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Abstract

We consider solving the singular linear system arisen from the Poisson equation with the

Neumann boundary condition. To handle the singularity, there are two usual approaches: one is

to �x a Dirichlet boundary condition at one point, and the other seeks a unique solution in the

orthogonal complement of the kernel. One may incorrectly presume that the two solutions are the

similar to each other. In this work, however, we show that their solutions di�er by a function that

has a pole at the Dirichlet boundary condition. The pole of the function is comparable to that

of the fundamental solution of the Laplace operator. Inevitably one of them should contain the

pole, and accordingly has inferior accuracy than the other. According to our novel analysis in this

work, it is the �xing method that contains the pole.

The projection method is thus preferred to the �xing method, but it also contains cons: in

�nding a unique solution by conjugate gradient method, it requires extra steps per each iteration.

In this work, we introduce an improved method that contains the accuracy of the projection

method without the extra steps. We carry out numerical experiments that validate our analysis

and arguments.

1 Introduction

In this article, we consider the Poisson equation with the Neumann boundary condition{
−∆u = f in Ω
∂u
∂n = g on ∂Ω.

(1)

Compared to the Dirichlet problem, the Neumann problem has two distinct features. One is the
following so-called compatibility condition

(compatibility condition)

ˆ
Ω

f dx+

ˆ
∂Ω

g ds = 0 (2)

that necessarily holds for the existence of a solution. The other is the non-uniqueness of solution. We
need to put an extra condition for its uniqueness such as

(mean zero)
´

Ω
u dx = 0, or

(�xing one point) u = 0 at some Q ∈ Ω.

Though there are numerous numerical methods for solving the Neumann problem such as �nite di�er-
ence methods, �nite element methods and �nite volume methods, most of them inevitably face solving
singular linear system, since the addition of arbitrary constant to the solution makes another solution.
Let

Ahuh = bh (3)

be the linear system induced by any of them, then the kernel space ker(Ah) is generated by a constant
function.
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To handle the singularity, there are two practical methods [9]. One is to assign a Dirichlet boundary
condition at a point Q ∈ Ωh:

(Fixing one point method)

{
AhuhF = bh in Ωh \ {Q}
uhF (Q) = 0.

(4)

The other is based on the fact that bh may not be in the range space R(Ah). Let Ph be the projec-
tion matrix onto the range space R(Ah). For the existence of solution, Phbh is taken instead of bh,
and for the uniqueness, solution is chosen from ker(Ah)⊥, that is, the mean zero solution is chosen,∑

X∈Ωh uhP (X) = 0:

(Projection method)

{
AhuhP = Phbh in Ωh

uhP ∈ ker(Ah)⊥.
(5)

Each of the two methods succeeds in converting the singular system into a nonsingular one. Each
seems to be reasonable and proper on its own way, and one may incorrectly presume that the two
solutions are the similar. However, their behaviors are di�erent, as we shall show by the analysis and
argument in Section 2 and the numerical experiments in Section 4.

Remark Another method for solving the singular system is to solve an augmented system[
Ah 1h(
1h
)T

0

] [
uh

c

]
=

[
bh

0

]
Here and hereafter 1h denotes the vector with all components equal to one. The augmented matrix is
symmetric and non-singular, but it fails to be positive-de�nite though Ah is semi-positive. We note
that the scalar c is given as the mean of bh, so that the solution of the augmented system is the same
as that of the projection method [20, 6].

2 Numerical analysis

In this section, we compare the numerical performances of the projection and one-point �xing methods.
Each method seems to be reasonable and proper on its own way, and two solutions may be misunder-
stood as the same, but the behaviors of the two solutions are surprisingly di�erent. To explain the
phenomena, we focus on the standard �nite di�erence method in the unit volume in R2. Our analysis
in the special cases shows that the two solutions di�er by a function that is comparable to the funda-
mental solution of the Laplace operator, which has a pole at the point where the Dirichlet boundary
condition is improved Other numerical methods seem to behave similarly, which will be presented with
numerical evidences in Section 4.

To this end, we consider the Poisson equation only in rectangular domains in R2 and R3. With a
grid node set Ωh, let −∆h be a discrete Laplacian obtained by the standard �nite di�erence method.

