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Abstract

The Shortley-Weller method is a standard central finite-difference-
method for solving the Poisson equation in irregular domains with
Dirichlet boundary conditions. It is well known that the Shortley-
Weller method produces second-order accurate solutions and it has
been numerically observed that the solution gradients are also second-
order accurate; a property known as super-convergence. The super-
convergence was proved in the L2 norm in [17]. In this article, we
present a proof for the super-convergence in the L∞ norm.

1 Introduction

We consider the Poisson equation in a smooth irregular domain Ω, with
Dirichlet boundary condition on its boundary Γ = ∂Ω:

−∆u = f in Ω

u = g on Γ := ∂Ω
, (1)

where f and g are given smooth functions.
The Shortley-Weller method is a standard central finite-difference-method

for solving the boundary value problem (1). Its numerical solution is well
known to be convergent to the analytic solution with the second order accu-
racy [3, 8]. For many physical problems of interest however, the gradient of
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the solution has more importance than the solution itself. For example, this
is the case of incompressible fluids [2, 11, 15] and free boundary problems
[4, 1], for which the accuracy of the gradient of (1) determines the accuracy
of the solution. It is therefore an important topic to analyze the convergence
of the numerical gradient of the Shortley-Weller method.

The numerical gradient has been observed to be second-order accurate in
the L∞ norm in numerical tests (e.g. [10]), but to this day the observation
had not been confirmed by a mathematical proof. In the case of rectangular
domains, the second-order convergence in the L2 norm appears in a textbook
[13], whereas in the case of polygonal domains, the 1.5 order of convergence
in L2 norm was proved by Li et al [9]. For arbitrary smooth domains, the
super-convergence was proved in the L2 norm in [17]. Recently Weynans [14]
sketched a proof in the L∞ norm based on the discrete Green function by
Ciarlet [3, 8]. In particular, Weynans’ proof is based on the commutativity
between the discrete Laplacian and the gradient operators away from the
boundary, as well as an error estimate near the boundary. However, although
the conclusion in [14] is correct, many important details are omitted. For
example, the numerical solution with error O (h3) does not necessarily implies
aO (h2) error for the numerical gradient because of the division by a local step
size hi+ 1

2
,j near the interface that can be much smaller than h. Likewise, the

estimation of Green’s function omits much details in its derivation. Instead
of using the Green function, we focus on the commutative region of the
discrete Laplacian and the discrete gradient, and we leverage the existing
error analysis of our previous work [17] to present a rigorous and complete
proof for the super-convergence in the L∞ norm.

The rest of this paper after is organized as follows. In section 2, we review
the notations and the existing error analysis, and we discuss the commutative
region of the discrete gradient in section 3. Combining the commutativity
and the existing error analysis, we provide a proof for the second-order con-
vergence in the L∞ norm in section 4.

2 Analysis of the numerical solution [17]

The domain Ω ⊂ R2 is approximated by the set of grid nodes Ωh := Ω∩(hZ)2,
where (hZ)2 denotes the set of grid nodes with uniform step size h. The
boundary Γ := ∂Ω is approximated by Γh, the set of intersection points
between Γ and the grid lines. As illustrated in figure 1, each grid node (xi, yj)

2



has four neighboring nodes in Ωh ∪ Γh, which are denoted by (xi±1, yj) and
(xi, yj±1). Given a discrete function vh : Ωh ∪ Γh → R, Shortley and Weller
[12] discretize the Laplacian −∆hvh : Ωh → R by applying the standard
central-finite-differences on each node and its adjacent neighbors as follows:

∆hvhij =

(
vhi+1,j − vhij
hi+ 1

2
,j

−
vhij − vhi−1,j

hi− 1
2
,j

)
/
hi+ 1

2
,j + hi− 1

2
,j

2

+

(
vhi,j+1 − vhij
hi,j+ 1

2

−
vhij − vhi,j−1

hi,j− 1
2

)
/
hi,j+ 1

2
+ hi,j− 1

2

2
.

The numerical approximation uh : Ωh ∪ Γh → R for the Poisson problem (1)
is the solution of the following linear system:{

−∆huh = f in Ωh,
uh = g on Γh.

(2)

The consistency and the error vectors are important quantities in the error
analysis and are defined as follows:

(consistency) ch := −∆hu+ ∆u in Ωh

(error) eh := uh − u in Ωh ∪ Γh
(3)

Figure 1: The nodes in Ωh are marked with the symbol ◦, and the nodes in Γh

with the symbol •. The interior nodes in Ωh
0 are enclosed in the dashed curve.

