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ABSTRACT. In this article, we introduce a finite difference method for solving the Navier-
Stokes equations in rectangular domains. The method is proved to be energy stable and shown
to be second-order accurate in several benchmark problems. Due to the guaranteed stability
and the second order accuracy, the method can be a reliable tool in real-time simulations and
physics-based animations with very dynamic fluid motion.

We first discuss a simple convection equation, on which many standard explicit methods fail
to be energy stable. Our method is an implicit Runge-Kutta method that preserves the energy
for inviscid fluid and does not increase the energy for viscous fluid. Integration-by-parts in
space is essential to achieve the energy stability, and we could achieve the integration-by-parts
in discrete level by using the Marker-And-Cell configuration and central finite differences.

The method, which is implicit and second-order accurate, extends our previous method
[1] that was explicit and first- order accurate. It satisfies the energy stability and assumes
rectangular domains. We acknowledge that the assumption on domains is restrictive, but the
method is one of the few methods that are fully stable and second-order accurate.

1. INTRODUCTION

Fluid flow is one of the fundamental phenomena in nature, and it affects our everyday lives
in a ubiquitous way. The incompressible Navier-Stokes equations are essential means to un-
derstand fluid phenomena. The equations have been intensely studied, however the existence
problem of their global solution is still unresolved and listed in Millennium problems [2]. Pre-
cisely speaking, the convergence of a numerical solution may not be proper, for the global
solution is unknown. Customarily, the order of accuracy refers to the approximation order of
the differential equations, or the observed convergence order when the exact formula for the
global solution is known in prior.
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While the convergence order is indirectly measured as mentioned above, the stability of a
numerical solution can be clearly stated in L2 norm. We briefly review the well-known L2

estimate [1] of the Navier-Stokes equations: Ut + U · ∇U = −∇p+ µ∆U in Ω
∇ · U = 0 in Ω

U = 0 on ∂Ω,

where Ω denotes a bounded domain with its boundary ∂Ω.
The first equation is the conservation law of momentum, and the last two equations are in-

compressibility condition and no-slip boundary condition. The above system does not increase
the kinetic energy, which is shown below.

d

dt

∫
Ω

1

2
U2 dx

 =

∫
Ω

U · DU
Dt

dx =

∫
Ω

U · (−∇p+ µ∆U) dx

= −
∫
Ω

µ∇U : ∇U dx ≤ 0.

Consequently, a numerical solution Un ' U (x, tn) is said to be energy stable, or L2 stable
in the strong sense, if ∥∥Un+1

∥∥
L2 ≤ ‖Un‖L2 , ∀n ∈ N.

We wish to distinguish the L2 strong stability from the usual definition of L2 stability. A
numerical solution is said to be L2 stable, if there exists a constant CT for each time T > 0
such that

‖Un‖L2 ≤ CT
∥∥U0

∥∥
L2 , ∀n ∈ N with ∆t · n ≤ T.

In practice, the constant CT , though it may exist, is hard to be measured, so that an increase
of L2 norm,

∥∥Un+1
∥∥
L2 > ‖Un‖L2 may put the users into a puzzle to decide whether it is a

sign of numerical instability or it is still within a bound of the weak L2 stability. From these
reasons, the strong stability, or the energy stability, is more desired than the weak stability, and
better conforms to the physics.

To the best to our survey, there have been a few studies related to energy stability of the
Navier-Stokes equations. G. Amsanay-Alex et al. [3] proposed L2 stable approximation of
the Navier-Stokes equations with variable density. They constructed a finite-volume type dis-
cretization based on the kinetic energy in continuous level, but it turned out to be L2 stable in
the inequality sense. Later on, R. Herbin et al. [4] extended this idea adopted to MAC config-
uration for compressible Navier-Stokes equations, but still not in strong L2 stable. Recently,
M. Gunzburger et al. [5] and A. Takhirov et al. [6] provided L2 energy stable methods for
simulating parameterized flow problems.

The Navier-Stokes equations consist of convection, diffusion and elliptic constraint terms.
Being nonlinear, the convection term has been explicitly approximated in most numerical meth-
ods. The incompressibility, which is the elliptic constraint, is imposed either at the same time
of diffusion process or after that. In the former case, a large-sized linear system, so called
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the saddle system [7, 8, 9] needs to be solved, and in the latter case, a series of smaller linear
systems, called a projection approach [10, 11, 12, 13], is solved.

When one aims at achieving the strong stability for the system of Navier-Stokes equations,
the one would realize that a main difficulty lies on the convection term. As a stand-alone equa-
tion apart from the system, the diffusion term is a gradient flow to minimize the L2 norm, and
the elliptic constraint is the Hodge-Helmholtz projection that is orthogonal in L2 inner product.
While the both processes decrease L2 norm, the convection term conserves it. Consider a lin-
ear convection equation with velocity field U that is incompressible and has no-slip boundary
condition.

φt + U · ∇φ = 0 in Ω. (1.1)

The conservation of L2 norm follows from the following estimation:

d

dt

∫
Ω

1

2
φ2 dx

 =

∫
Ω

φ · φt dx = −
∫
Ω

φ · (U · ∇φ) dx

=

∫
Ω

∇ · (φU)φdx =

∫
Ω

∇φ · (Uφ) dx (∵ ∇ · U = 0)

= 0

∵= −
∫
Ω

∇φ · (Uφ) dx

 .

