
Analyses on the Finite Difference Method by Gibou et al. for

Poisson equation

Gangjoon Yoon∗ and Chohong Min†

July 9, 2015

Abstract

Gibou et al. in [4] introduced a finite difference method for solving the Poisson equation in
irregular domains with the Dirichlet boundary condition. Contrary to its great importance, its
properties have not been mathematically analyzed, but have just been numerically observed. In
this article, we present two analyses for the method. One proves that its solution is second order
accurate, and the other estimates the condition number of its linear system. According to our
estimation, the condition number of the unpreconditioned linear system is of size O (1/ (h · hmin)),
and each of Jacobi, SGS, and ILU preconditioned systems is of size O(h−2). Furthermore, our
analysis shows that the condition number of MILU is of size O(h−1), the most successful one.

1 Introduction

The Shortley-Weller method [13] is a basic finite difference method for solving the Poisson equation
with the Dirichlet boundary condition. It is a simple sum of the central finite differences in the
Cartesian directions. Though implemented in uniform grid, the method can handle arbitrarily shaped
domains. Its solution is second order accurate to the analytic solution. Usually the gradient of a second
order accurate solution is only first order accurate, however the solution exhibits a supra-convergence
behaviour. Its gradient is also second order accurate [10].

Though its excellence in efficiency and accuracy, the Shortley-Weller method constitutes a non-
symmetric linear system. Only in one dimension, the linear system can be cast in a symmetric form
[14]. Since the Laplacian is self-adjoint, the method that approximates the operator is expected to
be symmetric. Gibou et al. [4] introduced a simple modification of the Shortley-Weller method that
results in a symmetric linear system. Numerical tests [10] suggest that the solution is still second order
accurate.

Compared to the Shortley-Weller method, the method by Gibou et al. has an advantage to solve
symmetric linear system. The gain, however, turns out to have not come free. The supra-convergence
of the Shortley-Weller method is lost with the gain. The solution gradient is only first order accurate.
Both methods have their own pros and cons as described above, and a choice between them depends
on the characteristic of the given problem. For example, in application to incompressible fluid flows
the solution gradient is a physical variable and the Shortley-Weller method would be preferred, and
in application to heat flows the method by Gibou et al. would be desired.

Contrary to their great importance, the convergence properties of the Shortley-Weller method and
the method by Gibou et al. have just been numerically observed. The numerical tests, which are
merely finite however many, are not enough to ascertain the properties. Though the Shortley-Weller
method [13] was introduced in 1938, it is very recent to see some mathematical analyses on the gradient
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of its solution. In 2003, Li et al. [7, 9] showed the second order accuracy in rectangular domains, and
Li et al. [8] the 1.5 order accuracy in polygonal domains. In 2014, we in [16] showed the second order
accuracy in general domains.

An important aspect of a Poisson solver is the size of the condition number of its associated linear
system. A large-sized condition number not only delays the convergence to solve but also drops many
significant digits in the approximation. The seminal work of Gustafsson [6] shows that only the mod-
ified incomplete-LU (MILU) preconditioner among many incomplete-LU (ILU) type preconditioners
enhances the condition number of the standard finite difference Poisson solver with different order
of magnitude. His work can deal only with rectangular domains. It is also very recent to see such
estimations in irregular domains. We in [15] arrived at the same conclusion for the Shortley-Weller
method. Only the MILU enhances the condition number with different order of growth with respect
to grid step size h.

In this article, we introduce two analyses for the method by Gibou et al. One proves that the
solution is second order accurate to the analytic solution. The other estimates the condition number
of its linear system with and without preconditioners. The estimation shows that the unpreconditioned
linear system has a very large condition number of size O (1/ (h · hmin)), where h is the default step
size of uniform grid and hmin is the minimum step size that is usually much smaller than h. We then
show that Jacobi, symmetric Gauss-Seidel (SGS), and ILU preconditioners on the linear system reduce
the condition number from O (1/ (h · hmin)) to O

(
h−2

)
. Finally, we show that MILU preconditioner

exels the others by gaining O
(
h−1

)
size.