2.1 Analysis in L2 norm

In this subsection, we compare the behavior of the two methods applied to the standard 5-point �nite
di�erence method in the unit rectangle. Even though the analysis is carried out only for unit rectangle
in R2, its estimate turns out to be valid for general domains in R2 and R3, which is validated by
numerical experiments in Section 4.

In this work, 〈·, ·〉h denotes the L2 inner product de�ned by 〈u, v〉h =
∑

(xi,yj)∈Ωh uijvijh
2 and

‖ · ‖L2 is the norm induced by the L2 inner product.
With bh = (bij), the one-point �xing method �nds a solution uhF ∈ RN×N (N = 1/h) by choosing

a point Q = (xi0 , yj0) ∈ Ωh arbitrarily and taking uhF (Q) = 0. That is, uhF can be obtained by solving
the consistent linear equation as follows.
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Lemma 2.1 Let uhF be the discrete solution to Equation (4). Then uhF satis�es the equation

AhuhF = bh −
〈
1h, bh

〉
h
δhQ in Ωh, (6)

where the Dirac delta function δhQ is de�ned as δhQ(X) = 1/h2 (and 1/h3 for the three dimensional

case) if X = Q and δhQ(X) = 0 otherwise.

Proof From Equation (4), it is enough to show that AhuhF (Q) = bh (Q)−
〈
1h, bh

〉
h

1
h2 . The facts that

Ah is symmetric and ker(Ah) = span{1h} imply the range space R(Ah) of Ah is given by R(Ah) ={
1h
}⊥

. Since AhuhF ∈ R(Ah),
〈
AhuhF , 1

h
〉
h

= 0, and then we have

0 = AhuhF (Q)h2 +
∑

X∈Ωh\{Q}

AhuhF (X)h2 = AhuhF (Q)h2 +
∑

X∈Ωh\{Q}

bh(X)h2.

So AhuhF (Q) = −
∑

X∈Ωh\{Q} b
h(X) = −

〈
1h, bh

〉
h

1
h2 + bh (Q), and we show the lemma.

On the other hand, the projection method is to �nd a solution uhP in the orthogonal complement{
1h
}⊥

satisfying

AhuhP = Phbh in Ωh, (7)

where Ph is the projection matrix onto
{

1h
}⊥

given by Ph = I−h21h
(
1h
)T
, with the identity matrix

I on RN×N . In this case, we can see that the matrix equation is represented as PhAhPhuhP = Phbh

and Phbh = bh −
〈
bh, 1h

〉
h

1h.
Let Gh be a discrete function such that〈

Gh, 1h
〉
h

= 0 and AhGh = δhQ − 1h. (8)

Then we have
uhP − uhF =

〈
1h, bh

〉
h
Gh −

〈
1h, uhF

〉
h

1h (9)

by using ker(Ah) = span{1h} and taking the inner product with 1h.
Thus, the estimation of Gh gives that of the di�erence uhP − uhF of the two solutions. For the

estimation, we need the following lemmas.

Lemma 2.2 For a given discrete function uh, we cannot have a maximum of u at a point X where
−∆huh(X) < 0.

Proof Let X = (xi, yj) be a point where u has its maximum. then the Laplacian −∆huh(X) is valued
as

−∆huh(X) =
1

h2

[
αi+ 1

2 ,j
(uhi,j − uhi+1,j) +αi− 1

2 ,j
(uhi,j − uhi−1,j)

+αi,j+ 1
2
(uhi,j − uhi,j+1) +αi,j− 1

2
(uhi,j − uhi,j−1)

]
,

where the coe�cients αi± 1
2 ,j

and αi,j± 1
2
are nonnegative. So −∆huh(X) should be nonnegative.

Applying Lemma 2.2 to Gh in Equation (8) shows Gh(X) ≤ Gh (Q) for all X ∈ Ωh. The following
is a discrete-type Sobolev inequality which plays an important role in this work. For the proof, we
refer to Lemma 3.4 and its proof in [3] for the two dimensional case and Lemma 5.1 and its proof in
[2] for the three dimensional case.

