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Abstract
We introduce a method for solving the variable coe�cient Poisson equation on fully adaptive Cartesian

grids that yields second order accuracy for the solutions and their gradients. We employ quadtree (in
2D) and octree (in 3D) data structures as an e�cient means to represent the Cartesian grid, allowing
for constraint-free grid generation. The schemes take advantage of sampling the solution at the vertices
of each cell. In particular, the discretization at one cell's vertex only uses vertices of two (2D) or three
(3D) adjacent cells, producing schemes that are straightforward to implement. Numerical results in two
and three spatial dimensions demonstrate the supra-convergence in the L∞ norm.

1 Introduction
The variable coe�cient Poisson equation is a model at the core of di�usion dominated phenomena and there-
fore is a component used in the simulation of countless important applications ranging from incompressible
�ows to semiconductor modeling to tissue engineering. Several approaches exist to solve numerically the
variable Poisson equation on uniform grids in the case of regular domains (see e.g. [17] and the references
therein), as well as in the case of irregular domains (see e.g. [10, 12, 16, 19, 20, 25, 26, 27] and the references
therein). Many physical problems have variations in scale and when solving these problems numerically,
uniform Cartesian grids are limited in their ability to resolve small scales. Uniform grids in such situations
are ine�cient in terms of memory storage and CPU requirements since only small portions of the compu-
tational domain require �ne resolutions. Therefore, it is highly desirable to lower the total number of grid
cells involved in the discretization. Since their inception, adaptive mesh re�nement techniques have provided
a tool to systematically concentrate the computational e�ort where it is most needed, allowing for e�cient
resolution.

Adaptive mesh strategies are becoming popular, see e.g. [14, 32, 7] in the case of the study of incom-
pressible �ows. However, implementations based on recursive structures, such as quadtrees/octrees are less
common. While in some cases (e.g. compressible �ows) the mesh must be constrained to avoid non-physical
e�ects (e.g. spurious shock re�ections [4]), several applications including incompressible �ows and the Stefan
problem for example, do not require any special constraints and thus more optimal data structures can be
used. Quadtree/Octree data structures have been proven to be optimal in such cases, as pointed out in
[5]. Discretizations of an elliptic linear partial di�erential equation by �nite di�erences, �nite elements or
the �nite volume method result in a linear system to be solved. The numerical e�ciency of �nite element
methods (F.E.M.) is in large part attributed to the fact that such formulations always yield symmetric linear
systems, which are computationally inexpensive to invert, e.g. with preconditioned conjugate gradient meth-
ods [13, 29]. Moreover, the theoretical framework associated with F.E.M. makes these methods attractive.
However, F.E.M. on adaptive meshes is often challenging to implement due to the large number of special
cases to take into account when discretizing the equations. This stems from the fact that the support of
the basis functions associated with one cell might involve an arbitrary number of neighboring cells, making
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a general procedure di�cult to write. Constraints can be introduced to limit the ratio between two adja-
cent cell sizes to at most two (graded trees). Although graded trees can be constructed from non-graded
trees, such operations introduce a large amount of additional cells in the domain, signi�cantly lowering the
e�ciency of the method.

Young et al. [33] introduced a �nite element method employing adaptive mesh re�nements for second-
order variable-coe�cient elliptic equations using a cut-cell representation of irregular domains. Almgren et
al. [2] solved the variable coe�cient Poisson equation in a block-structured adaptive grid in the context of
the incompressible Navier-Stokes equations. Johansen and Colella [16] presented a cell-centered numerical
method for solving the variable coe�cient Poisson equation on irregular domains using a multigrid approach
and a block-grid algorithm related to the adaptive mesh re�nement scheme of Berger and Oliger [5]. They
also provided a heuristic argument based on potential theory as to why schemes that are only �rst order
accurate locally can be globally second order accurate. McCorquodale et al. presented a node-centered
approach to solving the variable coe�cient Poisson equation on irregular domains using the block-structured
adaptive mesh re�nement multigrid solver of Almgren [1, 3]. These schemes, however, do not consider fully
adaptive meshes.

In [28], Popinet proposed a second order non-symmetric numerical method to study the incompressible
Navier-Stokes equations using an octree data structure. In his method, a Poisson equation for the pressure
needs to be solved to account for the incompressibility condition using a standard projection method (see
e.g. [8]). The pressure is sampled at the center of each cell and the discretization of the Poisson equation
requires interpolation procedures involving the pressure values at several adjacent cells. As a consequence,
this discretization is intricate and yields a wide band in the linear system. Moreover, only graded trees were
considered in [28] .

Losasso et al. [23] proposed a �rst order accurate Poisson solver on fully adaptive grids and applied
this solver to the motion of free surface �ows. The work relied on the observation that, in the case of
the Poisson equation, �rst order perturbations in the location of the solution produce consistent schemes
(see [12]). Moreover, by limiting the Poisson solver to �rst order accuracy, a symmetric discretization
that is computationally e�cient to invert was achieved. This work was extended to second order accuracy
in [22] using some of the ideas discussed by Lipnikov et al. in [21]. However, it is unclear whether or not the
solution's gradients can be found to second order accuracy. In some applications (e.g. Stefan type problems),
the accuracy of the solution's gradients determine the overall accuracy of the method and therefore a �rst
order accurate solution may lead to a degradation in the accuracy.

In this paper we propose a second order accurate �nite di�erence discretization for the variable coe�cient
Poisson equation on fully adaptive grids that also yields second order accuracy in the solution's gradients.
The scheme is based on sampling the solution at the vertices of a cell. The discretization at one cell's vertex
only uses vertices of two (2D) or three (3D) adjacent cells, producing schemes that are straightforward to
implement. Examples in two and three spatial discretizations demonstrate second order accuracy in the L1

and L∞ norms for the solution and its gradients.

2 Spatial Discretization
The domain is discretized into squares (in 2D) or cubes (in 3D) and we use a standard quadtree (in 2D) or
octree (in 3D) data structure to represent this discretization. More precisely, consider the case depicted in
Figure 1 in two spatial dimensions: The entire domain is originally associated with the root of the tree and
then split into four cells of equal sizes, called the children of the root. The discretization proceeds recursively,
i.e. each cell can be in turn split into four children and so forth. A cell with no children is called a leaf. By
de�nition, the level of the root is zero and is incremented by one every time a new generation of children
is added. As mentioned in the introduction, discretizations found in �nite element methods often limit the
di�erence of level between two adjacent cells to one to simplify the calculations and the number of cases to
consider. Popinet [28] also applies this constraint to his �nite di�erence method, which leads to graded trees.
In the method we propose in this work, we do not impose any constraint on the di�erence of level between
two adjacent cells, yielding a fully adaptive mesh generation.

