
JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2017 1

Mathematical Analysis of Traffic Engineering in
Software Defined Network

Heewon Kim, Jiwon Seo, and Chohong Min

Abstract—Software-Defined Networking (SDN) allows net-
work administrators to dynamically control and manage net-
work behavior. In a seminal work, Agarwal et al. [1] introduced
traffic engineering in SDN to improve network resource uti-
lization, and Guo et al. suggested a further improvement [11]
by optimizing the weight setting of the OSPF protocol. The
optimization was known as an NP-complete problem, and the
search for the optimum involved a brute-force search.

In this paper, our main argument is that two types of
unnecessary searches are performed for the optimization. One
type occurs in links that do not carry traffic, and the other in
links that do not share traffic with the maximum utilization
link. Skipping the unnecessary ones, the computational cost
can be reduced by about 30%. Our argument is supported by
a complete mathematical analysis and is validated by examples
from real-world ISP network topology.

Index Terms—traffic control, mathematical analysis, network
theory (graphs)

I. INTRODUCTION

Every time new IT trends surface, such as Big Data,
Internet of Things (IoT) and Cloud Computing, there is a
keyword that always appears. It’s ’Network’. According to
the Cisco Visual Networking Index Forecast and Service
Adoption for 2014 to 2019 (Cisco VNI Report) [5], annual
global IP traffic is expected to increase 3 times between 2014
and 2019. Also, according to the report, worldwide IP traffic
will reach 168 EB per month in 2019, reaching 59.9 EB per
month (exabytes, 1 billion gigabytes) in 2014. Data coming
and going on a network is exploding, and naturally, network
management technology has become an important issue.

Traffic engineering is always an essential consideration
for large-scale networks that optimize network operation [3].
Open Shortest Path First (OSPF) is the most commonly used
Internet routing protocol[18], and there are many studies
on the optimal OSPF weight setting problem that aim to
optimize the network performance [8], [9]. However, as
the networking environment becomes increasingly demand-
ing and rapidly changing, the network performance of the

Department of Mathematics, Ewha womans university, Seoul, Korea
E-mail: chohong@ewha.ac.kr

OSPF routing protocol reaches limits. Since existing network
equipment and facilities are fixed, packet delay and losses
cannot be avoided if traffic changes rapidly. Therefore, the
environmental changes and increasing traffic demands have
resulted in a need for a Software-Defined Network (SDN)
[4], [17] .

SDN allows network administrators to control and manage
network behavior dynamically by separating the network
control plane from the packet forwarding plane. To create an
SDN environment, an open interface must be created to al-
low seamless communication for each networking command.
Open Flow [17] is an element that makes up the SDN, and it
is the standard interface responsible for communication be-
tween the control device and the networking switch. An SDN
consists of two main components, one is the SDN controller
and the other is the Forwarding Element. The controller is a
logically centralized function [10], [14] that determines the
forwarding path for each flow, and the forwarding element
constructs the data plane for the network. The forwarding
element forwarding the packets according to the forwarding
path is determined in the controller, and since SDN is a new
networking paradigm that simplifies network management
and dramatically improves the network resource utilization,
traffic engineering in SDN is an important issue [2], [15].

Agarwal et al. [1] considered unicast traffic engineering in
the case where the SDN controller controls only a few SDN
forwarding elements in the network. The rest of the network
(non-forwarding elements) does standard hop-by-hop routing
using OSPF. In this paper, we refer to the algorithm traffic
engineering Phase I. By deploying forwarding elements,
these produce improvements in the delay and a loss in
performance of the network. However, in terms of the non-
forwarding elements, a traditional OSPF routing protocol(a
hop-by-hop shortest path) is not the best option. We can
reduce the maximum link utilization by optimizing the OSPF
weights.