Lemma 2.3 Let Ω be the unit volume in Rd, d = 2, 3. Then, there exists a constant C > 0 independent
of h such that for any X ∈ Ωh and for all discrete function uh de�ned on Ωh, we have

‖uh − ū ‖2∞ ≤
{
C (1 + | lnh|) ‖∇huh‖2L2 , for d = 2,
Ch−1‖∇huh‖2L2 , for d = 3,

(10)

for ū =
〈
uh, 1h

〉
h
or ū = uh(X), where ∇h is the di�erence operator induced by the standard centered

�nite di�erence.
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A simple computation by exchanging the order of summation shows that the discrete integration-
by-parts holds in this setting [21].

Lemma 2.4 (Discrete Integration by Parts) For any discrete functions uh and vh on Ωh, we
have 〈

Ahuh, vh
〉
h

=
〈
∇huh,∇hvh

〉
h
.

Lemma 2.5 Let bh be the discrete vector given in Equation (3). Then we have,〈
bh, 1h

〉
h

= O(h2).

Proof Let uh be a discrete solution to Equation (3). Since

〈
bh, 1h

〉
h

=
〈
Ahuh, 1h

〉
h
≈
ˆ

Ω

f dx+

ˆ
∂Ω

g ds,

the compatibility condition (2) and the O(h2) accuracy of the midpoint numerical itegration show the
lemma.

Using the discrete function Gh, we have the following estimate for the gradient of the di�erence
(uhF − uhP ) for the discrete solutions uhF and uhP .

Theorem 2.6 With uhF and uhP given in Equation (6) and (7), respectively, we have

‖∇h(uhF − uhP )‖L2 =

{
O
(
h2
√

1 + | lnh|
)

in [0, 1]
2

O
(
h1.5

)
in [0, 1]

3
.

Proof First, we consider the two dimensional case. Let Gh be the discrete function given in Equation
(8). Applying Lemmas 2.3 and 2.4 to Gh gives

‖Gh‖2∞ ≤ C(1 + | lnh|)‖∇hGh‖2L2 ≤ C(1 + | lnh|)‖Gh‖∞.

That is, we obtain an upper bound for Gh as

|Gh(X)| ≤ C (1 + | lnh|) for all X ∈ Ωh.

for some constant C > 0 independent of h. Recall the relation in Equation (9)

uhP − uhF =
〈
1h, bh

〉
h
Gh −

〈
1h, uhF

〉
h

1h.

Using ‖∇hGh‖2L2 =
〈
Gh, AhGh

〉
h

= Gh (Q) and Lemma 2.5, we have an estimate for the gradient of

uhF − uhP as

‖∇h(uhP − uhF )‖L2 =
〈
1h, bh

〉
h
‖∇hGh‖L2 ≤ C ·O(h2)

√
1 + | lnh|.

For the three dimensional case, replacing the upper bound (1 + | lnh|) by 1/h in Lemma 2.3 and
applying the same arguments to unit cube in R3, we obtain the result.

2.2 Argument in L∞ norm

In this subsection, we compare the two solutions uhP and uhF , and estimate the size of their di�erence
in L∞ norm. Though their di�erence could be sometimes unnoticeable in L2 norm, the estimation will
show that the di�erence is quite large in L∞, which will be validated by numerical tests in Section 4.
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In the previous subsection, we showed that uhP − uhF +
〈
1h, uhF

〉
h

1h = O
(
h2
)
Gh. We may assume

the �xing point Q ∈ Ωh to be the origin. The discrete function Gh is determined by the equation

AhGh = δh − 1h

〈1h,1h〉h
, which corresponds to the following discrete boundary problem.

−∆hGh = δh − 1h

〈1h,1h〉h
in Ωh,

∂Gh

∂n = 0 on ∂Ωh,〈
Gh, 1h

〉
h

= 0.

In the continuous analysis point of view, the discrete boundary problem obviously approximates the
following continuous boundary problem, whose solution is the so-called Neumann function G [12].

−∆G = δ − 1´
Ω
dx

in Ω,
∂G
∂n = 0 on ∂Ω,´

Ω
Gdx = 0.