The anisotropy ratio of a cell is de�ned as the ratio between the width and length of that cell. The
anisotropy ratio of a quadtree is the maximum of the anisotropy ratios. Hence, a quadtree of anisotropy
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Figure 1: Discretization of a two dimensional domain (left) and its quadtree representation (right). The
entire domain corresponds to the root of the tree (level 0), and each cell subdivided further points to its four
children. In this example, the tree is not graded since the di�erence of level between neighboring cells can
exceed one.

ratio of one has squares only in the subdivision. Finally two cells are called neighbors if they share a common
face.

Similarly, in three spatial dimensions, the domain (root) is split in eight cubes (children) and each cell
can be recursively split in a similar manner. The interested reader is referred to [30, 31] for more on octree
data structures.

3 Accuracy Analysis
Supra-convergence has been observed in several numerical methods for the Poisson equation. Ciarlet explains
in his book [9] how the standard 5-point scheme for the Poisson equation on irregular domains produces
second order convergence, even though the equation is only discretized to �rst order accuracy near the
boundary. Similar supra-convergence has been noted by Kreiss et al. [18] for some discretizations of the Heat
equation and the Wave equation. In this section, we present a supra-convergence result (Theorem 1) that
can serve as a guide for constructing accurate discretizations in quadtree- and octree- based adaptive grids.

Consider a discretization Ωh of a Cartesian domain Ω ∈ Rd, with Ntotal number of cells and Nnonunif

number of nonuniform cells1. We understand re�nement in the usual sense where we halve the size of every
cell, see e.g. Figure 2. After the pth re�nement, the grid contains Ntotal ·2d·p cells, with O

(
Nnonunif · 2(d−1)p

)
nonuniform cells, since the set of nonuniform cells is of codimension one. Therefore, after the pth re�nement,
there are O

(
2d·p) locally uniform cells and O

(
2(d−1)p

)
locally nonuniform cells.

If h is the length of the largest cell of a grid, then after the pth re�nement, h = O (2−p). Let us denote
the standard sampling operator by Rh : {u : Ω → R} → {Rhu : {vi} → R} such that Rhu (vi) = u (vi) , ∀i,
where {vi} is the set of nodes of the grid.

The following supra-convergence theorem assumes that the linear system associated with the discretiza-
tion is an M-matrix. An irreducible matrix is called M-matrix if its diagonal elements are all positive, its
non-diagonal elements are all non-positive, and its inverse is a positive matrix (i.e. a matrix whose elements
are all positive) [29, 9].

Lemma 3.1 (Uniform Boundedness) Consider the Laplace equation −∆u = f on an open set Ω with a a
Dirichlet boundary condition on at least one point of the boundary ∂Ω. Let −∆huh = f be a consistent
�nite di�erence scheme, i.e. −∆hRhu = f + O(h), de�ned on the discretized domain Ωh, and let the matrix
associated with −∆h be an M-matrix. Then there exists a bound c ∈ R such that

∥∥∆−1
h

∥∥
∞ ≤ c, independently

of h.
1We de�ne a locally nonuniform cell as a cell with size di�erent from at least one of its neighbors. Likewise a locally uniform

cell is one with size equal to all of its neighbors.
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Figure 2: Example of re�nement in two spatial dimensions. The total number of cells increases quadratically
whereas the number of locally nonuniform cells (shaded) increases linearly. The contribution of nonuniform
cells decreases relatively to that of uniform cells.

Proof Consider the solution of −∆u = 1. From the consistency's assumption we have:

−∆hRhu = Rh1 + O(h) ≥ Rh1
2

≥ 0,

for su�ciently small h. Since the inverse of an M-matrix is a positive matrix,

Rhu ≥ −1
2
∆−1

h Rh1 ≥ 0

Taking the maximum norm on both sides, we have:

2 ‖u‖∞ ≥ 2 ‖Rhu‖∞ ≥
∥∥∆−1

h Rh1
∥∥
∞ =

∥∥∆−1
h

∥∥
∞ ,

where ‖u‖∞ is independent of h. ¥

Lemma 3.2 Let ‖A‖max = maxi,j |Ai,j |. Then

‖A‖max ≤ ‖A‖∞
‖Ax‖∞ ≤ ‖A‖max · ‖x‖1

Proof These inequalities are obvious, since ‖A‖∞ = maxi

∑
j |Ai,j | ≥ maxi,j |Ai,j | , and |Axi| =

∣∣∣∑j Aijxj

∣∣∣ ≤
maxi,j |Ai,j | ·

∑
j |xj | . ¥

Theorem 1 (supra-convergence) Let uh be the solution of ∆huh = f with a Dirichlet boundary condition
on at least one point of the boundary, where ∆h is a discretization of the Laplace operator that is mth order
accurate at locally uniform cells and nth order accurate at locally non-uniform cells, with m,n ≥ 1. Suppose
that the matrix associated with ∆h is an M-matrix. Then, the approximation is globally min(m,n + 1)th

order accurate in L∞ norm.

Proof Let rh be the residual vector de�ned by ∆hu = f + rh. By assumption, each component of rh is
O (hm) at locally uniform nodes and O (hn) at locally non-uniform nodes. The error vector eh = uh − u
satis�es ∆heh = rh. Lemmas 3.1 and 3.2 imply that there exists a constant c ∈ R such that

∥∥∆−1
h

∥∥
max

< c
uniformly on h and

‖eh‖∞ =
∥∥∆−1

h rh

∥∥
∞ ≤

∥∥∆−1
h

∥∥
max

· ‖rh‖1 ≤ c · ‖rh‖1 .