2 Convergence analysis

Consider a uniform grid hZ2 with step size h. Let Ωh be the set of nodes of the grid belonging to Ω,
and Γh be the set of intersection points between Γ and grid lines. A grid node (xi, yi) ∈ Ωh has four
neighboring nodes in Ωh∪Γh, (xi±1, yj) and (xi, yj±1) in Ωh∪Γh, as illustrated in Figure 1. Let hi+ 1

2 ,j

denote the distance from (xi, yj) to its neighbor (xi+1, yj). Other distances hi− 1
2 ,j
, hi,j+ 1

2
, hi,j− 1

2
are

similarly defined. The work of Gibou et al. [4] solves the Poisson equation with Dirichlet boundary
condition {

−∆u = f in Ω
u = g on Γ,

(1)

by solving the discrete equation{
−∆huh (xi, yj) = f (xi, yj) , (xi, yj) ∈ Ωh

uh (xi, yj) = g (xi, yj) , (xi, yj) ∈ Γh.
(2)

Here the discrete Laplacian operator ∆hu : Ωh → R is defined as

− (∆hu)ij :=

(
uij − ui+1,j

hi+ 1
2 ,j

+
uij − ui−1,j

hi− 1
2 ,j

)
1

h
+

(
uij − ui,j+1

hi,j+ 1
2

+
uij − ui,j−1

hi,j− 1
2

)
1

h
. (3)

The equations for each node point (xi, yj) constitute a symmetric linear system whose matrix is
an M-matrix. It was numerically observed in [10] that the numerical solution is second order accurate
and the gradient of the solution is only first order accurate.

In this section, we analyze the consistency and convergence accuracy of the Gibou et al. method,
which shows that the discrete solution approximates the continuous solution with the second order
accuracy. Though the consistency order of the discretization ranges from the zero to the second, its
convergence order is the second order everywhere.

Definition 2.1 Ω∗h ⊂ Ωh denotes the set of grid nodes adjacent to Γh, and Ω◦h = Ωh \ Ω∗h.
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Figure 1: Grid nodes in Ωh are marked by ◦ and nodes in Γh by •. A grid node (xi, yj) ∈ Ωh has four
neighboring nodes in Ωh ∪ Γh.

In Definition 2.1, we divides the nodes in Ωh into two sets. Every node (xi, yj) ∈ Ω◦h has the four
neighboring points inside Ωh so that hi± 1

2 ,j
= hi,j± 1

2
= h. On the other hand, if (xi, yj) ∈ Ω∗h, then at

least one of its four neighboring points belongs to Γh.

Lemma 2.2 (Consistency error) For a smooth function u : Ω→ R,

|∆hu−∆u| ≤

{
C1h

2, in Ω◦h
C2 + C3h, in Ω∗h,

(4)

where C1, C2, and C3 are constants independent of h.

Proof A simple Taylor series expansion on u shows the consistency error (4) with constants C1, C2,
and C3 dependent only on u and Ω. �

The discrete equation (2) for each (xi, yj) ∈ Ωh forms a symmetric linear system whose matrix is
an M -matrix [12]. An important property of an M -matrix is that its inverse is non-negative in every
entry, from which the discrete maximum principle follows.

Lemma 2.3 (Discrete maximum principle) If −∆hν ≥ 0, then the minimum value of ν should
be achieved on Γh. Similarly, if −∆hν ≤ 0, then the maximum value of ν should be achieved on Γh.
Likewise, if −∆hν1 ≥ −∆hν2 in Ωh and ν1 ≥ ν2 on Γh, then ν1 ≥ ν2 on Ωh ∪ Γh.

Lemma 2.4 Let wh be the solution of

−∆hwh =

{
0 in Ω◦h
1 in Ω∗h

and wh = 0 on Γh.

Then 0 ≤ wh ≤ h2 in Ωh.

Proof Since −∆hwh ≥ 0 in Ωh and wh = 0 on Γh, the maximum principle implies that wh ≥ 0 in Ωh.
Furthermore, the maximum of wh is attained at some point (xi∗ , yj∗) ∈ Ω∗h. Belonging to Ω∗h, at least
one of the four neighborhood points of (xi∗ , yj∗), say (xi∗−1, yj∗), is a boundary point. Since all the
terms in −∆hwh(xi∗, yj∗) are nonnegative and wh(xi∗−1, yj∗) = 0, we have

wh(xi∗ , yj∗)

hhi∗− 1
2 ,j

∗
≤ −∆hwh(xi∗ , yj∗) = 1, or wh(xi∗ , yj∗) ≤ hhi∗− 1

2 ,j
∗ ≤ h2,

which proves the lemma. �
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Lemma 2.5 Let vh be the solution of

−∆hvh =

{
1 in Ω◦h
0 in Ω∗h

and vh = 0 on Γh.

Then 0 ≤ vh ≤ Cv in Ωh for sufficiently small h, where Cv is independent of h.

Proof Since −∆hvh ≥ 0 in Ωh and vh = 0 on Γh, the maximum principle implies that vh ≥ 0 in Ωh.
Consider an analytic solution v : Ω→ R satisfying −∆v = 2 in Ω and v = 0 on Γ. Lemma 2.2 implies
that for sufficiently small h, we have

−∆h

(
v − vh

)
=

{
−∆hv − 1 ≥ 0, in Ω◦h
−∆hv ≥ −C̃, in Ω∗h,

with some constant C̃ > 0. Using the discrete function wh given in Lemma 2.4, we have an inequality

−∆h

(
v − vh + C̃wh

)
≥ 0 in Ωh.