It is known that the Neumann function G has a pole of singularity that is comparable to that of the
fundamental solution of the Laplace operator [1]. Being an approximation of the Neumann function,
Gh around the point at which Dirichlet boundary condition is posed is expected to behave much like
the discrete fundamental solution around the origin. The discrete fundamental solution Fh is de�ned
by the equation

−∆hFh = δh in (hZ)
d

(δh =
1

hd
δ).

The discrete fundamental solution is known to have a singularity at the origin. It grows to the in�nity

as fast as the function log
(√

x2
i + y2

j + h
)
in the two dimensions and 1/

(√
x2
i + y2

j + z2
k + h

)
in the

three dimensions [4]. From these arguments, we estimate the size of the di�erence of the two functions
in L∞ as

∥∥uhP − uhF +
〈
1h, uhF

〉
h

1h
∥∥
∞ =

〈
bh, 1h

〉
h

∥∥Gh
∥∥
∞ =

{
O
(
h2 |log h|

)
in [0, 1]2,

O (h) in [0, 1]3.
(11)

Taking the discrete gradient by the standard centered �nite di�erences and applying the mean value
theorem, we have

∇x
(

log
(√

x2
i + y2

j + h
))

=
x̃i√

x̃2
i + y2

j

1√
x̃2
i + y2

j + h
and

∇x

 1√
x2
i + y2

j + z2
k + h

 = − x̃i√
x̃2
i + y2

j + z2
k

1(√
x̃2
i + y2

j + z2
k + h

)2 ,

for some x̃i ∈ (xi − h/2, xi + h/2), and similarly taken are the cases of the other spatial derivatives.
Using the fact that the pointwise error of the discrete and continuous fundamental functions is O(1)
for d = 2 ([10], [14]) and O(h−1) for d = 3 ([4]), the di�erence of two gradients is hence estimated as

∥∥∇huhP −∇huhF
∥∥
∞ =

〈
bh, 1h

〉
h

∥∥∇hGh
∥∥
∞ =

{
O (h) in [0, 1]2,

O (1) in [0, 1]3.
(12)

The standard �nite di�erence method in two and three dimensional rectangular domains results in the
following second order convergence of its numerical solution and gradient in L∞,∥∥uhP − u∥∥∞ = O

(
h2
)

(

ˆ
Ω

u dx = 0) and
∥∥∇huhP −∇u

∥∥
∞ = O

(
h2
)
.
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The estimations (11) and (12) lead to the following degraded convergence orders with the �xing method,

∥∥uhF − u+
〈
1h, uhF

〉
h

1h
∥∥
∞ =

{
O
(
h2 |log h|

)
in [0, 1]2,

O (h) in [0, 1]3

and ∥∥∇huhF −∇u
∥∥
∞ =

{
O (h) in [0, 1]2,

O (1) in [0, 1]3.

In Section 4 , the two estimations will be validated by the degraded convergence orders with the
�xing method not only in the two-dimensional rectangular domains but also in three-dimensional and
irregular domains.

3 Improvement of the �xing method

In the previous section, we showed that the �xing method gives rise to involve the function that has
a singularity near the position of the Dirichlet boundary condition. The projection method is thus
desired over the �xing method, but it involves some di�culties in its implementations. The conjugate
gradient iteration step needs to include two additional projections per each iteration as follows, because

its Krylov space should be con�ned in
{

1h
}⊥

for n = 1, 2, . . . ,

xn+1 = xn + 〈rn,rn〉h
〈pn,Ahpn〉h p

n;

rn+1 = rn − 〈rn,rn〉h
〈pn,Ahpn〉hA

hpn;

rn+1 = rn+1 − 〈r
n+1,1h〉h
〈1h,1h〉h 1h; //projection on

{
1h
}⊥

pn+1 = rn+1 + 〈rn+1,rn+1〉h
〈rn,rn〉h pn;

pn+1 = pn+1 − 〈1
h,pn+1〉h
〈1h,1h〉h 1h //projection on

{
1h
}⊥

Overcoming the extra procedures caused in the projection method, we suggest an improvement of the
�xing method as {

AhuhI = Phbh in Ωh \ {Q},
uhI = 0 at {Q}. (13)

Note that its only di�erence from the �xing method is to take the right-hand side as Phbh, rather than
bh, which causes the system to be consistent.

Theorem 3.1 The improved �xing method has the same solution as the projection method up to the
addition of a constant function.