Guo et al. [11] optimized the OSPF weights in SDN to
balance the flow. Even though they obtain an improvement
in network performance when compared to the traffic engi-



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2017 2

neering in a traditional OSPF network [9] and SDN/OSPF
network with fixed weight setting [1], since the optimization
of the weight setting is an NP-complete problem [20], they
suggest a local search heuristic algorithm. The algorithm is
a brute-force algorithm that tries all integer weights on the
edge to find the minimum of the maximum utilization. We
call them traffic engineering Phase II.

In this paper, we found many unnecessary searches in
traffic engineering Phase II. We identify edges where the
increase in the edge weight does not lead to an improvement
in the minimum of the maximum utilization. As a result, we
were able to reduce the computations by 30% in the existing
method and obtained a considerable improvement in speed.
Throughout this paper, we use standard definitions from
Graph theory, and the main purpose of this paper is to gain a
speed-up in running Phase II. In Section 2 and 3, we briefly
review the survey of the traffic engineering Phase I and Phase
II, respectively. We compare the maximum link utilization
of the three algorithms: traditional OSPF, traffic engineering
Phase I, and traffic engineering Phase II. In Section 4, we
perform a mathematical analysis of the traffic engineering
algorithms and present an improvement for Phase II. We
first show that the function for the minimization is quite
nasty to deal with. We also analyze the algorithm in Phase
II and suggest an enhanced algorithm to speed-up Phase II
by identifying unnecessary searches and skipping. In Section
5, we present experimental results using a real network
topology [19] and compare the maximum link utilization and
computational numbers. Section 6 provides the conclusion
and summary of this paper as well as suggestions for future
work.

II. TRAFFIC ENGINEERING : PHASE I

In this section, we briefly review the basic ideas of the
traffic engineering introduced by Agarwal et al. [1]. The
basic traffic engineering, which we call Phase I, will be
improved in the next section in Phase II.

The network in consideration is represented by an undi-
rected graph G = (V,E). In this paper, we focus on unicast
communications. One vertex is the destination, and the other
vertices are sources. Each source vertex s has Tsd amount of
data to be delivered to the destination vertex d. Each edge e
has a capacity c (e), the limit of data flow through it. Figure
1 illustrates a typical example from [1] .

A standard routing protocol, called OSPF[18], sends data
through the shortest paths. A default distance at a source
is the minimum number of hops to reach the destination.
An important management of network is to keep the data
flow on each edge under capacity. Otherwise, the network

Figure 1: The network is represented by an undirected graph
G = (V,E) with Tsd on vertices (left) and the capacity c (e)
on edges (right).

Figure 2: Hop-by-hop OSPF network : hop-by-hop distances
on vertices (top) and the network flow (bottom). The data
flow on each edge is the sum of Tsd’s in Figure 1. θmax is
attained at the edge marked red.

will experience packet delays and packet loss. Thus, the
maximum-utilization-rate θmax, defined below, is required
to be smaller than 1.

{
utilization rate at edge e, θ (e) := data flow at e

capacity c(e)

maximum utilization rate, θmax := maxe∈E θ (e)

Figure 2 shows the hop-by-hop distance function and
the OSPF network flow. In the network, θmax is 1.2, and
needs to be reduced. The traffic engineering places a smart
capability to some of the vertices. The smart vertex can
forward data to many vertices, and the forwarding can be
programmed and controlled. The smart vertex is denoted FE
(Forwarding Element) vertex and the network is called SDN
(Software Define Network). Each FE vertex can send data to



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2017 3

the vertices whose hop distances are smaller than or equal
to its distance. The edges that can flow data form a directed
subgraph Gsub =

(
V,Esub

)
. With the controllability on FE

vertices, the data flow is divided into uncontrollable flow on
some edges and controllable flow at the FE vertices. Figure 3
shows the directed subgraph (left) and uncontrollable traffic
flow (middle).

Figure 3: Traffic engineering, Phase-I : directed subgraph
with Tsd on vertices (top left), uncontrollable traffic flow
with g (e) on edges (top right), and controllable traffic flow
with Iud on FE vertices (bottom). θmax is attained at two
edges marked red. Now the value is smaller than the non-
SDN network in Figure 2.