Since v− vh + C̃wh = 0 on Γh, we have v− vh + C̃wh ≥ 0. This inequality and Lemma 2.4 imply that

0 ≤ vh ≤ v + C̃h2.

Taking Cv = max |v|+ C̃ gives the estimate 0 ≤ vh ≤ Cv for some constant C independent of h. �

Theorem 2.6 Let u be a continuous solution to the problem (1) and uh a discrete solution to the
problem (2). Then we have

|u− uh| = O(h2) in Ωh.

Proof Using Lemmas 2.4 and 2.5, the consistency lemma reads

|∆hu−∆u| ≤ C1h
2(−∆hvh) + (C2 + C3h)(−∆hwh).

On the other hand, since ∆u = ∆huh = f in Ωh, we have

−∆h

(
C1h

2vh + (C2 + C3h)wh − (u− uh)
)
≥ 0

−∆h

(
C1h

2vh + (C2 + C3h)wh + (u− uh)
)
≥ 0.

Since vh = wh = u− uh = 0 on Γh, the maximum principle implies that

|u− uh| ≤ C1h
2vh + (C2 + C3h)wh

≤ C1Cvh
2 + (C2 + C3h))h2 = h2(C1Cv + C2 + C3h),

which shows the convergence estimate |u− uh| = O(h2) in Ωh. �

3 Condition number of the preconditioned matrices

In this section, we consider the application of basic preconditioning techniques to the linear system that
is associated with the Gibou et al. method. Before we proceed to the discussion of the preconditioners,
we provide the estimation of the condition number of the linear system associated with the Gibou et
al. method.

We may assume that the domain Ω is a subset of {(x, y)R2 : 0 ≤ x ≤ a, 0 ≤ y ≤ b}. Let
Ωh := {(ih, jh) ∈ Ω : 1 ≤ i ≤ N, 1 ≤ j ≤ M} with the lexicographical order on Ωh [3]. Let K := |Ωh|
and xk := (ikh, jkh) ∈ Ωh for k = 1, . . . ,K according to the order. Throughout this section, let A be
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the K×K matrix corresponding to the discrete Poisson equation (2), which is symmetric and positive
definite. The entry ar,s of A with xr = (irh, jrh) and xs = (ish, jsh) are given as

ar,s =


− 1
h2 if is = ir ± 1 and jr = js

1
h

(
1

h
ir+ 1

2
,jr

+ 1
h
ir− 1

2
,jr

+ 1
h
ir,jr+ 1

2

+ 1
h
ir,jr− 1

2

)
if s = r

− 1
h2 if is = ir and js = jr ± 1

0 otherwise

(5)

where hir± 1
2 ,jr

and hir,jr± 1
2

are given as

hir+ 1
2 ,jr

=

{
h, if ir+1 = ir + 1

|irh− xΓ|, if ∃xΓ = (xΓ, yΓ) ∈ Γ such that irh < xΓ < (ir + 1)h
(6)

and the others are given in the same fashion.

Theorem 3.1 Let λ be an eigenvalue of A, then 0 < C ≤ λ ≤ 8
h·hmin for some C > 0 independent of

h and hmin = min(ih,jh)∈Ωh

{
hi± 1

2 ,j
, hi,j± 1

2

}
.

Proof Let λ be an eigenvalue of A. Then λ is a positive real number because A is symmetric positive
definite. In order to find an upper bound of λ, we apply the Gerschgorin Circle Theorem. Since A is
diagonally dominant, the Gerschgorin Circle Theorem implies that

λ ≤ ak,k +
∑
j 6=k

|ak,j | ≤ 2ak,k

for some k = 1, . . . ,K. From (5), we obtain that ak,k ≤ 4
h·hmin for all k = 1, . . . ,K, which gives an

upper bound 8
h·hmin for λ. On the other hand, applying the Perron-Frobenius Theorem to the M-matrix

A−1 shows that the smallest eigenvalue λmin of A is simple and has a positive eigenvector u ∈ RK .
We may assume maxi=1,...,K ui = 1. Regarding u as a discrete function defined on Ωh ∪Γh with u = 0
on Γh, we can see that with the help of wh and vn given in Lemmas 2.4 and 2.5, we have

−∆hu = λminu ≤ λmin
[
−∆h(vh + wh)

]
in Ωh.

And the maximum principle implies the inequality u ≤ λmin(vh + wh) in Ωh. Applying Lemmas 2.4
and 2.5, we finally obtain

1 = max
Ωh

u ≤ λmin max
Ωh

(vh + wh) ≤ λmin(Cv + h2).