Each grid node in Ωh has four neighboring nodes in Ωh ∪ Γh.
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We recall the following results from the error analysis of [17] and refer
the interested reader to [17] for the details.

Lemma 2.1. Let eh be a error defined by (3). Then, eh satisfies the following
relation: −∆heh = ch in Ωh.

Theorem 2.2. (Comparison principle) If vh, wh : Ωh ∪ Γh → R satisfy
−∆hvh ≤ −∆hwh in Ωh and vh ≤ wh on Γh, then vh ≤ wh in Ωh.

Theorem 2.3. (Refined error estimate) If h is sufficiently small, then there
exists a constant E = E(Ω, u) such that for any (xi, yj) ∈ Ωh,∣∣ehij∣∣ ≤ E(Ω, u)h2

(
dist

(
(xi, yj) ,Γ

h
)

+ min
{
hi± 1

2
.j, hi,j± 1

2

})
.

3 Commutativity of the discrete Laplace and

Gradient operators for interior edges

For a discrete function vh sampled at grid nodes, its discrete gradient val-
ues are calculated by central differencing and defined on the corresponding
cell faces, following the Marker-and-Cell configuration [7]. For example, the
derivative in the x-direction is calculated as follows:

Ω̃h :=
{(
xi+ 1

2
, yj

)
|(xi, yj) , (xi+1, yj) ∈ Ωh ∪ Γh

}
,

(
Dh
xv

h
)
i+ 1

2
,j

:=
vhi+1,j − vhi,j
hi+ 1

2
,j

, for each edge
(
xi+ 1

2
, yj

)
∈ Ω̃h,

In this section, we discuss the commutativity of the two discrete operators
∆h and Dh

x noting that the commutativity between ∆h and Dh
y is simi-

lar. The calculation of
(
∆h
(
Dh
xv

h
))
i+ 1

2
,j

requires four neighboring values of(
Dh
xv

h
)
i+ 1

2
,j

, however the neighboring values may not exist near the bound-

ary. As illustrated in figures 1 and 2, we define the set of interior nodes and
the set of interior edges (faces) as:

Ωh
o :=

{
(xi, yj) |(xi±1, yj) and (xi, yj±1) ∈ Ωh

}
, and

Ω̃h
o :=

{(
xi+ 1

2
, yj

)
|(xi, yj) and (xi+1, yj) ∈ Ωh

o

}
.

Now we show the commutativity, Dh
x ◦ ∆h = ∆h ◦ Dh

x, for the interior
edge set Ω̃h

0 .
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Theorem 3.1 (Commutativity). For any discrete function vh : Ωh → R,(
∆h ◦Dh

x

)
vh and

(
Dh
x ◦∆h

)
vh are well defined in Ω̃h

o , and they are equal.

Proof. For each edge
(
xi+ 1

2
, yj

)
∈ Ω̃h

o , the grid nodes (xi, yj) and (xi+1, yj)

belong to Ωh
o , and all of their neighboring nodes belong to Ωh. As illustrated

in figures 1 and 2, there exist 8 neighboring nodes (denoted by the symbol ◦)
around the edge and they are aligned with uniform step size h. The calcula-
tions of

(
∆h
(
Dh
xv

h
))
i+ 1

2
,j

and
(
Dh
x

(
∆hvh

))
i+ 1

2
,j

are the same and expressed

as a function of the 8 neighbors as follows:(
∆h
(
Dh
xv

h
))
i+ 1

2
,j

=
(
Dh
x

(
∆hvh

))
i+ 1

2
,j

=
1

h3

[
vhi+2,j +vhi+1,j+1 +vhi+1,j−1 +5vhi,j
−vhi−1,j −vhi,j+1 −vhi,j−1 −5vhi+1,j

]
.

4 Accuracy analysis of the discrete gradient

In this section, we prove the second-order accuracy of the solution’s gradient
in L∞ norm. We first present several lemmas before we present our main
results.

Lemma 4.1. For any (xi, yj) ∈ Ωh ∪ Γh \ Ωh
◦ , dist ((xi, yj) ,Γ) ≤ h.

Proof. Since (xi, yj) /∈ Ωh
0 , either (xi, yj) ∈ Γh or one of its neighboring nodes,

at a distance at most h away, belong to Γh. Since Γh ⊂ Γ, in either case we
have dist ((xi, yj) ,Γ) ≤ h

Lemma 4.2. The following estimate holds true:∥∥Dh
xe

h
∥∥
L∞(Ω̃h\Ω̃h

0) ≤ 2E · h2.

