dΓ. (10)

4.2 Approximation of Gradient

Given the discrete solution uh approximating the continuous solution u, the derivatives of u are then
approximated by the �nite di�erences of uh in the staggered grid nodes. For example, using two
neighboring grid nodes (xi, yj), (xi+1, yj) ∈ Ωh ∪ Γh, we have

∂u

∂x

(
xi + xi+1

2
, yj

)
'

(uh)i+1,j − (uh)ij
hi+ 1

2 ,j

.

A standard result for central �nite di�erences gives

∂u

∂x

(
xi + xi+1

2
, yj

)
=
u (xi+1, yj)− u (xi, yj)

hi+ 1
2 ,j

+O
(
h2
i+ 1

2 ,j

)
.
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Since our goal in this work is to show that the gradient approximation is second order accurate and
since hi+ 1

2 ,j
≤ h, it is enough that the following approximation is second order accurate,

u (xi+1, yj)− u (xi, yj)

hi+ 1
2 ,j

'
(uh)i+1,j − (uh)ij

hi+ 1
2 ,j

The error of the approximation is simply (Dx
heh)i+ 1

2 ,j
, where eh = u−uh. Hence, hereafter we focus on

measuring the size of Dx
heh and Dy

heh, or the size of |∇heh|. Applying the discrete divergence theorem
on eh, we have ˆ

Ωh

|∇heh|2 dΩh =

ˆ

Ωh

(−∆heh) eh dΩh +

ˆ

∂Ch

(∇heh · n) eh dΓ.

The following lemma estimates the �rst integral in the right hand side of the equation above.

Lemma 4.3
´

Ωh
(−∆heh) eh dΩh = O

(
h4
)

Proof Note that −∆heh = ∆huh − ∆hu = ∆u − ∆hu is nothing but the consistency error. Using
Lemma 3.1 and Theorem 3.5, we have

ˆ

Ωh

(−∆heh) eh dΩh =
∑

(xi,yj)∈Ωh

(−∆heh)ij (eh)ij
hi− 1

2 ,j
+ hi+ 1

2 ,j

2

hi,j− 1
2

+ hi,j+ 1
2

2

=
∑

(xi,yj)∈Ω◦h

(−∆heh)ij (eh)ij
hi− 1

2 ,j
+ hi+ 1

2 ,j

2

hi,j− 1
2

+ hi,j+ 1
2

2

+
∑

(xi,yj)∈Ω∗h

(−∆heh)ij (eh)ij
hi− 1

2 ,j
+ hi+ 1

2 ,j

2

hi,j− 1
2

+ hi,j+ 1
2

2

=
∑

(xi,yj)∈Ω◦h

O
(
h2+2

)
O
(
h2
)

+
∑

(xi,yj)∈Ω∗h

O
(
h1+2

)
O
(
h2
)

= O
(
h6
)
O
(
h−2

)
+O

(
h5
)
O
(
h−1

)
= O

(
h4
)
.

Here we used the fact that since Ω is a domain in two dimensions, the number of grid nodes in Ωh or
in Ω◦h grows as O

(
h−2

)
, and since the boundary Γ is one dimensional and the grid nodes in Ω∗h are

present only near Γ, the number of grid nodes in Ω∗h grows as O
(
h−1

)
. �

4.3 Convergence of Gradient

Now let us proceed to the estimation of the second integral
´
∂Ch

(∇heh · n) eh dΓ. The estimate in

Theorem 3.5 shows that eh = O
(
h2
)
all over the region Ωh ∪ Γh. The support of ∂Ch is very near to

Γh, and a re�ned estimation of eh is sought in this subsection.

Lemma 4.4 Let vh be the solution to the problem such that −∆hvh = 1 in Ωh and vh = 0 on Γh, then

(vh)ij = O (1) · dist ((xi, yj) ,Γh) .

Proof Let v be the continuous solution of −∆v = 1 in Ω and v = 0 on Γ. Since −∆v + ∆hv = O (h)
in Ωh, for su�ciently small h, there exists a constant 1 > c > 0, independent of h, such that

−∆hv ≥ 1− c > 0.

Since −∆h

(
1

1−cv − vh
)
> 0 in Ωh and 1

1−cv− vh = 0 on Γh, the maximum principle (Lemma 3.2)

implies that

8



0 ≤ vh ≤
v

1− c
.