Since we may assume h < 1, we conclude that λmin ≥ C > 0 for a constant C independent of h, which
completes the proof. �

We have shown that the condition number of the matrix A stemmed from the linear system (2) is
bounded by O(1/(h · hmin)). Table 1 suggests that the bound is tight. So the smaller hmin becomes,
the worse the condition number of A grows. Indeed, the following theorem proves that the lower and
upper bounds are tight.

Theorem 3.2 Let λmin and λmax be the smallest and largest eigenvalues of A in magnitude, respec-

tively. Then λmin < 2π2 and λmax >
1

h·hmin . Therefore we have κ (A) = O
(

1
h·hmin

)
.
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Proof At first, we shall show that λmax >
1

h·hmax . Let P = (xi, yj) be the grid node nearest to the

boundary so that hmin = min
{
hi± 1

2 ,j
, hi,j± 1

2

}
. Then take a vector eP ∈ R|Ωh| of which the element

corresponding to P is one and the other elements are all zero. Taking a Raleigh quotient, we have

λmax = max
06=v∈R|Ωh|

〈Av, v〉
〈v, v〉

≥ 〈AeP , eP 〉
〈eP , eP 〉

=
1

h

(
1

hi− 1
2 ,j

+
1

hi+ 1
2 ,j

+
1

hi,j− 1
2

+
1

hi,j+ 1
2

)
>

1

h · hmin
.

In order to show the estimate for λmin, we choose a rectangle R ⊂ Ω whose boundary is aligned with
the grid lines. Let Rh = R ∩ Ωh. Any vector v ∈ R|Rh| can be extended to ṽ ∈ R|Ωh| by taking zero
values outside Rh. Let B be the associated matrix of the five-point finite difference method. Then
Aṽ|Rh = Bv and Aṽ|Ωh\Rh = 0, which implies 〈Aṽ, ṽ〉 = 〈Bv, v〉 and

λmin = min
0 6=u∈R|Ωh|

〈Au, u〉
〈u, u〉

≤ min
06=v∈R|Rh|

〈Aṽ, ṽ〉
〈ṽ, ṽ〉

= min
06=v∈R|Rh|

〈Bv, v〉
〈v, v〉

.

In [5], λmin (B) = min
06=v∈R|Rh|

〈Bv,v〉
〈v,v〉 is exactly given as 8

sin2(πh2 )
h2 which is less than 2π2. Combining

the results of Theorem 3.1, we have κ (A) = O
(

1
h·hmin

)
, which completes the proof. �

3.1 Jacobi preconditioning

We decompose A as
A = L+D + U

where L,D, and U = LT are the diagonal, the strict lower triangular, and the upper triangular parts
of A, respectively. The Jacobi preconditioner is the diagonal matrix D whose diagonal entries are
the same as A. The Jacobi preconditioning on the linear system results in D−1Au = D−1b. The
preconditioning is, in other words, to scale each equation so that its diagonal entry becomes one.
Applying the Jacobi preconditioning to its linear equation, the Gibou et al. method now reads

uij −
1

h
i+ 1

2
,j

1
h
i+ 1

2
,j

+ 1
h
i− 1

2
,j

+ 1
h
i,j+ 1

2

+ 1
h
i,j− 1

2

ui+1,j

−
1

h
i− 1

2
,j

1
h
i+ 1

2
,j

+ 1
h
i− 1

2
,j

+ 1
h
i,j+ 1

2

+ 1
h
i,j− 1

2

ui−1,j

−
1

h
i,j+ 1

2

1
h
i+ 1

2
,j

+ 1
h
i− 1

2
,j

+ 1
h
i,j+ 1

2

+ 1
h
i,j− 1

2

ui,j+1

−
1

h
i,j− 1

2

1
h
i+ 1

2
,j

+ 1
h
i− 1

2
,j

+ 1
h
i,j+ 1

2

+ 1
h
i,j− 1

2

ui,j−1 =
hfi,j

1
h
i+ 1

2
,j

+ 1
h
i− 1

2
,j

+ 1
h
i,j+ 1

2

+ 1
h
i,j− 1

2

. (7)

It can be observed from the equation (7) that the eigenvalue estimation for the Jacobi-preconditioned

matrix is almost independent of hmin = min(ih,jh)∈Ωh

{
hi± 1

2 ,j
, hi,j± 1

2

}
, while that for the original ma-

trix is dependent. Thus, the presence of grid nodes too near the boundary is not problematic in the
Jacobi-preconditioned matrix. Precisely, let a grid node (xi, yj) be very near the boundary to the left.
As it gets nearer and nearer, hi− 1

2 ,j
→ 0 and the discretization becomes

uij − 0 · ui+1,j − 1 · g (xi−1, yj)− 0 · ui,j−1 − 0 · ui,j+1 = 0 · fij , or

uij = g (xi−1, yj) .
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So the equation makes a diagonal block split from the matrix and the eigenvalue of the diagonal
block is one. Hence, the presence of grid nodes very near the boundary actually makes rather a benign
effect on Jacobi-preconditioned matrix, contrary to its bad effect on the original matrix. Now, we
prove the observation as follows.