Proof. Since
(
xi+ 1

2
, yj

)
/∈ Ω̃h

0 , either (xi, yj) or (xi+1, yj) belongs to Ωh∪Γh−
Ωh
◦ . By the above lemma, dist ((xi, yj) ,Γ) ≤ 2h and dist ((xi+1, yj) ,Γ) ≤ 2h.

Using theorem 2.3, we have∣∣uhi,j − u (xi, yj)
∣∣ ≤ hi+ 1

2
,j · h2 · 2E, and∣∣uhi+1,j − u (xi+1, yj)

∣∣ ≤ hi+ 1
2
,j · h2 · 2E.
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Combining the two inequalities, we conclude that
∥∥Dh

xe
h
∥∥
L∞(Ω̃h\Ω̃h

0) ≤ 2E ·
h2.

Lemma 4.3. Let K := 105
4
·maxΩ̄,|α|≤5 |∂αu|, then∥∥Dh
xc
h
∥∥
L∞(Ω̃h

0) ≤ K · h2.

Proof. Since
(
xi+ 1

2
, yj

)
∈ Ω̃h

0 , (xi, yj) and (xi+1, yj) belongs to Ωh
◦ , and all of

their adjacent nodes are aligned on the uniform grid. Thus Dh
xc
h
i+ 1

2
,j

is given
as

Dh
xc
h
i+ 1

2
,j

=
4ui+1,j − ui+2,j − ui,j − ui+1,j+1 − ui+1,j−1

h3
+

∆ui+1,j

h

−
4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1

h3
− ∆ui,j

h
. (4)

Substituting each term with its Taylor expansion at
(
xi+ 1

2
, yj

)
gives the

following result. See the details in Appendix.∣∣∣Dh
xc
h
i+ 1

2
,j

∣∣∣ ≤ max
Ω̃,|α|≤5

|∂αu| · h
2

120

(
2 ·
(

3

2

)5

+ 2 · 5

25
+ 4 · 6 ·

(
1

2

)5

+ 2 · 2 · 5

2

)
= K · h2

Lemma 4.4. Consider the function ph : Ω̃h → R defined as −∆hph = 1 in
Ω̃h

0 and ph = 0 on Ω̃h \ Ω̃h
0 . There exists a constant D = D (Ω) such that

0 ≤ ph ≤ D in Ω̃, whenever h ≤
√

6
D

.

Proof. Let p (x) be the analytic solution of −∆p = 2 in Ω with p = 0 on
Γ. Let us sample p (x) in Ω̃h and calculate −∆hph in Ω̃h

0 . A simple Taylor
expansion shows that

−∆hp
(
xi+ 1

2
, yj

)
= 2 +

h2

12

(
∂4p

∂x4
(ξ1, yj) +

∂4p

∂x4

(
xi+ 1

2
, ξ2

))
,

for some ξ1 ∈ (xi, xi+1) and ξ2 ∈
(
yj− 1

2
, yj+ 1

2

)
. Now, letD = maxΩ̄

{
|p| ,

∣∣∣ ∂4p∂x4

∣∣∣ , ∣∣∣∂4p∂y4

∣∣∣},

then whenever h ≤
√

6
D

,

−∆hph = 1 ≤ 2− h2

12
2D ≤ −∆hp in Ω̃h

0

ph = 0 ≤ p in Ω̃h \ Ω̃h
0 .
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Then by the comparison principle 2.2, we have 0 ≤ ph ≤ p ≤ D in Ω̃h.

Lemma 4.2 states that Dh
xu

h is second-order accurate to Dh
xu in Ω̃h \ Ω̃h

◦ .
Now we investigate the excluded region Ω̃h

◦ in the lemma to obtain our main
theorem.

Theorem 4.5. (Main theorem) Let u (x, y) be the analytic solution of the
Poisson problem in Ω∪Γ, and uhi,j be the discrete solution in Ωh∪Γh obtained
by the Shortley-Weller method, then there exists a constant C = C (Ω, u),
independent of h, such that∥∥∥∥Dh

xu
h
i+ 1

2
,j
− ∂u

∂x

(
xi+ 1

2
, yj

)∥∥∥∥
L∞(Ω̃h)

≤ C · h2.

Proof. Using the commutativity principle in Ω̃h
0 , we have

−∆h
(
Dh
xe

h
)

= Dh
x

(
−∆h

xe
h
)

= Dh
xc
h in Ω̃h

0 .