Proof Let uhI be the solution to Equation (13). From the fact that ker(Ah) = span{1h}, it is enough
to show that AhuhI = Phbh at Q. Since Ph is the projection onto the zero-mean space,∑

X∈Ωh\{Q}

(
Phbh

)
(X) = 0−

(
Phbh

)
(Q) .

Also, since R(Ah) =
{

1h
}⊥

, AhuhI has mean zero so that we have∑
X∈Ωh\{Q}

(
AhuhI

)
(X) = 0−

(
AhuhI

)
(Q) .

On the other hand, the de�nition of uhI given in Equation (13) shows that
(
AhuhI

)
(X) =

(
Phbh

)
(X)

for all X ∈ Ωh \ {Q}. Equating the two summations, we conclude that AhuhI = Phbh at Q.
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By the theorem above, compared to the projection method that deals with semi-de�nite matrix, our
suggested improved �xing method deals with a postive-de�nite matrix without changing the solution.
We note that there are pros and cons between the two methods. While the projection method results in
a singular matrix, the improved method results in a nonsingular matrix, that is a principal submatrix
of the singular matrix Ah. However the improved method still su�ers from the drawback of a worse
condition number than the projection method. Let us review the following standard argument about
the condition number. We denote by Ah

Q the submatrix obtained from deleting the row and column

of Ah related to the �xing point Q. Let 0 = λ1< λ2 ≤· · ·≤ λn be the eigenvalues of Ah, and let
0 < µ1< µ2 ≤· · ·≤ µn−1 be the eigenvalues of Ah

Q,. According to the Cauchy interlace theorem
[17, 11], we have 0 = λ1 < µ1 ≤ λ2 and λn−1 ≤ µn−1 ≤ λn.

Theorem 3.2 The condition numbers of matrices Ah and Ah
Q are related as∣∣∣∣µn−1

µ1

∣∣∣∣ =

∣∣∣∣λnλ2

∣∣∣∣ ·
{
O (|log h|+ 1) in R2

O
(

1
h

)
in R3.

Proof See Theorem 5.2 in [2].

4 Numerical experiments

In the previous section, we analyzed the di�erence between the projection method and the one-point
�xing method in rectangular domains. In this section, we validate the analysis through numerical
experiments in Example 1 and Example 3. Example 2 and Example 4 test if the argument of the
analysis is still valid in irregular domains.

The projection method and the improved �xing method generate the same solution within the
machine epsilon, according to Theorem 3.1. Therefore, we report only one of them in accuracy calcu-
lation and graph visualization. Each linear system is solved by the conjugate gradient algorithm with
stopping criterion ‖rn‖L2 <

∥∥r0
∥∥
L2 · 10−15.

Example 1 : Rectangular domain in R2

The Neumann problem with exact solution u (x, y) = ex sin (y)) and Ω = [0, 1]
2
is solved by the

standard 5-point �nite di�erence method. The �xing one-point method imposes the Dirichlet boundary
condition at (0, 0). Table 1 reports the second order convergence of the projection method as follows:∥∥uhP − u∥∥∞ = O

(
h2
)
,∥∥∇huhP −∇u

∥∥
∞ = O

(
h2
)
,∥∥∇huhP −∇u

∥∥
L2 = O

(
h2
)
.

According to the analysis and argument in Section 2 and applying the triangle inequality, we expect
the degraded accuracy of the �xing method as∥∥uhF − ūF − u∥∥∞ = O

(
h2
)

+O
(
h2 |log h|

)
= O

(
h2 |log h|

)
,∥∥∇huhF −∇u

∥∥
∞ = O

(
h2
)

+O (h) = O (h) ,∥∥∇huhF −∇u
∥∥
L2 = O

(
h2
)

+O
(
h2
√
|log h|

)
= O

(
h2
√
|log h|

)
.

