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AN OPTIMAL BOOSTING ALGORITHM BASED ON NONLINEAR CONJUGATE
GRADIENT METHOD

JOOYEON CHOI, BORA JEONG, YESOM PARK, JIWON SEO, AND CHOHONG MIN 1

ABSTRACT. Boosting, one of the most successful algorithms for supervised learning, searches
the most accurate weighted sum of weak classifiers. The search corresponds to a convex pro-
gramming with non-negativity and affine constraint. In this article, we propose a novel Con-
jugate Gradient algorithm with the Modified Polak-Ribiera-Polyak conjugate direction. The
convergence of the algorithm is proved and we report its successful applications to boosting.

1. INTRODUCTION

Boosting refers to constructing a strong classifier based on the given training set and weak
classifiers, and has been one of the most successful algorithms for supervised learning [1, 9, 8].
A first and seminal boosting algorithm, named AdaBoost, was introduced by [3]. AbaBoost can
be understood as a gradient descent algorithm to minimize the margin, a measure of confidence
of the strong classifier [10, 7, 3].

Though simple and explicit, Adaboost is still one of the most popular boosting algorithms
for classification and supervised learning. According to the analysis by [10], Adaboost tries to
minimize a smooth margin. The hard margin refers to a direct sum of the confidence of each
data, and the soft margin takes the log-sum-exponential function. LPBoost invented by [4],[2]
minimizes the hard margin, resulting in a linear programming. It is observed that LPBoost does
not perform well in most cases compared to Adaboost [11].

The strong classifier is a weighted sum of the weak classifiers. Adaboost determines the
weight by the stagewise and unconstrained gradient descent. Adaboost increases the support of
the weight one-by-one for each iteration. Due to the stagewise search and the stop of its search
when the support is enough, Adaboost is not the optimal search.

The optimal solution needs to be sought among all the linear combinations of weak classi-
fiers. The optimization becomes valid with a constraint that sum of the weights is bounded,
and the bound was observed to be proportional to the support size of the weight [11].

In this article, we propose a new and efficient algorithm that solves the constrained opti-
mized problem. Our algorithm is based on the Conjugate-Gradient method with non-negativity
constraint by [5]. They showed the convergence of CG with the modified Polak-Ribiera-Polyak
(MPRP) conjugate direction.
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The optimization that arise in Boosting has the non-negativity constraint and an affine con-
straint. Our novel algorithm extends the CG with non-negativity to hold the affine constraint.
The addition of the affine constraint is a deal as big as adding the non-negative constraint.

We present a mathematical setting of boosting in section 2, introduce the novel CG and prove
its convergence in section 3, and report its applications to bench mark problems of boosting in
section 4.

2. MATHEMATICAL FORMULATION OF BOOSTING

In boosting, one is given with a set of training examples {x1, · · · , xM} with binary labels
{y1, · · · , yM} ⊂ {±1}, and weak classifiers {h1, h2, · · · , hN}. Each weak classifier hj gives
a label to each example, and hence it is a function hj : {x1, · · · , xM} → {±1}.

A strong classifier F is made up of a weighted sum of the weak classifiers, so that F (x) :=∑N
j=1wjhj (x) for some w ∈ RN with w ≥ 0.
For each example xi, a label +1 is put when F (xi) > 0, and−1 otherwise. Hence the strong

classifier is successful on xi if the sign of F (xi) matches the given label yi, or sign (F (xi)) ·
yi = +1 and unsuccessful on xi if sign (F (xi)) · yi = −1.

The hard margin, which is a measure of the fidelity of the strong classifier, is thus given as

(Hard margin) : −
∑M

i=1 sign (F (xi)) · yi
When the margin is smaller, more of sign (F (xi)) · yi are +1, and F can be said to be more

reliable. Due to the discontinuity present in the hard margin, the soft margin of Adaboost takes
the form, via the monotonicity of log and exponential,

(Soft margin) : log
(∑M

i=1 e
−F (xi)·yi

)
The composition of log-sum-exponential functions is referred to lse. Let us denote by A ∈

{±1}M×N , the matrix whose entry is aij = hj (xi) · yi. Then the soft margin can be simply
put to lse (−Aw), where w = [w1, · · · , wN ]T .