Due to the controllability, there are many paths P ∈ Pud

that connect the FE vertex u to the destination d. Iud denotes
the amount of data that needs to be delivered from u to d,
and x (P ) denotes the amount of data that path P delivers.
The unknown x (P )′ s are determined to minimize θmax by
the following linear programming.

minimize θmax subject to
g (e) +

∑
e∈P x (P ) ≤ θmax · c (e) , for each e,∑

P∈Pud
x (P ) ≤ Iud, for each u,

x (P ) ≥ 0, for each P.

Figure 3 shows the optimal value θmax and the calculated
x (P )

′
s. Note that θmax is reduced from 1.2 to 0.725 by

traffic engineering, Phase I.

III. TRAFFIC ENGINEERING : PHASE II

In a previous section, we reviewed basic traffic engineer-
ing by Agarwal et al. that reduces θmax from 1.2 to 0.725.
We called this engineering Phase I. In this section, we review
the advanced traffic engineering proposed by Guo et al.[11],
and call it Phase II. The Phase II algorithm reduces θmax

to 0.55.
As illustrated in Figures 1 and 3, Phase I begins with

hop-based distances, and then follows the calculations for
subgraph and linear programming. The hop-based distances
are the Dijkstra distances with uniform weight W (e) ≡ 1
on the edges.

The main idea of Phase II is to seek a further reduction
in θmax by increasing the freedom on the edge weight W .
The series of operations of Phase I enables us to think of
θmax as a function of weight W : E → R+. The operations
are illustrated in Figure 1 and 3, and summarized below.

Algorithm 1 Traffic engineering, Phase-I:
θmax = θmax (W )

Input: weight, W : E → R+(default W ≡ 1)
Output: θmax ∈ R+

1: calculate Dijkstra distance; Dist : V → R+

2: calculate directed subgraph: Gsub =
(
V,Esub

)
3: solve the linear programming to minimize θmax

The Phase-II algorithm by Guo et al. is a brute-force
algorithm that tries all integer weights on each edge to find
the minimum θmax. The algorithm sequentially visits each
edge and updates the integer-valued weight, whenever a new
minimum is found. The algorithm ends when there is no
change on the weight after a visit of all edges. The Phase
II algorithm is summarized in Algorithm 2. Figure 4 shows
the directed subgraph (top) and uncontrollable traffic flow
(bottom left), and the controllable traffic with maximum link
utilization (bottom right).

IV. MATHEMATICAL ANALYSIS

A. Regularity of the function θmax (W )

In this section, we perform a mathematical analysis of the
traffic engineering algorithms, and present an improvement
in Phase II. Our first task is to reveal the regularity of
the function θmax = θmax (W ) in Phase I. There are
numerous optimization techniques, and a proper technique
is determined for the regularity of the function to minimize.
The following two examples show that the function is quite
nasty to deal with.

Example 1. θmax (W ) is not generally convex.



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2017 4

Algorithm 2 Traffic engineering, Phase-II

Input: initial weight, W : E → R+ (default W = wmax

2 )
range of weights to search, 1 : wmax

Output: θmax ∈ R+

1: Perform Phase I to calculate θmax = θmax (W )
2: repeat
3: for each edge do
4: find its weight in 1 : wmax that minimizes θmax.
5: update W (e) with the argument of the minimum.
6: update θmax (W ) with the minimum value.
7: end for
8: until there is no change in the weights after a visit for

all edges

Figure 4: Traffic Engineering, Phase II: directed subgraph
with Tsd on the vertices (top left), uncontrollable traffic flow
with g (e) on the edges (top right), and controllable traffic
flow with Iud on the FE vertices (bottom). θmax is attained
at the four edges marked in red. Now the value is smaller
than the network using SDN Traffic Engineering Phase I in
Figure 3.