Now, since there are O
(
2d·p) locally uniform nodes, and O

(
2(d−1)p

)
locally non-uniform nodes after the

pth re�nement, we have
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‖rh‖1 =
O(hm)·O(2d·p)+O(hn)·O(2(d−1)p)

O(2d·p)

= O (hm) + O (hn · 2−p)
= O (hm) + O

(
hn+1

)

Therefore ‖eh‖∞ = O (hm) + O
(
hn+1

)
. ¥

In practical terms, this simple analysis can serve as a guideline for deriving pth order accurate �nite
di�erence schemes. More precisely, to propose globally pth order accurate �nite di�erence schemes, it is
enough to focus on designing schemes that are (p − 1)th order accurate at locally nonuniform cells, which
reduce to at least pth order accurate schemes at locally uniform cells. For example, the numerical scheme for
solving the Poisson equation proposed in [23] is shown to be globally �rst order accurate (consistent), even
though the discretization at nonuniform mesh points is inconsistent. This was explained by the fact that �rst
order perturbations in the location produce a consistent method as demonstrated in [10, 12]. The theorem
in this section gives the same conclusion: the scheme proposed in [23] is locally inconsistent on nonuniform
meshes but reduces to a second order accurate discretization at locally uniform mesh points, hence yielding
a consistent scheme globally. This also explains that the di�erent approximations of the pressure gradient
in [23] result in consistent schemes, regardless of how the distance between the two adjacent cells involved
in the discretization of the pressure gradient was accounted for.

4 A Note on Center-Based and Vertex-Based Discretizations
There are mainly two standard choices for sampling the solution of an elliptic problem: sampling at the
vertices or at the center of each cell. A cell-centered sampling often leads to a symmetric linear system,
since the relation between neighbors is re�ective. For example, in the case depicted in Figure 3 (left), it is
geometrically natural to de�ne the discretization at c4 in terms of c2, c3, c5, c6. Likewise, the discretizations
at c2, c3, c5 and c6 will all naturally include c4. In contrast, in the case of the vertex-based sampling depicted
in �gure 3 (right), it is geometrically natural to de�ne the discretization at v1 in terms of v2, v3, v4, v5, v6,
and to de�ne the discretization at v6 in terms of v4, v5, v7. As a consequence, the equation for v1 involves
v6, but the discretization for v6 does not involve v1, and thus produces nonsymmetric discretizations. In the
case of cell-centered sampling, one can prove the following result:

Theorem 2 Consider the discretization of the Poisson equation at the center of a cell C. If only adjacent
cells are to be used, then there does not exist any locally consistent linear scheme on nonuniform Cartesian
grids.

Proof Referring to Figure 3 (left), let ui be the solution at ci and consider the discretization at c4. For a
linear consistent scheme to exist, we must be able to �nd the coe�cients ai such that

a4u4 + a2u2 + a3u3 + a5u5 + a6u6 = uxx + uyy + O(h),

where h denotes the length of the edge of cell c4. A simple Taylor analysis implies that the coe�cients ai

must satisfy the following linear system



1 1 1 1 1
0 −h 0 3h

2 −h
2

0 0 h h
2 − 3h

2

0 h2

2 0 9h2

8
h2

8

0 0 0 3h2

4
3h2

4

0 0 h2

2
h2

8
9h2

8







a4

a3

a2

a5

a6




=




0
0
0
1
0
1




,

which does not have a solution. ¥
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Figure 3: Cell-centered sampling (left) and vertex-based sampling (right).

Figure 4: Standard triangulation in a F.E.M. framework. Using linear basis functions, the discretization at
c4 reads − 7

6h2 · (u2 + u3 + u5 + u6) + 28
6h2 · u4 = f4, and although it can be shown to be locally inconsistent

in terms of Taylor expansions it leads to a globally second order accurate method.

In the same fashion, one can prove the nonexistence of any locally consistent linear methods even when all
the neighboring cells' values of u and f are used (i.e. also including u1, u7 and f1, f7 in this example).

We caution the reader that this observation along with Theorem 1 does not imply that there does not
exist any cell-centered linear schemes that are globally second order accurate. In fact, the �nite element
method provides an obvious counter example (see �gure 4 for a locally inconsistent discretization that yields
second order accurate solutions). The recent work of [22] is another example. Rather, this analysis serves as
a guideline for deriving high order accurate methods: A su�cient condition for obtaining a globally second
order accurate scheme is to �rst obtain a locally consistent scheme. In the case of a cell-centered scheme,
one avenue is to increase the number of neighboring cells involved in the discretization as in [28]. However,
this approach produces more intricate schemes and led the author in [28] to consider only graded trees to
ease the implementation. Another possible framework is to sample the solution at the vertices, which we
present next.

5 Laplace Equation
Consider the Laplace equation ∆u = f on a Cartesian domain Ω, with at least one Dirichlet boundary
condition u|∂Ω = g on the domain's boundary ∂Ω. In this section, we introduce schemes to solve this
problem in R1,2,3 that yield second order accuracy for the solutions and their gradients. Sampling the
solution at the vertices produces a very e�cient algorithm that can be applied in a dimension by dimension
framework. Notably, the discretization at the vertex of one cell only involves some values of the cell itself
and at most two of its neighboring cells, leading to methods that are straightforward to implement.
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Figure 5: There are two possible geometric con�gurations for C, Cx and Cy. Either C and Cx are edge-aligned
with respect to the vertex v (left) or C and Cy are edge-aligned with respect to the vertex v (right).

5.1 One Spatial Dimension
In the case of a nonuniform grid, the standard �nite di�erence discretization for the one dimensional Laplace
equation at a grid point xi can be written as

(
ui+1 − ui

si+ 1
2

− ui − ui−1

si− 1
2

)
· 2
si− 1

2
+ si+ 1

2

= fi, (1)

where si− 1
2

= xi− xi−1. A simple Taylor analysis (with the standard abuse of notations) demonstrates that
(

ui+1 − ui

si+ 1
2

+
ui − ui−1

si− 1
2

)
· 2
si− 1

2
+ si+ 1

2

= fi +
si+ 1

2
− si− 1

2

3
uxxx + O(h2),

where we take h = maxi si+1/2. Therefore, the scheme appears to be second order accurate only when the
grid is uniform. Again, Taylor analysis gives only su�cient conditions for accuracy. In fact, it has been
shown (see e.g. [10, 18, 24]) that discretizations of this type are actually second order accurate. Theorem 1
can also be applied to prove second order accuracy in this case.

5.2 Two Spatial Dimensions
The discretization in Section 5.1 can be applied in a dimension by dimension framework: consider a vertex
u0 of a cell C with a neighboring cell Cx in x- direction and a neighboring cell Cy in y-direction that both
contain u0. Since C, Cx and Cy all include u0, either Cx or Cy should be edge-aligned with C (with respect
to u0) as shown in Figure 5.

Referring to �gure 6, to apply the one dimensional �nite di�erence discretization at the vertex u0, an
intermediate value u4 is linearly interpolated from u5 and u6:

u4 =
s5u6 + s6u5

s5 + s6
.