The main goal of this work is to find out a weight that minimizes the soft margin, which is
to solve the following optimization problem.

minimize lse(−Aw) subject to w ≥ 0 and w · 1 =
1

T
(1)

Here, A ∈ {±1}M×N is a given matrix from the training data and weak classifiers, and
T is a parameter to control the support size of w. We finish this section with the lemma that
shows that the optimization is a convex programming, and we will introduce a novel algorithm
to solve the optimization.

Lemma 1. lse (−Aw) is a convex function with respect to w.

Proof. Given any w, w̃∈RN and any θ ∈ (0, 1), let z = −Aw and z̃ = −Aw̃.
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= (1− θ) lse (z) + θlse (z̃)

= log

( M∑
i=1

ezi

)1−θ

·

(
M∑
i=1

e z̃i

)θ
= log

( M∑
i=1

(
ezi (1−θ)

) 1
1−θ

)1−θ

·

(
M∑
i=1

(
e z̃iθ
) 1
θ

)θ
≤ log

(
M∑
i=1

ezi (1−θ) · e z̃iθ
)

by the Hlder’s inequality.

= lse ((1 − θ) z + θz̃ )

= lse (−A ((1 − θ)w + θw̃)).

�

3. CONJUGATE GRADIENT METHOD

In this section, we introduce a conjugate gradient method for solving the convex program-
ming (1).

min f (w) subject to w ≥ 0 and w · 1 =
1

T
Throughout this section, f (w) denotes the convex function lse (−Aw), and g (w) denotes

its gradient ∇f (w). Let d be the direction at a position w to seek the next position. When w
is located on the boundary of the constraint, w cannot be moved to a certain direction d due to
the constraints

{
w ∈ RN | w ≥ 0 and w · 1 = 1

T

}
.

We refer d to be feasible at w, if w + αd stays in the constraint set for sufficiently small
α > 0.

Definition 1. (Feasible direction) Given a direction d ∈ RN at a position w ∈ RN with
w ≥ 0 and w · 1 = 1

T , the feasible direction df = df (d,w) associated with d is defiend as the
nearest vector to d among the feasible directions at the position. Precisely, it is defined by the
minimization

df = argmin
yI(w)≥0 and y·1=0

‖ d− y ‖ (2)

where I(w) = {i | wi = 0} . The domain of the minimization is convex, and the functional is
strictly convex and coercive, so that df is determined uniquely.

Define the index set J(w) = {j | wj > 0} .

Lemma 2. ∀ω withw·1 = 1
T , ∀d, let df = df (d,w), thenw+αdf ≥ 0 and

(
w + αdf

)
·1 = 1

T
for sufficiently small α ≥ 0.
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FIGURE 1. For a given direction d at a position w, a colored region is a feasi-
ble region of d. Since df is the nearest vector to d among the feasible directions
at w, it is the orthogonal projection of d onto the colored region (a). df is de-
composed into two orthogonal components, df = dt + dw, where dt is the
orthogonal projection of df onto the tangent space (b).

Proof. Clearly, ∀α,
(
w + αdf

)
· 1 = w · 1 + 0 = 1

T .

∀α ≥ 0, if i ∈ I (w) , wi + αdfi = 0 + αdf ≥ 0, and
if j ∈ J (w) , wj + αdfj ≥ wj − α

(∣∣∣dfj ∣∣∣+ 1
)
.

Thus for any α ≥ 0 with α ≤ minj∈J(w)
wj∣∣∣dfj ∣∣∣+1

, w + αdf ≥ 0. �

Proposition 1. (Calculation of the feasible direction) For a given direction d at a position w,
df is calculated as {

dfi = (di − r)+, i ∈ I
dfj = dj − r , j ∈ J

where r is a zero of (dJ − r · 1J) · 1J + (dI1 − r)
+ + · · ·+ (dIk − r)

+ , k =| I |.

Proof. Since df is the KKT point of (Def.2), there exist λI and µ such that

df − d =

[
λI
0

]
− r · 1, with dfI ≥ 0 , λI · dfI = 0 , df · 1 = 0 .