Theorem 3.3 For any eigenvalue λ of the Jacobi-preconditioned matrix, we have

0 <
h2

4Cv + 4h3

hmin

≤ λ ≤ 2. (8)

Furthermore, if hmin ≥ h3, then we have 0 < Ch2 ≤ λ ≤ 2 for some constant C = C (Ω).

Proof Let λ be an eigenvalue of D−1A and u ∈ CK its corresponding eigenvector. Since all the
diagonal elements of D are positive, let D

1
2 denote the square root matrix of D. Then we can see that

D−1Au = λu if and only if D−
1
2AD−

1
2D

1
2u = λD

1
2u. Thus, the positive definiteness of D−

1
2AD−

1
2

verifies that λ > 0 and u ∈ RK . Since D−1A is diagonally dominant and
∑K
j=1 |a

−1
ii aij | ≤ 2, the

Gerschgorin Circle Theorem implies λ ≤ 2.
On the other hand, we may assume that maxi=1,...,K ui = 1. From (5), we have

Au = λDu ≤

{
λ 4
h2 , in Ω◦h

λ 4
hhmin

, in Ω∗h
(9)

Regarding u as a discrete function on Ωh with u = 0 on Γh, we have −∆hu = Au in Ωh, and using wh
and vh in Lemmas 2.4 and 2.5, we obtain

−∆hu ≤ λ 4
h2

(
−∆hvh

)
+ λ 4

hhmin

(
−∆hwh

)
in Ωh

= −∆h

(
λ 4
h2 vh + λ 4

hhmin
wh
)

in Ωh.

Applying the maximum principle in Lemma 2.3 to this inequality above and using Lemmas 2.4 and
2.5, we induce that

u ≤ λ 4
h2 vh + λ 4

hhmin
wh ≤ λ

h2

(
4Cv + 4h3

hmin

)
.

Consequently, we obtain u ≤ λh−2
(
4Cv + 4h3

hmin

)
in Ωh so that 1 ≤ λh−2

(
4Cv + 4h3

hmin

)
because

maxi=1,...,K ui = 1. Combining λ ≤ 2, we obtain the bounds (8) for λ. If hmin ≥ h3, furthermore, then

C−1 := 4Cv + 4h3

hmin
≤ 4Cv + 4. In this case, λ ≥ Ch2, which completes the proof. �

Remark 3.4 In [15], we showed that most domains with smooth boundary as well as rectangular
domains satisfy hmin = O(h3). The domain Ω is called to have the general intersection property if the
cumulative distribution function p(ν) defined by

p(ν) := |{(xi, yj) ∈ Ωh : dist ((xi, yj),Γh) ≤ ν}| (10)

is almost linear, i.e, p(ν) = O(h−2ν). Most domains have the general intersection property (see Table
1 for example and [15] for details). Note that when the cumulative distribution function p(ν) is almost
linear, then for α > 2, p(hα) = O(hα−2) and it means hmin ≥ hα for sufficiently small h.

Corollary 3.5 If hmin ≥ h3, the condition number of the Jacobi preconditioned matrix is bounded by
O(h−2).

The Jacobi case on Table 2 shows that the bound is tight. We observe that the Jacobi-preconditioning
discretization (7) is preferred than the original discretization (2) in two senses. Its associated matrix
has much smaller condition number (O(h−2)) than that of the original one (O( 1

h·hmin )), which becomes

O(h−4) when hmin ≥ h3. This is due to the fact that the presence of grid nodes very near the boundary
makes a malicious one in the original one. Also, the Gerschgorin circles of the matrix A are wide
spread and, however, the Jacobi preconditioning collocates the circles sharing the same center. All the
concentration of circles enhances the condition number of the matrix.
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3.2 SGS and ILU preconditioning

In order to enhance the condition number, we consider preconditioning technique. The Jacobi and
Symmetric Gauss-Seidal (SGS) preconditioners for A are D−1A and (D + L)D−1(D + U). Also the
ILU and Modified ILU (MILU) preconditioners M for A are given as M = (E +L)E−1(E +U) where
E is obtaining from the conditions

(E + LE−1U)ii = Dii, i = 1, . . . ,K,

K∑
j=1

(E + LE−1U)ij = Dii, i = 1, . . . ,K. (11)

for ILU and MILU, respectively. Here Cij denotes the ij entry element of a matrix C. We can show that
the Jacobi preconditioning is invariant under SGS, ILU and MILU preconditioning. In the following,
we show it only for SGS and the proofs for ILU and MILU are almost the same.