Taylor analysis gives the following results for the standard discretizations in the x and y directions, respec-
tively:

(
u4 − u0

s4
− u0 − u1

s1

)
· 2
s1 + s4

= uxx +
s5s6

(s1 + s4) · s4
uyy + O(h), (2)

(
u3 − u0

s3
− u0 − u2

s2

)
· 2
s2 + s3

= uyy + O(h). (3)
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Figure 6: A con�guration illustrating the nodes involved in the discretization at u0 in the two dimensional
case.

The analysis in Section 5.1 demonstrates that the method will be second order accurate if one can com-
pensate for the spurious term involving uyy in Equation (2). This is easily achieved by a linear combination
of equations (2) and (3):

(
u4−u0

s4
− u0−u1

s1

)
· 2

s1+s4
+(

u3−u0
s3

− u0−u2
s2

)
· 2

s2+s3
· w = f0 + O(h),

(4)

where w = 1− s5s6
(s1+s4)·s4

. Note that the same strategy applies to the con�guration in which Cx is edge-aligned
with C. Also, not surprisingly, the weighted scheme reduces to the usual central scheme in the case of a
locally uniform grid, i.e. s1 = s4, s2 = s3, and either s5 = 0 or s6 = 0 (in which case u4 is simply not
needed). This process can be applied in a dimension by dimension framework, making the discretization
straightforward to implement.

The corresponding linear system is nonsingular in the practical case where the cells are isotropic (squares
or cubes). In fact, it is easy to formulate and prove the following theorem stating that rectangular cells can
be considered as well, given a mild constraint on the anisotropic ratio.

Theorem 3 The matrix induced by equation 4 is an M-matrix if the anisotropic ratio of the quadtree is
smaller than or equal to 2, and invertible if at least one Dirichlet boundary condition is imposed.

Proof By the assumption on the anisotropic the ratio, s5 + s6 ≤ 2s4. Since s5s6 ≤ (s5+s6)
2

4 , we have
0 ≤ s5s6

(s1+s4)·s4
≤ s5s6

s2
4
≤ 1, and 0 ≤ w ≤ 1. Since w is nonnegative, all the coe�cients of u0 in Equation

4 have the same sign. Since every coe�cient is multiplied equally to u0 and its neighbors, the matrix is
diagonally dominant. If a Dirichlet boundary condition is imposed at one vertex, then the linear system
is strictly diagonally dominant at the vertex. By the Gerschgorin's Circle Theorem, the linear system is
nonsingular. ¥

5.3 Three Spatial Dimensions
In the case of three spatial dimensions, a cell C containing a vertex u0, has three neighboring cells Cx, Cy

and Cz in x, y and z directions, respectively that also contain u0. Since C, Cx, Cy and Cz include the
same vertex u0, either Cx or Cy or Cz should be edge-aligned with C, and one of the other two should be
face-aligned with C as depicted in Figure 7. In this case, two intermediate values u4 and u5 are �rst linearly
interpolated from the neighboring vertices:

u4 =
u7s8 + u8s7

s8 + s7
,

and
u5 =

u11s11s12 + u12s11s9 + u9s10s12 + u10s10s9

(s11 + s10)(s9 + s12)
,

8



Figure 7: General three dimensional con�guration: There are three neighboring cells Cx, Cy and Cz of the
shaded cell C that include the vertex u0; here Cx is face-aligned and Cz is edge-aligned.

with ui introduced in Figure 7. Applying the one dimensional �nite di�erence described in section 5.1 in
each spatial direction at u0 gives the following truncation error:

(
u1 − u0

s1
+

u4 − u0

s4

)
2

s1 + s4
= uxx + uzz

s7s8

s4(s1 + s4)
+ O(h), (5)

(
u2 − u0

s2
+

u5 − u0

s5

)
2

s2 + s5
= uyy + uxx

s9s12

s5(s2 + s5)

+uzz
s10s11

s5(s2 + s5)
+ O(h), (6)

(
u3 − u0

s3
+

u6 − u0

s6

)
2

s3 + s6
= uzz + O(h). (7)

As mentioned above, the scheme will be second order accurate if the spurious terms generated by the
interpolations (the term in uzz in equation (5) and the terms in uxx and uzz in equation (6)) are cancelled.
This is achieved by a simple linear weighting of equations (5), (6) and (7):

(
u1−u0

s1
+ u4−u0

s4

)
2

s1+s4
· α +(

u2−u0
s2

+ u5−u0
s5

)
2

s2+s5
+(

u3−u0
s3

+ u6−u0
s6

)
2

s3+s6
· β = ∆u + O(h),

(8)

with
α = 1− s10s11

s5(s2+s5)
,

β = 1− s9s12
s5(s2+s5)

− α s7s8
s4(s1+s4)

.
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Again, we note that this discretization reduces to the standard second order accurate scheme for the
Laplace operator in the case where the grid is locally uniform, i.e. s1 = s4, s2 = s5, s3 = s6, α = 1, β = 1.
The linear system obtained is non singular on isotropic grid and even when relaxing slightly the condition
on the anisotropic ratio:

Theorem 4 The matrix induced by equation 8 is an M-matrix, if the anisotropic ratio of the octree is smaller
than or equal to

√
2, and invertible if at least one Dirichlet boundary condition is imposed.

Proof By the assumption on the ratio, s10 + s11 ≤
√

2s5. Since s10s11 ≤ (s10+s11)
2

4 , we have 0 ≤ s10s11
s5(s2+s5)

≤
s10s11

s2
5

≤ 1
2 , and 1

2 ≤ α ≤ 1. By the same way, 0 ≤ s9s12
s5(s2+s5)

≤ 1
2 and 0 ≤ s7s8

s4(s1+s4)
≤ 1

2 . Therefore
0 ≤ β ≤ 1. Since α and β are nonnegative, all the coe�cients of u0 have the same sign. Since every
coe�cient is multiplied equally to u0 and its neighbors, the matrix is diagonally dominant. If a Dirichlet
boundary condition is imposed on one vertex, then the linear system is strictly diagonally dominant at the
vertex. By the Gerschgorin's Circle Theorem, the linear system is nonsingular. ¥

Theorem 5 The �nite di�erence schemes in Section 5 are globally second order accurate in the L∞ norm.