From these conditions, we get dfJ = dJ − r · 1J and di − r = dfi − λi , for i ∈ I .
If di − r > 0, then dfi > 0 and λi = 0. Thus, dfi = di − r.
If di − r ≤ 0, then dfi = 0 and λi ≥ 0.
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Algorithm 1 Computing the feasible direction, df .
Input : w, d
Output : df

Procedure :
1 : Make index sets I (w) := {i|w (i) = 0} and J (w) := {j|w (j) > 0}
2 : Define a function p (r) =

∑
i∈I (di − r)

+ +
∑

j∈J (dj − r) . And find

α = argmax
i∈I,p(di)>0

i

β = argmin
i∈I,p(di)≤0

i

3 : r← zero of
∑

j∈J (dj − r) +
∑

i∈I,i≤α (di − r)−
∑

i∈I,i>β (di − r)

4 : Compute df as following : dfi =

{
di −max {0,−di + r}+ r, i ∈ I
di − r, i ∈ J

By combining these two, we have dfi = (di − r)+, for i ∈ I . Since df · 1 = 0,

df · 1 = dfJ · 1J + dfI · 1I
= (dJ − r · 1J) · 1J + (dI1 − r)

+ + (dI2 − r)
+ + · · ·+ (dIk − r)

+ = 0.

r is the root of the monotonically decreasing function. The monotone function is piecewisely
linear, so that the root can be easily obtained by probing intervals between {dI1 , · · · , dIk}
where the monotone function changes the sign. After r is obtained, df is defined as stated. �

Definition 2. (Tangent Space) The domain for w is the simplex {w | w ≥ 0 and w · 1 = 0}.
When w > 0, w is inside and the tangent space T = 1⊥.When wi = 0 and wj > 0 (∀j 6= i), w
is on the boundary, and the tangent space becomes smaller Tw = {1, ei | i ∈ I}⊥. In general,
we define the tangent space of w as Tw := [1 ∪ {ei | wi = 0}]⊥ ⊂ RN .

Definition 3. (Orthogonal decomposition of direction) Given a direction d ∈ RN on a position
w ∈ RN withw ≥ 0 and 1·w = 1

T , the direction is decomposed into three mutually orthogonal
vectors; tangential, wall, and non-feasible components.

d = df +
(
d− df

)
= dt + dw +

(
d− df

)
.

Here, df = df (d,w) is the feasible direction. dt is its orthogonal projection onto the tangent
space Tw, and dw = df − dt ∈ T⊥w . Their mutual orthogonality is proved below.
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Lemma 3. The above vectors dt, dw, and (d− df ) are orthogonal to each other. Furthermore,
d− df ∈ T⊥w .

Proof. By the definition of the orthogonal projection, dt⊥dw. The KKT condition of the mini-
mization (2) is(
df − d

)
=

[
λI
0

]
+ r1 for some λI ≥ 0 with λI · dfI = 0 and some r with r(d · 1) = 0,

where I = I (w). Since dt ∈ Tw = {1, eI}⊥ , dt ·
[
λI
0

]
= 0 and dt ·1 = 0, thus dt⊥d−df .

From df · (d− df ) = dfI ·λI + r(1 · d) = 0, we have df⊥d− df and dw = df − dt⊥d− df
which completes the proof of their mutual orthogonalities.

Since Tw ={1, eI}⊥ and d−df ∈ span{1, eI}, d−df is orthogonal to the tangent space. �

Definition 4. (MPRP direction) Let w be a point with w ≥ 0 and w · 1 = 1
T , and let

g = ∇f (w). Putting tilde for the variable in the previous step : let g̃ be the gradient and
d̃ be the search direction in the previous step, then the modified Polak-Ribiera-Polyak direction
dMPRP = dMPRP

(
w, g̃, d̃

)
is defined as

dMPRP = (−g)f − (−g)t · (g − g̃)t

g̃ · g̃
d̃t +

(−g)t · d̃t

g̃ · g̃
(g − g̃)t

Theorem 1. (KKT condition) ∀w ≥ 0 with w · 1 = 1
T , ∀g̃,∀d̃, let g = ∇f (w) and d =

dMPRP
(
w, g̃, d̃

)
, then (−g)f · d ≥ 0. Moreover (−g)f · d = 0 if and only if w is a KKT point

of the minimization problem (1).