Theorem 3.6 (SGS+Jacobi = SGS) Let A be the associated matrix of the Gibou et al. method,
and let D be its Jacobi preconditioner and finally let MA be its SGS preconditioner. Then

M−1
A A = M−1

D−1A(D−1A)

where MD−1A is the SGS preconditioner for D−1A.

Proof Decompose A as A = L+D+U where L,D, and U are the diagonal, the strict lower triangular,
and the upper triangular parts of A, respectively. Then the SGS preconditioner MA for A is given
as MA = (D + L)D−1(D + U). Likewise, since D−1A = D−1L + I + D−1U, the SGS preconditioner
MD−1A for D−1A is given as MD−1A = (I +D−1L)(I +D−1U). Then, using D(I +D−1L) = (D+L)
and (I +D−1U) = D−1(D + U), we have

DMD−1A = D(I +D−1L)(I +D−1U) = (D + L)(I +D−1U) = (D + L)D−1(D + U) = MA,

and this shows the theorem. �

The theorem above shows that the three preconditioners are actually applied on top of the appli-
cation of Jacobi. Hence their effects are at least as good as Jacobi; Table 2 confirms this.

3.3 Modified ILU preconditioning

Now, we consider the MILU preconditioner of A in order to enhance the condition number. The MILU
precondition M is given as M = (E + L)E−1(E + U) where E is obtained from the conditions (11).
In this case, M = (L+ E)E−1(U + E) is written as

M = L+ LE−1LT + LT + E = A+R (R := LE−1LT + E −D). (12)

Let e(ik,jk) be the diagonal element of E corresponding to the node point xk = (ikh, jkh) for
k = 1, . . . ,K. From (11) and (12), we have

e(i1,j1) = a1,1 and e(ik,jk) = ak,k−
`ik− 1

2 ,jk

e(ik−1,jk)
(`ik− 1

2 ,jk
+`ik−1,jk+ 1

2
)−

`ik,jk− 1
2

e(ik,jk−1)
(`ik,jk− 1

2
+`ik+ 1

2 ,jk−1)

(13)
and all the entries e(i,j) are determined recursively. Here `ik− 1

2 ,j
, `ik−1,jk+ 1

2
, `ik,jk− 1

2
, `ik+ 1

2 ,jk−1 are
defined as

`ik− 1
2 ,jk

=

{
h−2, if

(
(ik − 1)h, jkh

)
∈ Ωh

0, otherwise
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s

s

s

s s(i − 1, j)
(i, j)

`i,j+ 1
2

`i,j− 1
2

`i− 1
2
,j

`i+ 1
2
,j

(i + 1, j)

(i, j − 1)

(i, j + 1)

(a) Matrix A

c

s

s

s

c

c

c c

r(i−1,j+1) :=
`
i− 1

2
,j

`
i−1,j+ 1

2
e(i−1,j)

r(i+1,j−1) :=
`
i+ 1

2
,j−1

`
i,j− 1

2
e(i,j−1)

−r(i−1,j+1) − r(i+1,j−1)

(b) Matrix R

Figure 2: Matrices A and R = LE−1LT + E −D

and

`ik−1,jk+ 1
2

=

{
h−2, if

(
(ik − 1)h, jkh

)
,
(
(ik − 1)h, (jk + 1)h

)
∈ Ωh

0, otherwise

and `ik,jk− 1
2
, `ik+ 1

2 ,jk−1 are defined for the points
(
ikh, (jk − 1)h

)
,
(
(ik + 1)h, (jk − 1)h

)
in the same

way. In order to estimate the values of e(ik,jk), we need the following lemma.

Lemma 3.7 For k1 = i1 + j1, let {cn}∞n=k1
be a sequence defined recursively as

ck1 = 4 and cn+1 = 4− 4

cn
, n ≥ k1. (14)

Then, we have

cn ≥ 2 +
2

n
, for n ≥ k1.

Proof Let {cn}∞n=k1
be the sequence defined as (14). The lemma is shown by the mathematical

induction. Assume that cn ≥ 2 + 2/n, for n = k1, . . . , k. Then

ck+1 = 4− 4

ck
≥ 4− 2k

k + 1
= 2 +

2

k + 1
,

and this proves the lemma. �

Theorem 3.8 Let M = (L + E)E−1(U + E) be the MILU preconditioner for A. Then, for every
diagonal element e(ik,jk) of E corresponding to the node (ikh, jkh) ∈ Ωh, we have

h2e(ik,jk) ≥ 2 +
2

ik + jk
for k = 1, . . . ,K

and, therefore,

‖e(ik,jk)‖∞ ≥ 2h−2 +
2

a+ b
h−1.