Proof The proof is a trivial application of Theorem 1 since the schemes described in this section are all �rst
order accurate at locally non uniform mesh points and reduce to the standard second order accurate central
schemes at locally uniform nodes. ¥

6 Variable Coe�cient Poisson Equation
Consider again a Cartesian domain Ω ∈ R1,2,3 with boundary ∂Ω and the variable Poisson equation ∇ ·
(ρ∇u) = f on Ω with at least one Dirichlet boundary condition u|∂Ω = g. We assume that the variable
coe�cient ρ is positive and bounded from below by some ε > 0. The numerical methods described in Section
5 can be extended to the case of the variable Poisson equation to produce supra-convergent schemes on
fully adaptive meshes. Moreover, the extension to the variable density does not increase the support of the
schemes (i.e. the number of cells involved in the discretizations), producing schemes that are straightforward
to implement in two and three spatial dimensions. Finally, the matrices associated with these discretizations
are M-matrices as for the Laplace operator.

6.1 One Spatial Dimension
Exploiting the notations of section 5.1, the standard discretization of the one dimensional Poisson equation
is

(
ui−1 − ui

si− 1
2

· ρi−1 + ρi

2
+

ui+1 − ui

si+ 1
2

· ρi+1 + ρi

2

)
· 2
si− 1

2
+ si+ 1

2

= fi,

and yields second order accuracy.

6.2 Two Spatial Dimensions
The discretization described in Section 6.1 can be applied in a dimension by dimension framework and is suf-
�cient to obtain second order accurate discretizations in the case where the vertices used in the discretization
are aligned. In two spatial dimensions however, vertices are no longer necessarily aligned (see, e.g. �gure
6) and a procedure similar to that introduced in the case of the Laplace operator must be applied in order
to de�ne a valid intermediate value. As with the Laplace discretization, we involve the two vertices u5 and
u6 and their corresponding densities ρ5 and ρ6. The discretizations for (ρux)x and (ρuy)y along with their
Taylor analysis are given respectively by

(
u1 − u0

s1
· ρ1 + ρ0

2
+

s6D5 + s5D6

s5 + s6

)
· 2
s1 + s4

= (ρux)x +
s5s6

(s1 + s4)s4
(ρuy)y + O(h), (9)
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and
(

u2 − u0

s2
· ρ2 + ρ0

2
+

u3 − u0

s3
· ρ3 + ρ0

2

)
· 2
s2 + s3

= (ρuy)y + O(h), (10)

with
D5 = u5−u0

s4
· ρ5+ρ0

2 ,

D6 = u6−u0
s4

· ρ6+ρ0
2 .

Next, we cancel the spurious term s5s6
(s1+s4)s4

(ρuy)y by weighting appropriately equations (9) and (10):
(

u1−u0
s1

· ρ1+ρ0
2 + s6a5+s5a6

s5+s6

)
· 2

s1+s4
+(

u2−u0
s2

· ρ2+ρ0
2 + u3−u0

s3
· ρ3+ρ0

2

)
· 2

s2+s3
·
(
1− s5s6

(s1+s4)s4

)
= f0 + O(h).

(11)

Theorem 6 The matrix induced by equation 11 is an M-matrix if the anisotropic ratio of the quadtree is
smaller than or equal to 2, and invertible if at least one Dirichlet boundary condition is imposed.

Proof The proof is a straightforward extension of the proof of theorem 5.2. ¥

6.3 Three Spatial Dimensions
The same process can be applied in three spatial dimensions. For example, referring to �gure 7, the �nite
di�erence derived in one spatial dimension is applied dimension by dimension. If a neighboring point is not
aligned in the principal x, y or z direction, a multilinear interpolation similar to that introduced in section
6.2 is performed on the �nite di�erence approximations of ρux, ρuy, and ρuz:

(
ρ1+ρ0

2 · u1−u0
s1

+ D4

)
2

s1+s4
= (ρux)x + s7s8

s4(s1+s4)
(ρuz)z + O(h),(

ρ2+ρ0
2 · u2−u0

s2
+ D5

)
2

s2+s5
= (ρuy)y + s9s12

s5(s2+s5)
(ρux)x + s10s11

s5(s2+s5)
(ρuz)z + O(h),(

ρ3+ρ0
2 · u3−u0

s3
+ ρ6+ρ0

2 · u6−u0
s6

)
2

s3+s6
= (ρuz)z + O(h),

where

D4 =
ρ7 + ρ0

2
· u7 − u0

s4
· s8

s8 + s7

+
ρ8 + ρ0

2
· u8 − u0

s4
· s7

s8 + s7
,

and

D5 =
ρ11 + ρ0

2
· u11 − u0

s5
· s11s12

(s11 + s10)(s9 + s12)

+
ρ12 + ρ0

2
· u12 − u0

s5
· s11s9

(s11 + s10)(s9 + s12)

+
ρ9 + ρ0

2
· u9 − u0

s5
· s10s9

(s11 + s10)(s9 + s12)

+
ρ10 + ρ0

2
· u10 − u0

s5
· s10s12

(s11 + s10)(s9 + s12)
.

Next, a linear combination of these equations allows for the cancellation of the spurious terms s7s8
s4(s1+s4)

(ρuz)z,
s9s12

s5(s2+s5)
(ρux)x and s10s11

s5(s2+s5)
(ρuz)z, yielding the following consistent approximation:

(
ρ1+ρ0

2 · u1−u0
s1

+ D4

)
2

s1+s4
· α +(

ρ2+ρ0
2 · u2−u0

s2
+ D5

)
2

s2+s5
+(

ρ3+ρ0
2 · u3−u0

s3
+ ρ6+ρ0

2 · u6−u0
s6

)
2

s3+s6
· β = f0 + O(h),

(12)
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Figure 8: The three steps used to solve Poisson equation with Neumann boundary conditions. Here ¤
denotes a Dirichlet boundary condition, and • denotes a Neumann boundary condition.

with

α = 1− s10s11
s5(s2+s5)

,

β = 1− s9s12
s5(s2+s5)

− α s7s8
s4(s1+s4)

.
(13)

Theorem 7 The matrix induced by equations 12 and 13 is an M-matrix if the anisotropic ratio of the octree
is smaller than or equal to

√
2, and invertible if at least one Dirichlet boundary condition is imposed.

Proof The proof is a straightforward extension of the proof of theorem 5.2. ¥

Theorem 8 The �nite di�erence schemes in section 6 are globally second order accurate in the L∞ norm.

Proof The proof is a trivial application of theorem 1 since the schemes described in this section are all �rst
order accurate at locally non uniform mesh points and reduce to the standard second order accurate central
schemes at locally uniform nodes. ¥

7 A Note on Neumann Boundary Conditions
In the case where Neumann boundary conditions are imposed on the entire domain's boundary, the system
of equations constructed with equation 4 or equation 8 is singular since the addition of a constant is also a
solution. However, in such a case, it is su�cient to be able to identify one solution since one is only interested
in the solution's gradients in the case of "all Neumann boundary conditions" (see for example incompressible
�ows).