Table 2 validates the expectation. Note that either O
(
h2 |log h|

)
or O

(
h2
√
|log h|

)
is so similar

to O
(
h2
)
that the order of two is slightly diminished in the table. Table 3 con�rms Theorem 3.2,

since larger condition number yields slower performance of the CG algorithm. Figure 1 illustrates
Equations (9, 11,12) stating that that the di�erence uhP −

(
uhF − ūhF

)
has a singularity at the position

of the Dirichlet boundary condition.
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‖u− uhP ‖∞ order ‖Ou− OhuhP ‖∞ order ‖Ou− OhuhP ‖L2 order
1/10 4.89E-04 - 4.21E-04 - 2.60E-04 -
1/20 1.29E-04 1.92 1.11E-04 1.93 6.57E-05 1.99
1/40 3.32E-05 1.96 2.83E-05 1.97 1.65E-05 2.00
1/80 8.42E-06 1.98 7.16E-06 1.98 4.12E-06 2.00
1/160 2.12E-06 1.99 1.80E-06 1.99 1.03E-06 2.00

Table 1: Convergence orders of the projection method in Example 1

‖u− uhF + ūF ‖∞ order ‖Ou− OhuhF ‖∞ order ‖Ou− OhuhF ‖L2 order
1/10 1.53E-03 - 3.44E-03 - 8.45E-04 -
1/20 4.62E-04 1.72 1.67E-03 1.04 2.38E-04 1.83
1/40 1.34E-04 1.78 8.26E-04 1.01 6.55E-05 1.86
1/80 3.82E-05 1.81 4.12E-04 1.00 1.77E-05 1.88
1/160 1.07E-05 1.83 2.06E-04 1.00 4.75E-06 1.90

Table 2: Convergence orders of the �xing method in Example 1

h 1/10 1/20 1/40 1/80 1/160
Projection method 47 103 226 455 911

Fixing one point method 70 151 309 717 1484
Improved �xing method 70 151 327 660 1484

Table 3: Iteration number of CG in Example 1

Figure 1: Graph of uhP −
(
uhF − ūF

)
for h = 1/10, 1/20, 1/40 in Example 1
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Example 2 : Irregular domain in R2

The Neumann problem with exact solution u (x, y) = sin (x) sin (y)−4 sin4 (1/2) and Ω =
{

(x, y) |x2 + y2 < 1
}

is solved by the standard 5-point �nite volume method. The �xing one-point method and the improved
�xing method imposes Dirichlet boundary condition at (0, 0). Table 4 reports the convergence orders
of the projection method as ∥∥uhP − u∥∥∞ = O

(
h2
)∥∥∇huhP −∇u

∥∥
∞ = O (h)∥∥∇huhP −∇u
∥∥
L2 = O

(
h1.5

)
.

Though the last column in Table 4 reveals no clear sign of convergence order, there exists a conver-
gence analysis

∥∥∇huhP −∇u
∥∥
L2 = O

(
h1.5

)
[21]. Even though the analysis and argument in Section

2 was carried out for regular domains, the main argument is deeply involved in the Green function
Gh which still exists in irregular domains. Therefore we may apply the analysis and argument to
irregular domains and expect the following degraded accuracies of the �xing method. Our expectation
is supported and validated by the numerical results given in Table 5.∥∥uhF + ūF − u

∥∥
∞ = O

(
h2
)

+O
(
h2 |log h|

)
= O

(
h2 |log h|

)∥∥∇huhF −∇u
∥∥
∞ = O (h) +O (h) = O (h)∥∥∇huhF −∇u
∥∥
L2 = O

(
h1.5

)
+O

(
h2
√
|log h|

)
= O

(
h1.5

)
.

Table 6 shows that the two �xing methods, which share the same matrix, have worse condition number
than the projection method. This suggests that Theorem 3.2 is still valid in irregular domains. Figure
2 illustrates Equations (9, 11,12) stating that that the di�erence uhP −

(
uhF − ūhF

)
has a singularity at

the position of the Dirichlet boundary condition.