For (xi, yj) ∈ Ωh, let (x, y) be the closest point in Γh to (xi, yj), i.e. |(x, y)− (xi, yj)| = dist ((xi,yj) ,Γh),
then

0 ≤ (vh)ij ≤
v (xi, yj)

1− c
≤ v (x, y) +O (|(x, y)− (xi, yj)|)

1− c
, using v (x, y) = 0

≤ 1

1− c
O (dist ((xi,yj) ,Γh)) ,

and the lemma follows. �

Lemma 4.5 Let wh be the solution of

−∆hwh =

{
0 in Ω◦h
1 in Ω∗h

and wh = 0 on Γh.

Then 0 ≤ (wh)ij ≤ O (h) ·min
{
hi± 1

2 ,j
, hi,j± 1

2

}
.

Proof Since −∆hwh ≥ 0 in Ωh, Lemma 3.2 implies that the minimum is attained on Γh, so wh ≥ 0.
Similarly, since −∆hwh = 0 in Ω◦h, the maximum should be attained either on Ω∗h or on Γh. All
the values at Γh are the minimum, so the maximum is attained at some (xi∗ , yj∗) ∈ Ω∗h. The node
(xi∗ , yj∗) has at least one neighborhood in Γh, let us say (xi∗−1, yj∗) ∈ Γh, then using the fact that
(wh)i∗j∗ ≥ (wh)i∗±1,j∗ , (wh)i∗,j∗±1 leads to

(
(wh)i∗j∗ − (wh)i∗+1,j∗

hi∗+ 1
2 ,j
∗

+
(wh)i∗j∗

hi∗− 1
2 ,j
∗

)
2

hi∗− 1
2 ,j
∗ + hi∗+ 1

2 ,j
∗

+

(
(wh)i∗j∗ − (wh)i∗,j∗+1

hi∗,j∗+ 1
2

+
(wh)i∗j∗ − (wh)i∗,j∗−1

hi∗,j∗− 1
2

)
2

hi∗,j∗− 1
2

+ hi∗,j∗+ 1
2

= 1,

and

(
(wh)i∗j∗

hi∗− 1
2 ,j
∗

)
2

hi∗+ 1
2 ,j
∗ + hi∗− 1

2 ,j
∗
≤ 1

0 ≤ (wh)i∗j∗ ≤
hi∗+ 1

2 ,j
∗ + hi∗− 1

2 ,j
∗

2
hi∗− 1

2 ,j
∗ ≤ h2.

Therefore for all (xi, yj) ∈ Ωh ∪ Γh, 0 ≤ (wh)ij ≤ h2, which proves the lemma for (xi, yj) ∈ Ω◦h

because min
{
hi± 1

2 ,j
, hi,j± 1

2

}
= h in this case. Now consider the case when (xi, yj) ∈ Ω∗h. For k =

1, . . . , 4, let Pk be the neighboring point of P = (xi, yj) and wk = wh (Pk) , hk = |P − Pk|. Then we
have −∆hwh = 1 at (xi, yj) ∈ Ω∗h, which implies

2 (h1h3 + h2h4)

h1h2h3h4
(wh)i,j =

2

h1 (h1 + h3)
w1 +

2

h3 (h1 + h3)
w3

+
2

h2 (h2 + h4)
w2 +

2

h4 (h2 + h4)
w4 + 1.

(11)
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Note that since P ∈ Ω∗h, it has at least one neighboring node in Γh. Also note that hk < h implies
wk = 0. Let hmin = min {h1, h2, h3, h4} . Using the fact that wk ≤ h2, for k = 1, . . . , 4, it is not di�cult
to show

h1h2h3h4

h1h3 + h2h4
≤ hmimh and

1

hk (hk + hk±2)
wk ≤

h2

h (h+ hk±2)
≤ 1, k = 1, . . . , 4.

Applying these inequalities to (11), we have a bound for (wh)i,j

(wh)i,j ≤ 5hhmin,

which completes the proof of the lemma. �

Theorem 4.6 For each (xi, yj) ∈ Ωh,

(eh)ij = O
(
h2
) (
dist ((xi, yj) ,Γh) + min

(
hi± 1

2 ,j
, hi,j± 1

2

))
.

Proof From Lemma 3.1, there exist constants c1, c2 > 0 such that

−c1h2 ≤ −∆heh ≤ c1h2 in Ω◦h
−c2h ≤ −∆heh ≤ c2h in Ω∗h

.

Using the notations in Lemmas 4.4 and 4.5,

−∆h

((
c1h

2
)
vh +

(
c2h− c1h2

)
wh

)
=

{
c1h

2 in Ω◦h
c2h in Ω∗h

.