Lemma 4.2 and lemma 4.3 state that

−2E · h2 ≤ Dh
xe

h ≤ 2Eh2 on Ω̃h − Ω̃h
0 , and

−K · h2 ≤ Dh
xc
h ≤ Kh2 in Ω̃h

0 .

Using the function ph in lemma 4.4 and the commutativity principle, we have

−
(
Kh2ph + 2Eh2

)
≤ Dh

xe
h ≤ Kh2ph + 2Eh2 on Ω̃h − Ω̃h

0

−∆h
(
−
(
Kh2ph + 2Eh2

))
≤ −∆h

(
Dh
xe

h
)
≤ −∆h

(
Kh2ph + 2Eh2

)
in Ω̃h

0 .

Applying the comparison principle, we obtain:

−
(
Kh2ph + 2Eh2

)
≤ Dh

xe
h ≤ Kh2ph + 2Eh2 in Ω̃h,

while invoking lemma 4.4 gives∥∥Dh
xe

h
∥∥
L∞(Ω̃h) ≤ h2 (K ·D + 2E) .

The error of the central finite difference is bounded as follows:∣∣∣∣∣u (xi+1, yj)− u (xi, yj)

hi+ 1
2
,j

− ∂u

∂x

(
xi+ 1

2
, yj

)∣∣∣∣∣ ≤ h2
i+ 1

2
,j

24
max

Ω̄

∣∣∣∣∂3u

∂x3

∣∣∣∣ .
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Finally, by the triangle inequality, we have∥∥∥∥Dh
xu

h
i+ 1

2
,j
− ∂u

∂x

(
xi+ 1

2
, yj

)∥∥∥∥ ≤ h2

(
K ·D + 2E +

1

24
max

Ω̄

∣∣∣∣∂3u

∂x3

∣∣∣∣) .

Figure 2: The edges in Ω̃h are marked with the symbol �, and the interior edges

are enclosed by the dashed curve. Each interior edge
(
xi+ 1

2
, yj

)
has 8 neighboring

nodes (marked with the symbol ◦) in Ωh.

5 Analysis in three spatial dimensions

In the previous sections, we have analyzed the convergence in two spa-
tial dimensions. Since the Shortley-Weller method follows a dimension-by-
dimension approach, the analysis in three spatial dimensions is similar, except
for a few exceptions that we detail next.

The domain Ω ⊂ R3 is approximated by the set of grid nodes Ωh :=
Ω ∩ (hZ)3 and Γh, i.e. the intersection of Γ and the grid lines of (hZ)3. The
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discrete Laplacian is defined as:

∆hvhijk =

(
vhi+1,j,k − vhijk
hi+ 1

2
,j,k

−
vhijk − vhi−1,j,k

hi− 1
2
,j,k

)
/
hi+ 1

2
,j,k + hi− 1

2
,j,k

2

+

(
vhi,j+1,k − vhijk
hi,j+ 1

2
,k

−
vhijk − vhi,j−1,k

hi,j− 1
2
,k

)
/
hi,j+ 1

2
,k + hi,j− 1

2
,k

2

+

(
vhi,j,k+1 − vhijk
hi,j,k+ 1

2

−
vhijk − vhi,j,k−1

hi,j,k− 1
2

)
/
hi,j,k+ 1

2
+ hi,j,k− 1

2

2
,

and we can derive the corresponding main theorem, as in the previous sec-
tions.

Theorem 5.1. (Main theorem in R3) Let u (x, y, z) be the analytic solution
of the Poisson problem in Ω∪Γ, and uhi,j,k be the discrete solution in Ωh∪Γh

obtained by the Shortley-Weller method, then there exists a constant C ′ =
C ′ (Ω, u), independent of h, such that∥∥∥∥Dh

xu
h
i+ 1

2
,j,k
− ∂u

∂x

(
xi+ 1

2
, yj, zk

)∥∥∥∥
L∞(Ω̃h)

≤ C ′ · h2.

The only notable difference is the constant in lemma 4.3.

Lemma 5.2. Let K ′ := 257
30
·maxΩ̄,|α|≤5 |∂αu|, then∥∥Dh
xc
h
∥∥
L∞(Ω̃h

0) ≤ K ′ · h2.