Proof.

(−g)f · d = (−g)f ·

[
(−g)f − (−g)t · (g − g̃)t

g̃ · g̃
d̃t +

(−g)t · d̃t

g̃ · g̃
(g − g̃)t

]

=‖ (−g)f ‖ 2 +
1

g̃ · g̃

[
−
[
(−g)t · (g − g̃)t

] [
(−g)f · d̃t

]
+
[
(−g)f · (g − g̃)t

] [
(−g)t · d̃t

]]
Since (−g)w ⊥ Tw, (−g)w · (g − g̃)t = 0 and (−g)f · (g − g̃)t = (−g)t · (g − g̃)t.
Similarly, (−g)f · d̃t = (−g)t · d̃t, and we have (−g)f · d =‖ (−g)f ‖ 2 ≥ 0.
The KKT condition for 1 is that

g = λ+ r · 1 for some λ ≥ 0 with λ·w=0

and some r with r
(
w · 1− 1

T

)
= 0.

Since wJ > 0 and λ ≥ 0, λJ = 0. Since w · 1 = 1
T , and wI = 0, the condtions

r
(
w · 1− 1

T

)
= 0 and λ · w = λI · wI + λJ · wJ = 0 are unnecessary. Therefore, the
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Algorithm 2 Algorithm based on nonlinear conjugate gradient
Input : Given constants ρ ∈ (0, 1) , δ > 0, ε > 0. Initial point w0 � 0. Let k = 0, and
g = ∇f (w0) where f = lse (−Aw).
Output : w
Procedure :
1 : Compute d = (dI , dJ) by Algorithm 1.

If
∣∣∣(−g)f · d∣∣∣ ≤ ε, then stop.

Otherwise, go to the next step.

2 : Determine α = max
{
−dk·∇f(w)

dk·(∇2f(w)dk)
ρj , j = 0, 1, 2, · · ·

}
satisfying w + αd ≥ 0

and f (w + αd) ≤ f (w)− δα2 ‖ d ‖2
3 : w ← w + αd
4 : k ← k + 1, and go to step 2.

KKT condition is simplified as

g =

[
λI
0

]
+ r · 1 for some λI ≥ 0 and some r.

On the other hand, (−g)f ·d =‖ (−g)f ‖2= 0 if and only if 0 = (−g)f = argminyI≥0 and y·1=0 ‖
(−g)− y ‖, whose KKT condition is that

g =

[
λI
0

]
+ r · 1 for some λI ≥ 0 and some r.

Each of the two minimization problems has a unique minimum point, accordingly a unique
KKT condition. Since their KKT conditions are same, we have

(−g)f · d = 0 ⇐⇒ w is the KKT point of the minimization problem 1.

�

Next, we introduce some properties of f(w) and Algorithm 2 to prove the global conver-
gence of Algorithm 2.

Properties
Let V =

{
w ∈ RN | w ≥ 0 and w · 1 = 1

T

}
.

(1) Since the feasible set V is bounded, the level set
{
w ∈ RN | f(w) ≤ f(w0)

}
is bounded.

Thus, f is bounded from below.
(2) The sequence {wk} generated by Algorithm 2 is a feasible point sequence and the func-

tion value sequence {f(wk)} is decreasing. In addition, since f(w) is bounded below,
∞∑
k=0

α2
k ‖ dk ‖2<∞.
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Thus we have
lim
k→∞

αk ‖ dk ‖= 0.

(3) f is continuously differentiable, and its gradient is the Lipschitz continuous; there exists
a constant L > 0 such that

‖ ∇f(w)−∇f(y) ‖≤‖ x− y ‖,∀x, y ∈ V

These imply that there exists a constant γ1 such that

‖ ∇f(w) ‖≤ γ1,∀x ∈ V.

Lemma 4. If there exists a constant ε ≥ 0 such that

‖ g (xk) ‖≥ ε, ∀k,

then there exists a constant M > 0 such that

‖ dk ‖≤M, ∀k.

Proof.