Using Lemmas 3.2, 4.4 and 4.5, we have

∣∣∣(eh)ij

∣∣∣ ≤ (c1h2
)

(vh)ij +
(
c2h− c1h2

)
(wh)ij

≤
(
c1h

2
)
O (1) · dist ((xi, yj) ,Γh) +

(
c2h− c1h2

)
O (h) ·min

{
hi± 1

2 ,j
, hi,j± 1

2

}
= O

(
h2
) (
dist ((xi, yj) ,Γh) + min

(
hi± 1

2 ,j
, hi,j± 1

2

))
.

This shows the theorem. �

Corollary 4.7 If (xi, yj) ∈ Ω∗h, (eh)ij = O
(
h2
)

min
(
hi± 1

2 ,j
, hi,j± 1

2

)
.

Proof Simply because dist ((xi, yj) ,Γ) ≤ min
(
hi± 1

2 ,j
, hi,j± 1

2

)
.

Corollary 4.8 If (xi, yj) ∈ Ω◦h and one of its neighborhoods belong to Ω∗h, (eh)ij = O
(
h3
)
.

Proof Simply because min
(
hi± 1

2 ,j
, hi,j± 1

2

)
= h and dist ((xi, yj) ,Γ) ≤ 2h.

Theorem 4.9 (Supra-convergence on gradient) Let u be a continuous solution to the problem (2) and
uh a discrete solution to the problem (3). Then the `2- accuracy of the gradient of ∇hu − ∇huh is
O(h2), that is,

‖∇hu−∇huh‖`2 =

√√√√ˆ
Ωh

∇he · ∇he dΩh = O(h2).
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Proof Let e = u− uh and substitute u and v with e for (10), then we obtain
ˆ

Ωh

∇he · ∇he dΩh = −
ˆ

Ωh

(∆he) e dΩh +

ˆ

∂Ch

(n · ∇he) e dΓh. (12)

Lemma 4.3 shows that the �rst integral amounts to O
(
h4
)
, and it is enough to consider the second

integral. In the de�nition of the line integral (e.g., (9)).

ˆ

∂Ch

(Dx
heh) eh (n · e1) dΓ

=
∑

(xi,yj)∈Ωh

 +
(eh)i+1,j−(eh)i,j

h
i+1

2
,j

(eh)i+1,j+(eh)i,j
2

− (e
h

)ij−(eh)i−1,j

h
i− 1

2
,j

(eh)i,j+(eh)i−1,j

2

 hi,j+ 1
2

+ hij− 1
2

2

=
∑

(xi, yj) ∈ Ωh

or (xi+1, yj) ∈ Ωh

(eh)i+1,j − (eh)ij
hi+ 1

2 ,j

(eh)i+1,j + (eh)ij
2

 +
h
i,j+1

2
+h

i,j− 1
2

2

−
h
i+1,j+1

2
+h

i+1,j− 1
2

2

 ,

all the non-zero terms in the summation appear only where (xi, yj) ∈ Ω∗h or (xi+1, yj) ∈ Ω∗h ; in

the other cases,
(
hi,j+ 1

2
+ hi,j− 1

2

)
−
(
hi+1,j+ 1

2
+ hi+1,j− 1

2

)
= (2h) − (2h) = 0. When(xi, yj) ∈ Ω∗h

or (xi+1, yj) ∈ Ω∗h, dist ((xi, yj) ,Γh) ≤ 2h and dist ((xi+1, yj) ,Γh) ≤ 2h, and Corollaries 4.7 and 4.8

state that
eij+ei+1,j

2 = O(h3) and
ei+1,j−eij
h
i+1

2
,j

= O(h2). Combining the estimates,

ˆ
∂ch

(Dx
he)e(n · e1)dΓ = O(h5)

∑
(xi, yj) ∈ Ω∗h

or (xi+1, yj) ∈ Ω∗h

(hi,j+ 1
2

+ hi,j− 1
2
)− (hi+1,j+ 1

2
+ hi+1,j− 1

2
)

2

= O(h5) ·O(h−1) ·O(h) = O(h5)

Here, we use the fact that the number of elements in Ω∗h is O(h−1), since Γ is one dimensional. Re-
peating the same process on the other term in

´
∂ch

(n ·∇he)edΓ =
´
∂ch

(Dx
he)e(n ·e1)dΓ+

´
∂ch

(Dy
he)e(n·

e2) dΓ completes the proof. �

5 Numerical Test

The linear system was solved by the ILU-preconditioned BiCGSTAB method [17] with stopping criteria
on residual ‖rn‖ < 10−10

∥∥r0
∥∥. The error and its gradient in the L2 norm are calculated by the formula

in the section of discrete divergence theorem.