We propose a simple tree-step procedure that yields solutions with second order accurate gradients: First,
we impose a Dirichlet boundary condition at one corner of the domain (see �gure 8 [left]) making the linear
system nonsingular. Numerical experiments demonstrate that the solution is second order accurate, but that
the solution's gradients are only �rst order accurate near the corner because the arti�cial Dirichlet boundary
condition corrupts the accuracy of the gradients. A correction step follows to recover second order accuracy
in the solution's gradients. For this, the Poisson equation is solved again, but only in a small portion of the
domain containing the corner. For example, the shaded region in �gure 8 (center) represents the portion
of the domain that is solved with Dirichlet boundary conditions at the bottom and right edges using the
solution found in the �rst step. In the third step, gradients at the vertices of the cell near the corner are
updated using the solution of the second step (see �gure 8 [right]). Numerical experiments demonstrate
that the gradients are second order accurate in the L∞ norm. We note that the cost of solving the Poisson
equation in the second step is negligible since it only uses a small portion of the domain.
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Figure 9: Domain Ω = [0, π]2 and original mesh used in example 8.1.1.

E�ective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ order
322 7.04× 10−3 � 3.42× 10−2 �
642 1.74× 10−3 2.01 1.41× 10−2 1.28
1282 3.97× 10−4 2.13 4.38× 10−3 1.68
2562 9.33× 10−5 2.09 1.18× 10−3 1.89
5122 2.26× 10−5 2.05 3.09× 10−4 1.93

Table 1: Error analysis for example 8.1.1.

8 Examples
In this section we present numerical evidence that con�rms that the schemes described in this paper yield
second order accuracy in the L∞ norm for both the solution and its gradients, on highly irregular grids. In
particular the di�erence of level between adjacent cells can be greater than one, illustrating the fact that
the method is supra-convergent on fully adaptive meshes. The linear systems of equations are solved using
the stabilized bi-conjugate gradient method with the incomplete LU preconditioner [29]. We note that,
although other numerical algebra solvers could be used (GMRES, multigrids, etc.), we have not investigated
this avenue at this time.

8.1 Laplace Equation
8.1.1 Isotropic Grid in Two Spatial Dimensions
Consider a domain Ω = [0, π]2 and u satisfying ∆u = f on Ω with an exact solution of u(x, y) = e−x−y. We
impose Dirichlet boundary conditions on ∂Ω. Figure 9 depicts the grid used and table 1 demonstrates the
second order accuracy of the solution and its gradients in the L∞ norm. We note that the grid is highly non
regular with a di�erence of level equal to 3 for some cells.

8.1.2 Anisotropic Grid in Two Spatial Dimensions
This example illustrates the fact that our method is supra-convergent even in the case where the ratio
between the width and height of the original cell is greater than one. We test our method on the anisotropic
grid of �gure 10, with Ω = [0, 2] × [0, 1]. We take an exact solution of u(x, y) = sin(x) sin(y) and impose
Dirichlet boundary conditions. Table 2 illustrates the second order accuracy for the solution and its gradients
in the L∞ norm.
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Figure 10: Domain Ω = [0, 2]× [0, 1] and original mesh used in example 8.1.2.

E�ective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ order
162 1.49× 10−2 � 8.03× 10−2 �
322 3.44× 10−3 2.11 2.36× 10−2 1.76
642 7.36× 10−4 2.22 8.49× 10−3 1.47
1282 1.79× 10−4 2.04 2.48× 10−3 1.77
2562 4.37× 10−5 2.03 6.64× 10−4 1.90
5122 1.07× 10−5 2.03 1.71× 10−4 1.95

Table 2: Error analysis for example 8.1.2.

8.1.3 Comparisons between Adaptive Grid and Uniform Grid
Consider a domain Ω = [.1, 1]2 and u satisfying ∆u = f on Ω, with an exact solution of u(r, θ) = sin( 1

r ).
We impose Dirichlet boundary conditions on ∂Ω. Figure 11 depicts the adaptive grid used and the exact
solution. In particular, we chose to re�ne the grid near the regions where the solution presents large gradients.
Tables 3 and 4 give the results in the L∞ norm for the solution and its gradients in the case of the uniform
and adaptive grids, respectively. In particular, we observe that the accuracy on the solution's gradients is
slightly superior in the case of the adaptive grid with 1537 nodes than in the case of the uniform grid with
66049 nodes. Likewise, for about the same number of nodes, the accuracy in the case of the adaptive grid is
signi�cantly better than that of the uniform grid (10−3 .vs. 10−1). Finally, the adaptive solution attains a
converged regime with much less nodes than that of the uniform grid (121 nodes .vs. 4000 nodes).

Figure 11: Left: Domain Ω = [.1, 1]2 with the original mesh re�ned near the origin where the solution
presents sti� gradients and exact solution (right) used in example 8.1.3.
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Number of Nodes ||u− uh||∞ Order ||∇u−∇uh||∞ order
81 6.97× 10−2 � 1.02× 101 �
289 1.78×10−2 1.96 1.93× 101 -.91
1089 1.53× 10−2 .21 1.17× 101 .72
4225 4.31× 10−3 1.83 3.92× 100 1.57
16641 1.11× 10−3 1.95 1.06× 100 1.88
66049 2.78× 10−4 1.98 2.71× 10−1 1.97

Table 3: Error analysis for example 8.1.3 illustrating the limitations of a uniform grid to approximate sti�
solutions.

Number of Nodes ||u− uh||∞ Order ||∇u−∇uh||∞ order
39 8.66× 10−2 � 5.47× 100 �
121 2.52×10−2 1.77 1.78× 100 1.63
417 7.13× 10−3 1.82 5.70× 10−1 1.63
1537 1.92× 10−3 1.89 1.77× 10−1 1.68
5889 4.97× 10−4 1.95 5.33× 10−2 1.73
23041 1.26× 10−4 1.97 1.55× 10−2 1.77
91137 3.18× 10−5 1.98 4.46× 10−3 1.80

Table 4: Error analysis for example 8.1.3 in the case of adaptive mesh re�nement. The computational
resources are focused on the regions of steep gradients.

8.1.4 Non Rectangular Domain
This example illustrates the fact that our method is supra-convergent in the case where the domain does
not have a rectangular shape. Consider a domain Ω depicted in �gure 12 and an exact solution u(x, y) =
sin(x) sin(y). Dirichlet boundary conditions are imposed on the domain's boundary. Table 5 illustrates the
second order accuracy for the solution and its gradients in the L∞ norm.