We present a counter example based on the graph that
appears in Section 2. The basic components of graph, a
vertex set and an edge set are the same as G = (V,E)
in Figure 1 and FE, Tsd, and the capacity c are also the
same. We first consider the weight function W1, that gives
the integer weight from 1 to 28 on each arbitrary edge where
there are no two edges with the same weight. Second, W2 is
a constant weight function that gives the weight 10 to each
edge equivalently. If the function θmax (W ) is convex, then

Figure 5: With the weight function W1 which gives integer
weight from 1 to 28 on each arbitrary edge (upper left)
and a constant weight function W2 (upper right), we can
check that the function θmax (W ) is not generally con-
vex. The solid line and dashed line in the graph below
depict θmax ((1− λ)W1 + λW2) and (1− λ) θmax (W1)+
λθmax (W2), respectively, with respect to a change in λ.

θmax ((1− λ)W1 + λW2)

≤ (1− λ) θmax (W1) + λθmax (W2) ,∀λ ∈ [0, 1] .

However, as we can see in Figure 5, there ex-
ists λ ∈ [0, 1] such that θmax ((1− λ)W1 + λW2) >
(1− λ) θmax (W1) + λθmax (W2). Therefore, θmax (W ) is
not generally convex.

Example 2. θmax (W ) is not generally continuous.

Fixing W ≡ 1 for all edges except one, say e∗. We slightly
increase the weight of e∗ from 0.01 to 4, we can find a jump
discontinuity near W (e∗) = 2 which is shown in Figure 6.
And therefore, θmax (W ) is not generally continuous either.

The two examples show that we cannot use the most of
efficient optimization techniques, such as Bisection method,
Gradient descent method, Newton method and their various
analogues. Thus the brute-force search of Phase-II makes
sense regarding the bad regularity of the function.



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2017 5

Figure 6: As we slightly change the weight of one edge
(which is colored red in figure on the top) with all the
other fixed, we can check that θmax (W ) is not continuous
(bottom).

B. Enhancement of Phase II

Our next task is to analyze the Phase II algorithm. In the
brute-force search, we found that there are many unnecessary
searches. In this section, we identify the cases when the
change from W to W̃ results in θmax (W ) ≤ θmax

(
W̃
)

.
Such cases are not helpful in reducing θmax. We propose
skipping such unnecessary searches, and as a result, gain a
speed-up in running Phase-II.

Let W : E → R+ be the current weight, from which
Phase-I calculates the following, as in Figure 1 and 2.

· Distance function : Dist : V → R+

· Subgraph : Gsub =
(
V,Esub

)
· Linear programming : θmax

Phase-II changes a weight W (e), while the other weights
are fixed. We denote W̃ (e) as the new weight and the change
will bring about an update on the above results.

· Updated Distance function : D̃ist : V → R+

· Updated Subgraph : G̃sub =
(
V, Ẽsub

)
· Updated Linear programming : θ̃max

Throughout the paper, we use standard definitions in
Graph theory. A path is a sequence of distinct edges con-
nected by common vertices, and its length is the sum of the

edge weights. The distance at a vertex is the minimum length
of paths that connects the vertex to the destination. Given
two vertices v, w, we define the set of paths connecting v
to w in G and Gsub as Pv→w and P sub

v→w, respectively.
Our first result is that Phase-II does not have to try larger

weights whenever the edge does not belong to Esub.

Theorem 1. If e ∈ E − Esub and W̃ (e) ≥ W (e), then
θ̃max ≥ θmax.

Proof. It is enough to show that Dist = D̃ist, then follows
Gsub = G̃sub and θmax = θ̃max. For any v ∈ V ,

There is a shortest path in Gsub and e /∈ Gsub. Only the
weight of e increases, and the l̃ength (P ) = length (P )

when e /∈ P , and l̃ength (P ) > length (P ) when e ∈ P .
Now we prove D̃ist (v) = Dist (v).