Example 5.1 (Poisson equation in two dimensions)

Assume Ω ⊂ R2 to be a circle of center (0, 0) and radius 1. Choose f : Ω→ R and g : Γ→ R such
that u (x, y) = y

(x+2)2+y2 is the exact solution of the problem

−∆u = f in Ω

u = g on Γ.
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grid ‖u− uh‖L∞ order ‖u− uh‖L2 order ‖∇u−∇huh‖L2 order
402 1.28× 10−4 9.52× 10−5 6.08× 10−4

802 3.35× 10−5 1.93 2.45× 10−5 1.96 1.66× 10−4 1.87
1602 8.54× 10−6 1.97 6.24× 10−6 1.97 4.35× 10−5 1.93
3202 2.16× 10−6 1.98 1.57× 10−6 1.99 1.11× 10−5 1.97

Table 1: Convergence rate for the Poisson problem in two dimensions, example 5.1

grid ‖u− uh‖L∞ order ‖u− uh‖L2 order ‖∇u−∇huh‖L2 order
203 2.22× 10−3 1.34× 10−3 6.08× 10−3

403 5.63× 10−4 1.97 3.38× 10−4 1.98 1.72× 10−3 1.98
803 1.40× 10−4 2.00 8.41× 10−5 2.00 4.29× 10−4 2.00
1603 3.48× 10−5 2.00 2.09× 10−5 2.00 1.07× 10−4 2.00

Table 2: Convergence rate for the Poisson problem in three dimensions, example 5.2

Table 1 con�rms our theoretical results that the numerical solution and its gradient are both second
order accurate.

Example 5.2 (Poisson equation in three dimensions)

Assume Ω ⊂ R3 to be a sphere of center (0, 0, 0) and radius 1. With exact solution u(x, y, z)= exp−(x2+y2+z2)

(2+x)2+y2 ,

choose f :Ω→ R and g : Γ→ R accordingly as the previous example. Table 2 shows that the numerical
solution and its gradient are both second order accurate.

Example 5.3 (Helmholtz-Hodge projection)

In this example, we consider an important application of the Shortley-Weller method on �uid �ow
with free surface. The incompressible Navier-Stokes equations consist of momentum equation and
incompressibility-constraint equation, and can be written as the momentum equation without pressure
term applied with the Hodge-Helmotz projection. A vector �eld U∗ is uniquely decomposed into a sum
of divergence-free vector �eld U and gradient �eld ∇p. The Hodge-Helmotz projection of U∗ takes
the divergence-free vector �eld dropping the gradient �eld in the decomposition. In this example,
we implement the projection in the discrete setting by applying the Shortley-Weller method on the
following Poisson equation.

−∆hph = ∇h · U∗ in Ωh

ph = 0 on Γh

At the free surface, Dirichlet boundary condition is imposed [15]. The projection of U∗ is calculated

as Uh = U∗−∇hPh. For the test, we take Ω =
{

(x, y) ∈
[
− 3

2 ,
3
2

]
×
[
− 3

2 ,
3
2

]
:
(

x
1.1

)2
+
(

y
0.8

)2 ≤ 1
}
and

U∗ = (cos (πx) sin (πy) ,− sin (πx) cos (πy))+∇
(
ey−x

2
((

x
1.1

)2
+
(

y
0.8

)2 − 1
))

. Table 3 shows that the

approximation Uh is second order accurate, which is due to the second order convergence of ∇hph.

6 Conclusion

We have introduced the proof that the solution gradient of the Shortley-Weller method is second order
accurate in general domains. For the proof, we presented the new estimates for eh and the novel
discrete divergence theorem suited in the discrete setting of the Shortley-Weller method.
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grid ‖U − Uh‖L2 order
402 6.85× 10−3

802 1.73× 10−4 1.98
1602 4.34× 10−5 1.99
3202 1.08× 10−5 2.00

Table 3: Convergence rate for the Hodge-Helmotz projection, example 5.3

Our proof was presented only in two dimensions, but its extension to three dimensions would be
a line-by-line substitution, which we omit and put o� to a future work. A thorough numerical test in
[13] suggest that the solution gradient is second order accurate not only in L2 but also in L∞. Our
current article proved the former only and we plan to discuss the latter issue in future work.
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