8.1.5 Neumann Boundary Condition
Consider a domain Ω = [0, π]2 and an exact solution u(x, y) = cos(x) cos(y) − 1. We impose Neumann
boundary conditions on the boundary of the domain depicted in �gure 13. We apply the procedure described
in section 7 by �rst imposing a Dirichlet boundary condition at the origin. Table 6 demonstrates the second

Figure 12: Domain Ω and original mesh used in example 8.1.4.
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E�ective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ order
322 3.43× 10−2 � 1.71× 10−1 �
642 8.46× 10−3 2.02 5.44× 10−2 1.65
1282 2.01× 10−3 2.07 1.44× 10−2 1.91
2562 4.83× 10−4 2.05 3.63× 10−3 1.99
5122 1.19× 10−4 2.02 9.10× 10−4 2.00

Table 5: Error analysis for example 8.1.4.

Figure 13: Domain Ω = [0, π]2 with the original mesh used in example 8.1.5 (left), plot of ||∇u − ∇uh||∞
before (center) and after (right) applying the procedure described in section 7.

order accuracy of the solution in the L∞ norm prior to �xing the localized errors. Figure 13 depicts the
error in the solution's gradients, illustrating a peak localized near the origin (center) that is removed (right)
with the procedure described in section 7. Table 7 demonstrates the accuracy of the solution's gradients in
the L∞ norm, before and after �xing the localized errors.

8.1.6 Three Spatial Dimensions - Dirichlet boundary condition
Consider a domain Ω = [0, 1]3 and an exact solution u(x, y, z) = e−x−y−z. We impose Dirichlet boundary
conditions on ∂Ω. Figure 14 depicts the grid used and table 8 demonstrates the second order accuracy of
the solution and its gradients in the L∞ norm.

8.1.7 Three Spatial Dimensions - Neumann Boundary Condition
Consider a domain Ω = [0, π]3 and an exact solution u(x, y, z) = cos(x) cos(y) cos(z)−1. We impose Neumann
boundary conditions on the boundary of the domain depicted in �gure 15. The procedure described in section
7 is applied by �rst imposing a Dirichlet boundary condition at the origin, then removing the spurious
localized errors in gradients as explained in section 7. Table 9 demonstrates the second order accuracy in
the solution's gradients in the L∞ norm.

E�ective Resolution ||u− uh||∞ Order
322 3.15× 10−1 �
642 7.86× 10−2 2.00
1282 2.05× 10−2 1.94
2562 5.46× 10−3 1.90
5122 1.48× 10−3 1.89

Table 6: Error analysis for example 8.1.5.
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Figure 14: Domain Ω = [0, 1]3, the front (left) and side (right) views of the original mesh used in example
8.1.6.

Figure 15: Domain Ω = [0, π]3, the front (left) and side (right) views of original mesh used in example 8.1.7.
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8.2 Variable Coe�cient Poisson Equation
8.2.1 Two Spatial Dimensions
Consider the Poisson equation ∇· (ρ∇u) = f on a domain Ω = [0, π]2 with ρ(x, y) = sin(x) sin(y)+2 and an
exact solution of u(x, y) = sin(x) + sin(y). Dirichlet boundary conditions are imposed on the boundary ∂Ω.
Figure 9 illustrates the original mesh and table 10 demonstrates the second order accuracy of the solution
and its gradients in the L∞ norm.

8.2.2 Three Spatial Dimensions
Consider the Poisson equation ∇· (ρ∇u) = f on a domain Ω = [0, π]2 with ρ(x, y, z) = sin(x+ y + z)+2 and
an exact solution of u(x, y, z) = e−x2−y2−z2 . Dirichlet boundary conditions are imposed on the boundary
∂Ω. Figure 15 illustrates the original mesh and table 11 demonstrates the second order accuracy of the
solution and its gradients in the L∞ norm.

9 Conclusion
We have proposed a �nite di�erence algorithm for the Poisson equation that yields second order accuracy for
the solutions and their gradients on fully adaptive grids. Sampling the solution at the vertices produces an
e�cient algorithm that can be applied in a dimension by dimension framework. At T-junctions, multilinear
interpolations are used to generate intermediate values used in the discretizations. These intermediate values
introduce spurious O(1) errors that are successfully removed by simple weighting. Notably, the discretization
at the vertex of one cell only involves vertices of two (in 2D) or three (in 3D) adjacent cells, yielding a method
straightforward to implement. The linear systems obtained are nonsymmetric but are shown to be diagonally
dominant. We have presented two- and three-dimensional results to demonstrate the second order accuracy
of the method in the L∞ norm for the solutions and their gradients. This method will serve as the basis for
a second order accurate method to solve the Poisson and Heat equations on irregular domains and on fully
adaptive grids. Future work will include the design of a simple second order accurate schemes for the Stefan
problem and the incompressible Navier-Stokes equations on fully adaptive grids.

References
[1] A. Almgren. A Fast Adaptive Vortex Method using Local Corrections. PhD thesis, University of Cali-

fornia, Berkeley, 1991.

[2] A. Almgren, J. Bell, P. Colella, L. Howell, and M. Welcome. A conservative adaptive projection method
for the variable density incompressible navier-stokes equations. J. Comput. Phys., 142:1�46, 1998.

[3] A. Almgren, R. Buttke, and P. Colella. A fast adaptive vortex method in three dimensions. J. Comput.
Phys., 113:177�200, 1994.

[4] M. Berger and P. Colella. Local adaptive mesh re�nement for shock hydrodynamics. J. Comput. Phys.,
82:64�84, 1989.

[5] M. Berger and J. Oliger. Adaptive mesh re�nement for hyperbolic partial di�erential equations. J.
Comput. Phys., 53:484�512, 1984.

[6] D. Brown, R. Cortez, and M. Minion. Accurate projection methods for the incompressible navier-stokes
equations. J. Comput. Phys., 168:464�499, 2001.

[7] H.D. Ceniceros and A.M. Roma Study of Long-Time Dynamics of a Viscous Vortex Sheet with a Fully
Adaptive Non-Sti� Method. J. Phys. Fluids., 16:4285-4318, 2004.

[8] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems. J. Comput. Phys.,
2:12�26, 1967.

18



[9] P. Ciarlet. Introduction to Numerical Linear and Optimization. Cambridge Texts in Applied Mathe-
matics, 40 West 20th street, New York, NY 10011, 1998.