From the construction of Gsub, there is a shortest path
from v to d in Gsub. Since e /∈ Gsub, Dist (v) equals
length (P ) for some P ∈ P sub

v,d that does not include e. Only

the weight of e increases. Thus l̃ength (P ) = length (P )

when e /∈ P , and l̃ength (P ) > length (P ) when e ∈ P .

Theorem 1 identifies unnecessary searches when e ∈ E−
Esub. Now, let us turn our attention to cases when e ∈ Esub.
In the directed graph Gsub, a connected component is a



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2017 6

maximal set of vertices in which any two vertices are
connected by at least a path. Throughout this paper, we
do not include the destination in the connected components
and intentionally separate Gsub into many components.
Otherwise, there is only one connected component. Let us
denote by Csub

max, the connected component that contains the
edge emax at which θmax occurs.

Lemma 1. Either there is no controllable flow on emax, or
there exists an FE vertex u such that maxe∈P θ (e) = θmax,
for every P ∈ Pu→d.

Proof. Assume there is a controllable path P ∈ Pu→d that
passes through emax. If there is another path Q ∈ Pu→d

that has maxe∈Q θ (e) < θmax, we may decrease X (P ) and
increase X (Q) by the same amount to decrease θ (emax).
Since the linear programming finds the optimal solution,
there cannot be such FE vertex u.

Theorem 2. If e ∈ Esub − E
(
Csub

max

)
and W̃ (e) ≥W (e),

then θ̃max ≥ θmax.

Proof. First thing we need to show is that Dist = D̃ist on
Csub

max. For each vertex v ∈ Csub
max, there is a shortest path P

in Csub
max that connects v to d. Hence Dist (v) = length (P ).

Since e /∈ E
(
Csub

max

)
by the assumption, l̃ength (P ) =

length (P ). The weight increase, in general, increases all
other lengths, so D̃ist (v) = Dist (v). From this observa-
tion, we can also find that the internal edges of Csub

max stay
the same after the weight increase.Therefore Csub

max stays
connected in G̃sub. Furthermore, the following is that since
D̃ist ≥ Dist in V −Csub

max, there can be only an additional
inbound edge to Csub

max in G̃sub.
By Lemma 1, either there is no controllable flow on emax,

or there exists an FE vertex u such that maxe∈P θ (e) =
θmax, for every P ∈ Pu→d. In the former case, g (emax) is
the sum of all Tsd’s that come to emax. Since there is only
an additional inbound edge to Csub

max in G̃sub, g̃ (emax) ≥
g (emax), and θ̃max ≥ θmax. In the latter case, there is no
room to increase X (P ) in every P ∈ Pu→d. Furthermore,
Ĩu,d ≥ Iu,d because of the inflow. Therefore θ̃max ≥ θmax.

Using Theorem 1 and 2, we present a new algorithm that
reduces the iteration number. In this algorithm, we do not
make unnecessary searches for edges e where an increase in
W (e) does not lead to an improvement in utilization. Our
algorithm is summarized in Algorithm 3, and the numerical
result is illustrated in Figure 8. As we can see in the figure,
the Enhancement of Phase-II shows the same improvement

Figure 7: The first picture shows Gsub and the connected
component Csub

max in the example. As stated in Lemma 1,
every path P ∈ Pu→d goes through one of emax’s. When
the weight increases outside the component, as stated in
Theorem 2, Csub

max stays the same and only the inbound edges
can be added to it; see the second picture.

in utilization compared to that in Phase-II, but the number
of iterations is considerably reduced. The total number of
iterations of Phase-II is 820 and that for Phase II-E is 654.
We can see that the Enhancement in the Phase-II algorithm
reduces the total iteration count by about 20.3% compared
to the Phase-II algorithm.