9



Proof First, we shall show that for the sequence {cn}∞n=k1
defined in (14), we have

h2e(ik,jk) ≥ cik+jk , k = 1, . . . ,K. (15)

Since h2e(i1,j1) ≥ ck1
= 4, the inequality holds for k = 1. Now, we assume that there exists τ ≥ 2 such

that for all k = 1, . . . , τ − 1
h2e(ik,jk) ≥ cik+jk .

From (13), it is not difficult to see that all the entries e(ik,jk) are positive and we obtain

h2e(iτ ,jτ ) =h2aτ,τ − h2
`iτ− 1

2 ,jτ

e(iτ−1,jτ )
(`iτ− 1

2 ,jτ
+ `iτ−1,jτ+ 1

2
)− h2

`iτ ,jτ− 1
2

e(iτ ,jτ−1)
(`iτ ,jτ− 1

2
+ `iτ+ 1

2 ,jτ−1)

≥ 4− 2

h2e(iτ−1,jτ )
− 2

h2e(iτ ,jτ−1)

≥ 4− 4

ciτ+jτ−1
= ciτ+jτ .

Thus, the mathematical induction verifies the relations (15). Applying the relations (15) to Lemma
3.7 gives

h2e(ik,jk) ≥ cik+jk ≥ 2 +
2

ik + jk
, k = 1, . . . ,K,

and this proves the first claim of the theorem. Using the lower bounds and the relations ik ≤ N ≤ a/h
and jk ≤M ≤ b/h, we also obtain

‖h2e(ik,jk)‖∞ ≥ 2 +
2

N +M
≥ 2 +

2

a+ b
h,

which completes the proof. �

Now, we are ready to estimate the condition number of the MILU preconditioned matrix M−1A.
We can show that all the eigenvalues of M−1A are real and positive. Moreover, the minimum and
maximum eigenvalues of M−1A are given as

λmin = min
v∈RK

〈Av, v〉
〈Mv, v〉

and λmax = max
v∈RK

〈Av, v〉
〈Mv, v〉

(16)

and 〈Av, v〉/〈Mv, v〉 is written in the form

〈Av, v〉
〈Mv, v〉

=
1

1 + 〈Rv, v〉/〈Av, v〉
(17)

for the matrix R = M −A (see (12) and (b) of Fig. 2 for its entries). For v 6= 0, we can write

〈Av, v〉 =−
∑
r

∑
s>r

ars(vr − vs)2 +
∑
r

v2
r

∑
s

ars

≥
∑
k

(`ik+ 1
2 ,jk

(v(ik,jk) − v(ik+1,jk))
2 + `ik,jk+ 1

2
(v(ik,jk) − v(ik,jk+1))

2)
(18)

Applying the zero row sum property of R and Theorem 3.8, and using the inequality (x + y)2 ≤

10



2(x− z)2 + 2(y − z)2, we also have

−〈Rv, v〉 =
∑
r

∑
s>r

rrs(vr − vs)2 =
∑
k

r(ik−1,jk+1)(v(ik,jk) − v(ik−1,jk+1))
2

=

K∑
k=2

`ik− 1
2 ,jk

`ik−1,jk+ 1
2

e(ik−1,jk)
(v(ik,jk) − v(ik−1,jk+1))

2

≤ a+ b

(a+ b) + h

K∑
k=1

(`ik+ 1
2 ,jk

(v(ik,jk) − v(ik+1,jk))
2 + `ik,jk+ 1

2
(v(ik,jk) − v(ik,jk+1))

2)

≤ a+ b

(a+ b) + h
〈Av, v〉.

Thus, we obtain the inequalities

0 ≤ −〈Rv, v〉
〈Av, v〉

≤ a+ b

(a+ b) + h
. (19)

In summary, we have the following.

Theorem 3.9 Let λ be an eigenvalue of the MILU preconditioned matrix, then

λmin = 1 ≤ λ ≤ 1 +
a+ b

h
= O(h−1).

Proof Let λ be an eigenvalue of the MILU preconditioned matrix M−1A. Using the symmetry of A
and E ≥ 0, we can show that λ > 0. From (19), we have that

h

a+ b+ h
≤ 1 +

〈Rv, v〉
〈Av, v〉

≤ 1, ∀v 6= 0,

and applying these inequalities above into (16) and (17) gives

1 ≤ λ ≤ 1 +
a+ b

h
.

On the other hand, from (11) and (12), A and M have the same row sums, that is

Ax = Mx, x = (1, . . . , 1)T ∈ RK ,

and this shows λmin = 1, which completes the proof. �

Corollary 3.10 The ratio of the maximum and minimum eigenvalues of the MILU preconditioned
matrix is bounded by O

(
h−1

)
.