‖ dMPRP
k ‖ ≤‖ (−g)f ‖ +

2 ‖ (−g)t ‖ · ‖ (g − g̃)t ‖ · ‖ d̃tk ‖
‖ g̃ ‖2

≤ γ1 +
2γ1Lαk ‖ d̃tk ‖

ε2
‖ d̃tk ‖

Since limk→∞ αk ‖ dk ‖ = 0, ∃a constant γ ∈ (0, 1) and k0 ∈ Z such that

2Lγ1
ε2

αk−1 ‖ d̃tk ‖≤ γ for all k ≥ k0.

Hence, for any k ≥ k0,

‖ dMPRP
k ‖ ≤ 2γ1 + γ ‖ dk−1 ‖

≤ 2γ1

(
1 + γ + · · ·+ γk−k0−1

)
+ γk−k0 ‖ dk0 ‖

≤ 2γ1
1− γ

+ ‖ dk0 ‖

Let M = max
{
‖ d1 ‖, ‖ d2 ‖, · · · , ‖ dkr ‖,

2γ1
1−γ+ ‖ dk0 ‖

}
. Then ‖ dMPRP

k ‖≤ M, ∀k.
�

Lemma 5. (Success of Line search) In Algorithm 2, the line search step is guaranteed to
succeed for each k. Precisely speaking,

f (wk + αkdk) ≤ f (wk)− δα2
k ‖ dk ‖2

for all sufficiently small αk.
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Proof. By the Mean Value Theorem,

f (wk + αkdk)− f (wk) = αkg (wk + αkθkdk) · dk,

for some θk ∈ (0, 1). The line search is performed only if (−g (wk))f · dk > ε. In Lemma7,
we showed that (−g(wk))− (−g(wk))f⊥Tw and (−g(wk))− (−g(wk))f⊥(−g(wk))f . Since
dk ∈ (−g(wk))f + Tw,

[
(−g(wk))− (−g(wk))f

]
· dk = 0 and we have

−g(wk) · dk = (−g(wk))f · dk > ε.

From the continuity of g(w),

−g (wk + αkθkdk) · dk >
ε

2

for sufficiently small αk. Choosing αk ∈
(
0, ε

2δ‖dk‖2

)
, we get

f (wk + αkdk) = f (wk) + αkg (wk + αkθkdk) · dk

< f (wk)−
ε

2
αk

≤ f (wk)− δα2
k ‖ dk ‖2 .

�

Theorem 2. Let {wk} and {dk} be the sequence generated by Algorithm 2, then

lim inf
k→∞

(−gk)f ·̇dk = 0.

Thus the minimum point w∗ of our main problem (1) is a limit point of the set {wk}and Algo-
rithm 2 is convergent.

Proof. We first note that (−gk)f · dk = −gk · dk that appeared in the proof of Lemma 11. We
prove the theorem by contradiction. Assume that the theorem is not true, then there exists an
ε > 0 such that

‖ (−gk)f ‖ 2 = (−gk)f · dk > ε, for all k
By Lemma 10, there exists a constant M such that

‖ dk ‖≤M, for all k.

If lim infk→∞ αk > 0, then limk→∞ ‖ dk ‖= 0. Since ‖ g ‖∞< −r, limk→∞ (−gk)f ·dk =
0. This contradicts assumption.

If lim infk→∞ αk = 0, then there is an infinite index set K such that

lim
k∈K,k→∞

αk = 0.

It follows from the step 2 of Algorithm 2, that when k ∈ K is sufficiently large, ρ−1αk does
not satisfy f (wk + αkdk) ≤ f (wk)− δα2

k ‖ dk ‖ 2, that is

f
(
wk + ρ−1αkdk

)
− f (wk) > −δρ−2α2

k ‖ dk ‖ 2 (3)
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By the Mean Value Theorem and Lemma 10, there is hk ∈ (0, 1) such that

f (wk)− f
(
wk + ρ−1αkdk

)
= ρ−1αkg

(
wk + hkρ

−1αkdk
)
· dk

= ρ−1αkg (wk) · dk + ρ−1αk
(
g
(
wk + hkρ

−1αkdk
)
− g (wk)

)
· dk

≤ ρ−1αkg (wk) · dk + Lρ−2α2
k ‖ dk ‖ 2

Substitute the last inequality into (3) and applying −g(wk) · dk = (−g)f (wk) · dk, we get
for all k ∈ K sufficiently large,

0 ≤ (−g)f (wk) · dk ≤ ρ−1 (L+ δ)αk ‖ dk ‖ 2.