V. EXPERIMENTS AND EVALUATION

In this section, we apply the presented algorithms to
real-world network examples and validate the arguments in
Theorems 1 and 2. Four examples are taken from Rocketfuel
data [16]. The specifications of the examples are listed in
Table I. For each example, the link capacity is taken as the



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2017 7

Algorithm 3 Enhancement of Phase-II

Input: weight, W : E → R+(default W ≡ 1)
maximum value of weight, wmax

Output: θmax ∈ R+

1: Perform Phase I to calculate θmax = θmax (W )
2: repeat
3: for each edges do
4: if an edge is not in Esub or Csub

max then
5: wcurr ← current weight on the edge
6: find the weight which minimizes θmax (W ),

from 1 to wcurr

7: else
8: find the weight which minimizes θmax (W ),

from 1 to wmax

9: end if
10: update W with the argument of the minimum
11: update θmax (W ) with the minimum value
12: end for
13: until there is no change in the weight after a visit for

all edges

Figure 8: The utilization rate θmax is plotted in each iteration
using E-Phase II (solid line) and Phase-II (dotted line). The
number of total iterations is posted for each algorithm.

inverse of the link cost, and 10% of the nodes are randomly
chosen and selected as forwarding elements, as in [11].

Theorems 1 and 2 state two types of unnecessary searches
in the Phase II algorithm. We denote by Enhanced Phase
II, the algorithm without unnecessary searches. Through the
experiments, we intend to verify that Phase II and E-Phase
II generate the same results and measure the speed-up from
skipping unnecessary searches.

Figure 9 shows the results of the two smallest examples,
EBONE and Tiscali. The solid line (E-Phase II) and dotted

number name nodes links
1755 EBONE(Europe) 87 322
3257 Tiscali(Europe) 161 656
6461 Abovenet(US) 138 744
1239 Sprintlinks(US) 315 1944

Table I: Network examples from Rocketfuel

Figure 9: Experiments of smaller examples, EBONE (top)
and Tiscali (bottom). The utilization rate θmax is plotted
in each iteration using E-Phase II (solid line) and Phase-II
(dotted line). The number of total iterations is posted for
each algorithm.

line (Phase II) undergo the same set of θmax values. E-
Phase II reaches each θmax value earlier than Phase-II. The
two algorithms end when there is no change in the visit of
all edges. The computational costs are thus proportional to
the number of iterations at the end. E-Phase II reduces the
computational cost of Phase II by 22.5% and 22.1% in the
two examples.

We remark that Phase II and E-Phase II spend about the
same computational cost for each iteration. The only addition
to E-Phase II is to calculate the connected component Csub

max.
It is straightforward to compute the connected component



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2017 8

Figure 10: Experiments of larger examples, Abovenet (top)
and Sprintlinks (bottom). The utilization rate θmax is plotted
in each iteration using E-Phase II (solid line) and Phase-II
(dotted line). The number of total iterations is posted for
each algorithm.

in linear time using a breadth-first-search. The addition was
negligible compared to the other computations, such as with
the Dijkstra algorithm and linear programming.

Figure 10 shows the results of the two larger examples,
Abovenet and Sprintlinks. Also E-Phase II and Phase II,
as stated in the theorems, generate the same utilization
values. Now E-Phase II reduces the computational cost of
Phase-II by 30.1% and 33.4%. We note that the amount of
reductions become larger as the network size grows, in the
tried examples.

ACKNOWLEDGEMENT

This research was supported by the Basic Science Re-
search Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Education(2009-
0093827)