[10] F. Gibou and R. Fedkiw. A fourth order accurate discretization for the laplace and heat equations on
arbitrary domains, with applications to the stefan problem. J, Comput. Phys., 202:577�601, 2005.

[11] F. Gibou, R. Fedkiw, R. Ca�isch, and S. Osher. A level set approach for the numerical simulation of
dendritic growth. J. Sci. Comput., 19:183�199, 2003.

[12] F. Gibou, R. Fedkiw, L.-T. Cheng, and M. Kang. A second�order�accurate symmetric discretization of
the poisson equation on irregular domains. J. Comput. Phys., 176:205�227, 2002.

[13] G. Golub and C. Loan. Matrix Computations. The John Hopkins University Press, 1989.

[14] F. Ham, F. Lien, and A. Strong. A fully conservative second-order �nite di�erence scheme for incom-
pressible �ow on nonuniform grids. J. Comput. Phys., 117:117�133, 2002.

[15] W. Henshow. A fourth-order accurate method for the incompressible navier-stokes equations on over-
lapping grids. J. Comput. Phys., 113:13�25, 1994.

[16] H. Johansen and P. Colella. A cartesian grid embedded boundary method for poisson's equation on
irregular domains. J. Comput. Phys., 147:60�85, 1998.

[17] D. Kincaid and W. Cheney. Numerical Analysis: Mathematics of Scienti�c Computing. Brooks/Cole
Publishing Co., Paci�c Grove, CA, USA, 2002.

[18] H.O. Kreiss, H.-O. Manteu�el, T.A. Schwartz, B. Wendro�, and A.B. White Jr. Supra-convergent
schemes on irregular grids. Math. Comp., 47:537�554, 1986.

[19] R. LeVeque and Z. Li. The immersed interface method for elliptic equations with discontinuous coe�-
cients and singular sources 31:1019�1044, 1994. SIAM J. Numer. Anal., 31:1019�1044, 1994.

[20] Z. Li. A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal., 35:230�254,
1998.

[21] K. Lipnikov, J. Morel, and M. Shashkov. Mimetic �nite di�erence methods for di�usion equations on
non-orthogonal non-conformal meshes. J. Comput. Phys., 199:589�597, 2004.

[22] F. Losasso, R. Fedkiw, and S. Osher. Spatially adaptive techniques for level set methods and incom-
pressible �ow. Computers and Fluids (in press).

[23] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an octree data structure. ACM
Trans. Graph. (SIGGRAPH Proc.), pages 457�462, 2004.

[24] T. Manteu�el and A. White. The numerical solution of second-order boundary value problems on
nonuniform meshes. Math. Comput., 47 (176):511�535, 1986.

[25] A. Mayo. The fast solution of poisson's and the biharmonic equations on irregular regions. SIAM J.
Numer. Anal., 21:285�299, 1984.

[26] P. McCorquodale, P. Colella, D. Grote, and J.-L. Vay. A node-centered local re�nement algorithm for
poisson's equation in complex geometries. J. Comput. Phys., 201:34�60, 2004.

[27] A. McKenney and L. Greengard. A fast poisson solver for complex geometries. J. Comput. Phys.,
118:348�355, 1995.

[28] S. Popinet. Gerris: A tree-based adaptive solver for the incompressible euler equations in complex
geometries. J. Comput. Phys., 190:572�600, 2003.

[29] Y. Saad. Iterative methods for sparse linear systems. PWS Publishing, 1996. New York, NY.

19



[30] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, New York, 1989.

[31] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS.
Addison-Wesley, New York, 1990.

[32] M. Sussman, A.S. Algrem, J.B. Bell, P. Colella, L.H. Howell, and M.L. Welcome. An adaptive level set
approach for incompressible two-phase �ow. J. Comput. Phys., 148:81-124, 1999.

[33] D. Young, R. Melvin, M. Bieterman, F. Johnson, S. Samant, and J. Bussoletti. A locally re�ned
rectangular grid �nite element method: Application to computational �uid dynamics and computational
physics. J. Comput. Phys., 92:1�66, 1991.

20



Without Treating the Localized Errors Treating the Localized Errors
E�ective Resolution ||∇u−∇uh||∞ Order ||∇u−∇uh||∞ Order

322 4.66× 10−1 � 1.68× 10−1 �
642 1.46× 10−1 1.68 2.12× 10−2 2.99
1282 5.80× 10−2 1.33 5.08× 10−3 2.06
2562 2.63× 10−2 1.14 1.30× 10−3 1.96
5122 1.26× 10−2 1.06 3.35× 10−4 1.96

Table 7: Error analysis for example 8.1.5.

E�ective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ order
323 3.22× 10−3 � 5.82× 10−2 �
643 7.03× 10−4 2.19 1.73× 10−2 1.75
1283 1.82× 10−4 1.95 4.75× 10−3 1.87
2563 4.47× 10−5 2.02 1.24× 10−3 1.93
5123 1.10× 10−5 2.02 3.99× 10−4 1.64

Table 8: Error analysis for example 8.1.6.

Without Treating the Localized Errors Treating the Localized Errors
E�ective Resolution ||∇u−∇uh||∞ Order ||∇u−∇uh||∞ Order

322 9.70× 10−1 � 9.70× 10−1 �
642 1.38× 10−1 2.82 1.12× 10−1 3.12
1282 1.19× 10−1 0.22 2.44× 10−2 2.20
2562 1.05× 10−1 0.18 6.34× 10−3 1.95
5122 9.71× 10−2 0.11 1.60× 10−3 1.99

Table 9: Error analysis for example 8.1.7.

E�ective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ order
322 7.67× 10−2 � 3.10× 10−1 �
642 1.92× 10−2 2.00 7.41× 10−2 2.06
1282 4.87× 10−3 1.98 1.89× 10−2 1.98
2562 1.24× 10−3 1.97 4.74× 10−3 1.99
5122 3.15× 10−4 1.98 1.19× 10−3 1.97

Table 10: Error analysis for example 8.2.1.

E�ective Resolution ||u− uh||∞ Order ||∇u−∇uh||∞ order
323 5.02× 10−2 � 5.90× 10−1 �
643 1.25× 10−2 2.01 1.42× 10−1 2.06
1283 3.11× 10−3 2.01 2.43× 10−2 2.54
2563 8.10× 10−4 1.94 6.43× 10−3 1.92
5123 2.06× 10−4 1.97 2.00× 10−3 1.68

Table 11: Error analysis for example 8.2.2.
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