‖u− uhP ‖∞ order ‖Ou− OhuhP ‖∞ order ‖Ou− OhuhP ‖L2 order√
2/20 1.52E-03 2.43E-02 5.98E-03√
2/40 3.85E-04 1.98 5.15E-03 2.24 1.20E-03 2.32√
2/80 9.31E-05 2.05 6.03E-03 -0.23 6.20E-04 0.95√
2/160 2.41E-05 1.95 3.27E-03 0.88 1.64E-04 1.91√
2/320 6.05E-06 1.99 1.58E-03 1.05 5.07E-05 1.70

Table 4: Convergence orders of the projection method in Example 2

‖u− uhF + ūF ‖∞ order ‖Ou− OhuhF ‖∞ order ‖Ou− OhuhF ‖L2 order√
2/20 1.63E-03 2.44E-02 6.32E-03√
2/40 4.17E-04 1.96 5.16E-03 2.24 1.30E-03 2.28√
2/80 1.16E-04 1.84 6.03E-03 -0.23 6.33E-04 1.04√
2/160 3.33E-05 1.80 3.27E-03 0.88 1.68E-04 1.91√
2/320 9.20E-06 1.85 1.58E-03 1.05 5.15E-05 1.71

Table 5: Convergence orders of the �xing one-point method in Example 2

Example 3 : Rectangular domain in R3

The Neumann problem with exact solution u (x, y, z) = ex
2

(y2 + cos(z)) and Ω = [0, 1]
3
is solved by

the standard 7-point �nite di�erence method. The �xing one-point method and the improved �xing
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h
√

2/20
√

2/40
√

2/80
√

2/160
√

2/320
Projection method 92 182 344 648 1382

Fixing one point method 147 284 559 1096 2117
Improved �xing method 147 298 536 1096 2117

Table 6: Iteration number of CG in Example 2

Figure 2: Graph of uhP −
(
uhF − ūF

)
for h =

√
2/20,

√
2/40,

√
2/80 in Example 2
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method imposes Dirichlet boundary condition at (0, 0, 0). Table 7 reports the convergence orders of
the projection method as

∥∥uhP − u∥∥∞ = O
(
h2
)∥∥∇huhP −∇u

∥∥
∞ = O

(
h2
)∥∥∇huhP −∇u

∥∥
L2 = O

(
h2
)
.

According to the analysis and argument in Section 2, we expect the degraded accuracy of the �xing
method as

∥∥uhF − ūF − u∥∥∞ = O
(
h2
)

+ (h) = O (h)∥∥∇huhF −∇u
∥∥
∞ = O

(
h2
)

+O (1) = O (1)∥∥∇huhF −∇u
∥∥
L2 = O

(
h2
)

+O
(
h1.5

)
= O

(
h1.5

)
,

which is clearly veri�ed by Table 8. Table 9 shows that the two �xing methods, which share the same
matrix, have worse condition number than the projection method, which con�rms Theorem 3.2.

‖u− uhP ‖∞ order ‖Ou− OhuhP ‖∞ order ‖Ou− OhuhP ‖L2 order
1/10 3.01E-03 - 1.56E-02 - 7.59E-03 -
1/20 7.69E-04 1.97 4.03E-03 1.96 1.91E-03 1.99
1/40 1.93E-04 2.00 1.02E-03 1.98 4.78E-04 2.00
1/80 4.83E-05 2.00 2.57E-04 1.99 1.19E-04 2.00
1/160 1.21E-05 2.00 6.45E-05 2.00 2.99E-05 2.00

Table 7: Convergence orders of the projection method in Example 3

‖u− uhF + ūF ‖∞ order ‖Ou− OhuhF ‖∞ order ‖Ou− OhuhF ‖L2 order
1/10 1.80E-01 - 9.01E-01 - 6.93E-02 -
1/20 9.38E-02 0.94 9.03E-01 -0.00 2.52E-02 1.46
1/40 4.79E-02 0.97 9.04E-01 -0.00 9.00E-03 1.48
1/80 2.42E-02 0.99 9.04E-01 -0.00 3.20E-03 1.49
1/160 1.21E-02 0.99 9.04E-01 -0.00 1.13E-03 1.50

Table 8: Convergence orders of the �xing one-point method in Example 3

h 1/10 1/20 1/40 1/80 1/160
Projection method 56 124 256 555 1172

Fixing one point method 110 236 481 1176 2014
Improved �xing method 110 236 481 961 2012

Table 9: Iteration number of CG in Example 3

Example 4 : Irregular domain in R3

The Neumann problem with exact solution u (x, y, z) = sin (x+ y) e−xyz and Ω =
{

(x, y, z) |x2 + y2 + z2 < 1
}

is solved by the standard �nite volume method. The �xing one-point method and the improved �xing
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method imposes Dirichlet boundary condition at (0, 0, 0). Table 10 reports the convergence orders of
the projection method as ∥∥uhP − u∥∥L∞ = O

(
h2
)∥∥∇huhP −∇u

∥∥
L∞ = O (h)∥∥∇huhP −∇u
∥∥
L2 = O

(
h1.5

)
.