VI. CONCLUSION AND FUTURE WORK

In this paper, we conducted a mathematical analysis on
traffic engineering in SDN, mainly based on graph theory. In
traffic engineering, since the optimal weight setting problem
is NP-complete, previous studies proposed an algorithm
based on brute-force, which tries all integer weights on
the edge to find the minimum of the maximum utilization.
In our research, we first observed that the optimal weight
setting problem is not regular enough to exploit the existing
efficient optimization solvers. After that, we conducted a
mathematical analysis on one of the existing algorithms,
proposed by Guo et al.[11]. As a result, we were able to
improve the speed by skipping unnecessary searches. On
the links that are not included in the set Esub or the set
Csub

max, it is unnecessary to try a larger weight than the one
that is currently set. Based on this theory, we proposed an
improved algorithm, with a computation volume reduced by
about 30%. There can be a further method to speed up the
algorithm. For example, on the links contained in Csub

max,
it is better not to consider reducing the link weight. We
understand this phenomenon intuitively, but we will leave
it as future work. Furthermore, different to our work where
we experimented on unicast communication network with
one destination and several sources, if our theory is applied
to multicast traffic engineering [12] that sends traffic to
multiple destinations, we expect to see improvements as
well.

REFERENCES

[1] S. Agarwal, M. Kodialam, and T. V. Lakshman. Traffic engineering in
software defined networks. In INFOCOM, 2013 Proceedings IEEE,
pages 2211–2219, April 2013.

[2] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou. A roadmap
for traffic engineering in sdn-openflow networks. Computer Networks,
71:1–30, 2014.

[3] D. O. Awduche. Mpls and traffic engineering in ip networks. IEEE
Communications Magazine, 37(12):42–47, Dec 1999.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker. Ethane: Taking control of the enterprise. SIGCOMM
Comput. Commun. Rev., 37(4):1–12, August 2007.

[5] VNI Cisco. Cisco visual networking index: Forecast and methodology,
2014–2019 white paper, 2015.

[6] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz. On the effect of
forwarding table size on sdn network utilization. In INFOCOM, 2014
Proceedings IEEE, pages 1734–1742. IEEE, 2014.

[7] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[8] M. Ericsson, M.G.C. Resende, and P. M. Pardalos. A genetic
algorithm for the weight setting problem in ospf routing. Journal
of Combinatorial Optimization, 6(3):299–333, 2002.

[9] B. Fortz and M. Thorup. Internet traffic engineering by optimizing
ospf weights. In Proceedings IEEE INFOCOM 2000. Conference
on Computer Communications. Nineteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (Cat.
No.00CH37064), volume 2, pages 519–528 vol.2, 2000.



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2017 9

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M.Casado, N. McKeown,
and S. Shenker. Nox: Towards an operating system for networks.
SIGCOMM Comput. Commun. Rev., 38(3):105–110, July 2008.

[11] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu. Traffic engineering
in sdn/ospf hybrid network. In 2014 IEEE 22nd International
Conference on Network Protocols, pages 563–568, Oct 2014.

[12] L. H. Huang, H. C. Hsu, S. H. Shen, D. N. Yang, and W. T. Chen.
Multicast traffic engineering for software-defined networks. In IEEE
INFOCOM 2016 - The 35th Annual IEEE International Conference
on Computer Communications, pages 1–9, April 2016.

[13] M. Huang, W. Liang, Z. Xu, W. XU, S. Guo, and Y. Xu. Dynamic
routing for network throughput maximization in software-defined
networks. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, pages 1–9,
April 2016.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S.Shenker. Onix:
A distributed control platform for large-scale production networks. In
OSDI, volume 10, pages 1–6, 2010.

[15] Y. Liu, Y. Li, Y. Wang, and J. Yuan. Optimal scheduling for multi-
flow update in software-defined networks. Journal of Network and
Computer Applications, 54:11–19, 2015.

[16] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring link
weights using end-to-end measurements. In Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet Measurment, IMW ’02, pages
231–236, New York, NY, USA, 2002. ACM.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–
74, March 2008.

[18] J. Moy. Ospf version 2. 1997.
[19] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies

with rocketfuel. In Proceedings of the 2002 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’02, pages 133–145, New York, NY,
USA, 2002. ACM.

[20] Y. Wang, Z. Wang, and L. Zhang. Internet traffic engineering
without full mesh overlaying. In Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society (Cat.
No.01CH37213), volume 1, pages 565–571 vol.1, 2001.