We note that when the domain Ω is a rectangle, the Gibou et al. scheme becomes the standard five
point scheme, and Theorem 3.9 and its corollary cover the results for the standard five point scheme
on a rectangular domain ([16]).

Remark 3.11 The excellence of MILU over the others was actually observed and proved [6, 5] for the
Poisson solver in rectangular domains. For the ease of proof, however, he added a diagonal perturbation
to turn the diagonal dominance of the linear system into a strictly diagonal dominance. Actually it was
Gustafsson’s conjecture [1] to prove the number O(h−1) for the unperturbed MILU, and the conjecture
was proved [11].

Our proof of the estimate O(h−1) for MILU was performed without any artificial perturbation.
Though unnecessary, the diagonal perturbation has been still used as a cliche; e.g., see the mixture of
96% MILU and 4% ILU in [2]. Note that 100% MILU is enough to achieve the success O(h−1).
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grid
Unpreconditioned matrix

λmin λmax hmin = hα
(

8
h·hmin

)
/λmax

202 5.74 3.18× 102 5.04× 10−2 = h1.62 3.17
402 5.77 1.12× 104 1.54× 10−3 = h2.53 6.04
802 5.78 5.58× 104 7.03× 10−4 = h2.21 5.37
1602 5.78 8.03× 105 0.92× 10−4 = h2.34 5.76
3202 5.78 1.12× 107 0.13× 10−4 = h2.41 5.78

Table 1: Eigenvalues of the unpreconditioned matrix: the results obey the estimate of Theorem 3.1,
0 < 1

C ≤ λ ≤ 8
h·hmin . Also note that hmin ≥ h3 which supports the general intersection property

mentioned in Remark 3.4.

grid
Jacobi preconditioned SGS preconditioned

λmax ratio λmin ratio λmax ratio λmin ratio
202 1.964 35.73× 10−3 1.000 129.681× 10−3

402 1.992 1.013 8.540× 10−3 0.239 1.000 1.000 33.326× 10−3 0.257
802 1.998 1.003 2.08× 10−3 0.244 1.000 1.000 8.286× 10−3 0.249
1602 2.000 1.000 0.515× 10−3 0.247 1.000 1.000 2.056× 10−3 0.248
3202 2.000 1.000 0.128× 10−3 0.249 1.000 1.000 0.511× 10−3 0.249

grid
ILU preconditioned MILU preconditioned

λmax ratio λmin ratio λmax ratio λmin ratio
202 1.190 208.573× 10−3 3.284 1.000
402 1.202 1.011 56.029× 10−3 0.267 6.648 2.024 1.000 1.000
802 1.206 1.003 14.090× 10−3 0.251 13.478 2.027 1.000 1.000
1602 1.206 1.000 3.506× 10−3 0.248 27.279 2.024 1.000 1.000
3202 1.207 1.001 0.873× 10−3 0.249 55.075 2.019 1.000 1.000

Table 2: Eigenvalues of the preconditioned matrices: the results of Jacobi, SGS, and ILU tightly obey
the estimate O(h−2) < λ < O(1), and MILU excels the others with the smaller ratio O(h−1).

3.4 Numerical test

Let Ω ⊂
[
− 3

2 ,
3
2

]2
be a circle of center (0, 0) and radius 1. Choose f : Ω → R and g : Γ → R so that

u (x, y) = y
(x+2)2+y2 becomes the exact solution of the Poisson problem

−∆u = f in Ω

u = g on Γ.

Let A be the matrix associated with the Gibou et al. discretization (2) of the above problem. Table

1 verifies Theorem 3.1 that λmin (A) = O (1) and λmax (A) = O
(

1
h·hmin

)
. Table 2 verifies Theorems

3.3 and 3.9 that λmin
(
M−1A

)
= O

(
h2
)

and λmax
(
M−1A

)
= O (1) in the cases of Jacobi, SGS,

and ILU preconditioners. In the table, MILU shows more improvement than the others in eigenvalue
clustering as λmin

(
M−1A

)
= O (1) and λmax

(
M−1A

)
= O

(
1
h

)
.

4 Conclusion

We have introduced two analyses for the finite difference method [4]. One analysis proves that its
solution is second order accurate to the analytic solution, and the other estimates the condition number
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of its linear systems with and without preconditioners. The unpreconditioned linear system has a
very large condition number O (1/ (h · hmin)), required to be preconditioned. Our estimates put into
consideration many of very popular preconditioners; Jacobi, ILU, SGS, and MILU. Our estimate
definitely suggests MILU preconditioning among them, since it reduces the condition number from
O (1/ (h · hmin)) to O(h−1), while the others to O(h−2).
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