6 Conclusion

We have presented a formal mathematical proof that the discrete gradient
obtained from the Shortley-Weller method is second-order accurate in the
L∞ norm. This work can thus provide useful guidelines on how to compute
the gradient of the Poisson solution at every grid nodes. In turn, this can be
used in a plethora of applications in computational fluid dynamics and free
boundary problems where the gradient drives the accuracy of the simulations.

Elliptic problems exhibit a strong dependence of the solution from any
grid location to the entire region in space. As a result, an adaptive grid
with finer resolution in some regions is not as efficient in elliptic problems
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as they are in hyperbolic and parabolic problems. Finite difference methods
are simple to implement and easy to use, and are therefore very attractive
for solving elliptic problems. However, formal proof of accuracy analysis are
rare, as opposed to what is found in the finite element community.

We hope this work will incite other researchers to attempt many unsolved
problems of finite difference methods. For example, we list below two open
problems that, to the best of our knowledge, are still unsolved. In his semi-
nal work [6], Gustafsson conjectured that only modified-ILU preconditioner
decreases the condition number by one less order than the other ILU-type
preconditioners. Gustafsson’s conjecture was proved in the case of a symmet-
ric finite difference method [16], but not in the case of the Shortley-Weller
method. [5] introduced a finite difference method for solving fluid-solid-
interaction, and recently proved that the solid velocity is at least first-order
accurate [18]. Numerical results for the solid velocity however strongly sug-
gests that second-order convergence is obtained, a proof of which has not yet
been provided.

Appendix. Detailed calculations in Lemma 4.3

In this section, we provide detailed calculations that lead to the estimate∥∥Dh
xc
h
∥∥
L∞(Ω̃h

o) ≤
105
4

maxΩ̃,|α≤5| |∂αu| · h2 in lemma 4.3.

Using the Taylor series of u (x, y) at
(
xi+ 1

2
, yj

)
, the terms that sum up

Dh
xc
h in (4) are expanded. For notational conveniences, the local coordinates

centered at
(
xi+ 1

2
, yj

)
are used in the calculations. For example, ui+1,j+1 is

denoted by u
(
h
2
, h
)
. The Taylor expansions are listed below with remainders.

u
(
±3h

2
, 0
)

= u± 3h
2
ux + 9h2

8
uxx ± 9h3

16
uxxx + 27h4

128
uxxxx ± 81h5

1280
uxxxxx

(
ξ±1 , 0

)
u
(
±h

2
, 0
)

= u± h
2
ux + h2

8
uxx ± h3

48
uxxx + h4

384
uxxxx ± h5

3840
uxxxxx

(
ξ±2 , 0

)
∆u
(
±h

2
, 0
)

= ∆u± h
2

(uxxx + uxyy) + h2

8
(uxxxx + uxxyy)± h3

48
(uxxxxx + uxxxyy)

(
ξ±4 , 0

)

10



When the above expansions are inserted into the summation of Dh
xc
h,

canceled out all the terms but the remainders.

Dh
xc
h
i+ 1

2
,j

=
h2

120



−
(

3
2

)5 (
uxxxxx

(
ξ+

1 , 0
)

+uxxxxx
(
ξ−1 , 0

))
+ 5

25

(
uxxxxx

(
ξ+

2 , 0
)

+uxxxxx
(
ξ−2 , 0

))

−
(

1
2

)5


(uxxxxx+uxxxxy+uxxxyy+uxxyyy+uxyyyy+uyyyyy)

(
1
2
ξ+,+

3 , ξ+
3

)
+ (uxxxxx−uxxxxy+uxxxyy−uxxyyy+uxyyyy−uyyyyy)

(
1
2
ξ+,−

3 , ξ−3
)

+ (uxxxxx−uxxxxy+uxxxyy−uxxyyy+uxyyyy−uyyyyy)
(

1
2
ξ−,+3 , ξ+

3

)
+ (uxxxxx+uxxxxy+uxxxyy+uxxyyy+uxyyyy+uyyyyy)

(
1
2
ξ−,−3 , ξ−3

)


+5

2

(
(uxxxxx + uxxxyy)

(
ξ+

4 , 0
)

+ (uxxxxx + uxxxyy)
(
ξ−4 , 0

))


Now, we prove the lemma.∣∣∣Dh
xc
h
i+ 1

2
,j

∣∣∣≤maxΩ̃,|α|≤5 |∂αu| · h
2

120

(
2 ·
(

3
2

)5
+ 2 · 5

25
+ 4 · 6 ·

(
1
2

)5
+ 2 · 2 · 5

2

)
= 105

4
maxΩ̃,|α≤5| |∂αu| · h2
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