Taking the limit on both sides of the equation, then by combining ‖ dk ‖≤M and recalling
limk∈K,k→∞ αk = 0, we obtain the limk∈K,k→∞ | (−g)f (xk) · dk |= 0.

This also yields a contradiction. �

Remark 1. To say the existence of k which satisfies (3), we should verify that wk + ρ−1αkdk
is feasible. Since dk · 1 = 0, (wk + ρ−1αkdk) · 1 = wk · 1 = 1

T . So, we should check
wk + ρ−1αkdk ≥ 0. Since limk∈K,k→∞ αk = 0, αk is near to zero for sufficiently large k.
Thus, wk + ρ−1αkdk ≥ 0 except very special cases.

4. NUMERICAL RESULTS

In this section, we test our proposed CG algorithm on two boosting examples of non-
negligible size. Through the tests, we check if their numerical results match the analyses
presented in section 3.

Our algorithm is supposed to generate a sequence {wk} on which the soft margin monoton-
ically decreases, which is the first check point. According to Theorem (2), the stopping criteria
(−gk)f · dk < ε should be satisfied after a finite number of iterations for any given threshold
ε > 0, which is the second check point. According to Theorem(1), the solution wk with the
stopping criteria satisfied is the KKT point, which is the third one. The KKT point is the global
minimizer of the soft margin, the optimal strong classifier, which is the final one.

4.1. Low dimensional example. We solve a boosting problem that minimizes lse(−Aw) with
w ≥ 0 and w · 1 = 1

2 , where A is a 4× 3 matrix given below.

A =


−1 1 1
−1 1 1
−1 1 −1
1 −1 −1


As shown in Figure 4.1, the soft margin lse(−Aw) monotonically decreases and the stopping

criteria (−gk)f · dk drops to a very small number in finite iterations, which is equivalent to the
statement of Theorem 2, lim infk→∞ (−gk)f ·dk = 0.
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FIGURE 2. the convergence of the CG method for example 4.1
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Home (+1) Field Goals Made Field Goals Attempted Field Goals Percentage 3 Point Goals

3 Point Goals Attempted 3 Point Goals Percentage Free Throws Made Free Throws Attempted

Free Throws Percentage Offensive Rebounds Defensive Rebounds Total Rebounds

Assists Personal Fouls Steals Turnovers

Road (−1) Field Goals Made Field Goals Attempted Field Goals Percentage 3 Point Goals

3 Point Goals Attempted 3 Point Goals Percentage Free Throws Made Free Throws Attempted

Free Throws Percentage Offensive Rebounds Defensive Rebounds Total Rebounds

Assists Personal Fouls Steals Turnovers

TABLE 1. Statistics form the basketball league

4.2. Classifying win/loss of sports games. One of the primal applications of boosting is to
classify win/loss of sports games [6]. As an example, we take the vast amount of statistics from
the basketball league of a certain country*(for a patent issue, we do not disclose the details).

The statistics of each game is represented by the following 36 numbers.
In a whole year, there were 538 number of games with the win/loss results, from which we

take a training data {x1, · · · , xM=269} with the win/loss of the home team {y1, · · · , yM} ⊂
{±1}. Each xi represents the statistics of a game, and xi ∈ R269×36.

Similarly to the previous example, Figure 4.2 shows that the soft margin monotonically
decreases and the stopping criteria drops to a very small number in finite iterations, matching
the analyses in Section 3.

5. CONCLUSION

We proposed a new Conjugate Gradient method for solving convex programmings with the
non-negative constraints and a linear constraint, and successfully applied the method to the
boosting problems. We also presented a convergence analysis for the method. Our analysis
shows that the method is convergent in a finite iteration for any small stopping threshold. The
solution with the stopping criteria satisfied is shown to be the KKT point of the convex pro-
gramming and hence the global minimizer of the programming. We solved two benchmark
boosting problems by the CG method, and obtained numerical results that completely cope
with the analysis. Our algorithm with the guaranteed convergence can be successful in other
boosting problems as well as other convex programmings.
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