Though the last column in Table 10 seems to indicate higher convergence order than O
(
h1.5

)
, there

exists a convergence analysis
∥∥∇huhP −∇u

∥∥
L2 = O

(
h1.5

)
[21]. As mentioned in Example 2, we may

apply the analysis and argument to irregular domains and expect the following degraded accuracies
of the �xing method. Our expectation is supported and validated by the numerical results given in
Table 11. ∥∥uhF − ūF − u∥∥∞ = O

(
h2
)

+O (h) = O (h)∥∥∇huhF −∇u
∥∥
∞ = O (h) +O (1) = O (1)∥∥∇huhF −∇u
∥∥
L2 = O

(
h1.5

)
+O

(
h1.5

)
= O

(
h1.5

)
.

Table 6 shows that the two �xing methods, which share the same matrix, have similar condition number
than the projection method.

‖u− uhP ‖∞ order ‖Ou− OhuhP ‖∞ order ‖Ou− OhuhP ‖L2 order√
2/5 1.51E-01 2.01E-01 2.11E-01√
2/10 3.19E-02 2.24 6.58E-02 1.61 5.22E-02 2.02√
2/20 5.70E-03 2.48 2.90E-02 1.18 1.27E-02 2.04√
2/40 1.37E-03 2.06 1.35E-02 1.10 3.29E-03 1.95√
2/80 3.36E-04 2.02 7.08E-03 0.93 8.86E-04 1.89

Table 10: Convergence order of the projection method in Example 4

‖u− uhF + ūF ‖∞ order ‖Ou− OhuhF ‖∞ order ‖Ou− OhuhF ‖L2 order√
2/5 8.40E-02 2.95E-01 2.27E-01√
2/10 4.98E-02 0.75 2.63E-01 0.17 6.55E-02 1.79√
2/20 2.64E-02 0.92 2.54E-01 0.05 1.92E-02 1.77√
2/40 1.34E-02 0.97 2.53E-01 0.01 6.07E-03 1.66√
2/80 6.76E-03 0.99 2.53E-01 0.00 2.01E-03 1.60

Table 11: Convergence orders of the �xing one-point method in Example 4

h
√

2/5
√

2/10
√

2/20
√

2/40
√

2/80
Projection method 247 678 923 2572 2072

Fixing one point method 223 647 990 2561 2371
Improved �xing method 224 649 990 2734 2375

Table 12: Iteration number of CG in Example 4
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5 Conclusion

We compared two approaches handling the singularity of the linear system associated with the Poisson
equation with the Neumann boundary condition. One is to �x the Dirichlet boundary condition at
one point, and the other seeks a unique solution in the orthogonal complement of the kernel. We
showed that the two solutions di�er by a function that has a singularity pole as large as that of the
fundamental solution of the Laplace operator. The pole turns out to severely corrupt the accuracy of
the numerical solution and its gradient of the �xing method.

We presented the numerical analysis on the standard �nite di�erence method in the unit volumes
in R2 and R3. Other numerical methods seem to behave similarly, one of which was presented with
numerical evidences. The missing analysis of the other numerical methods is currently beyond our
capacity, and we put it o� to future work. The argument in this work may be obviously extended to
other spatial dimensions. However, we restricted our attentions to two and three dimensions in which
Poisson equations are usually set. Due to the limit of time available to us, we leave the discussion of
other dimensions as a future work.

The projection method on the orthogonal space deals with semi-de�nite matrix, due to which the
iterative method needs to include two additional inner-products for each step. We suggested a simple
improved �xing method that has the same numerical method as the projection method and involves a
positive-de�nite matrix. However, the positive-de�nite matrix has a worse condition number than the
semi-de�nite matrix by a ratio of |lnh|. It is uncertain to de�nitely prefer one between the projection
method and the improved �xing method, and we leave the choice to the users.
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