Thus, when we consider a numerical solver for convection equation (1.1), it would be better
if a numerical solution {φn} to (1.1) is not only L2 stable in the strong sense, but also L2

preserving in the following sense:

‖φn+1‖L2 = ‖φn‖L2 , n ≥ 0.

In fact, in [1], the authors suggested an explicit method which obtains L2 stability in the strong
sense. However, it was only a first-order accurate method and thus, it was highly dissipative.
Therefore, although it actually attains strong L2 stability, it cannot guarantee the L2 preserving
property. Thus, it is natural to ask about whether it can be accomplished by utilizing second-
order method. Unfortunately, standard explicit second-order methods that we tried all failed to
be L2 stable in the strong sense for a pathological counterexample, let alone the L2 preserving
property (See Section 2). Thus, the goal of this paper is two-fold. First, we propose a second-
order implicit numerical method for convection equation (1.1) with L2 preserving property.
Then, based on newly introduced solver for convection equation, we suggest a second-order
numerical method for the incompressible Navier-Stokes equations, which do attain a strong L2

stability.
The rest of the paper is organized as follows. In section 2, we report our numerical tests of

the standard explicit second-order methods. In section 3 and section 4, we introduce an implicit
Runge-Kutta method in time that exactly preserves the kinetic energy for inviscid fluids and
does not increase the energy for viscous fluids. In either case, it is L2 stable in the strong sense.
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Since the integration-by-parts in space is essential to achieve the stability, we take the Marker-
And-Cell space configuration [14] in rectangular domains to enable the integration-by-parts in
discrete level. Section 5 reports numerical tests that validate the stability and accuracy of our
proposed method.

2. INVESTIGATION ON THE STRONG L2-STABILITY OF EXPLICIT SECOND ORDER
SCHEMES FOR CONVECTION EQUATION

In this section, we test the strong L2 stability of famous explicit second-order schemes for
convection equation (1.1). As a test subject, we choose three conventional schemes as follows:
the Lax-Wendroff scheme, the Jiang-Tadmor (J-T) scheme [15], which is a generalized scheme
of the Nessyahu-Tadmor scheme to two-dimensional space, and the second-order essentially
non-oscillatory scheme [16] with the Lax-Friedrichs flux (ENO2-LF). To investigate strong L2

stability of these scheme, we consider the following two-dimensional convection equation on
a square domain with the periodic boundary condition

φt +∇ · (Uφ) = 0, (x, y) ∈ [−1, 1]× [−1, 1], t ≥ 0, (2.1)

subjected to the periodic initial data

φ(x, y, 0) = φ0(x, y) := sin(π(x+ y)). (2.2)

We construct an incompressible velocity field U(x, y) := (u(x, y), v(x, y)) as a Hodge pro-
jection of the velocity field Ũ := (xy, x2 − y2) onto the divergence free vector field. Below,
we investigate L2 stability of (2.1)-(2.2) for each explicit schemes. We take a grid size N = 50
and CFL number λ = ∆t

∆x = ∆t
∆y = 0.25 in all the numerical tests below.

• (Case 1) : Lax-Wendroff scheme.

We first study L2 stability of numerical solution constructed by the Lax-Wendroff scheme.
The standard two-dimensional Lax-Wendroff method can be described as the following scheme

φn+1
ij = φnij −

∆t

2∆x
(ui+1,jφi+1,j − ui−1,jφi−1,j)−

∆t

2∆y
(vi,j+1φi,j+1 − vi,j−1φi,j−1)

+
∆t2

2∆x2

(
ui+1,j + ui,j

2
(ui+1,jφi+1,j − ui,jφi,j)−

ui,j + ui−1,j

2
(ui,jφi,j − ui−1,jφi−1,j)

)
+

∆t2

2∆y2

(
ui,j+1 + ui,j

2
(vi,j+1φi,j+1 − vi,jφi,j)−

vi,j + vi,j−1

2
(vi,jφi,j − vi,j−1φi,j−1)

)
+

∆t2

4∆x∆y
(vi,j+1 (ui+1,j+1φi+1,j+1 − ui−1,j+1φi−1,j+1)

−vi,j−1 (ui+1,j−1φi+1,j−1 − ui−1,j−1φi−1,j−1)) .

Figure 1 shows the dynamics ofL2 norm of the solution to (2.1)-(2.2) with the Lax-Wendroff
scheme. As we can observe, L2 norm of the numerical solution increases with time. Thus, we
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FIGURE 1. Dynamics of L2 norm for Lax-Wendroff scheme

conclude that the Lax-Wendroff scheme does not attain strong L2 stability in general.

• (Case 2) : J-T scheme.

Next, we present the result of a numerical test on L2 stability of J-T scheme. The J-T scheme
updates the values at the next time step on the staggered grid points. The exact description for
the J-T scheme reads as follows [15]

φn+1
i+ 1

2
,j+ 1

2

=
1

4

(
φni,j + φni+1,j + φni,j+1 + φni+1,j+1

)
+

1

16

(
φ′i,j − φ′i+1,j

)
− ∆t

2∆x

[
ui+1,jφ

n+ 1
2

i+1,j − ui,jφ
n+ 1

2
i,j

]
+

1

16

(
φ′i,j+1 − φ′i+1,j+1

)
− ∆t

2∆x

[
ui+1,j+1φ

n+ 1
2

i+1,j+1 − ui,j+1φ
n+ 1

2
i,j+1

]
+

1

16

(
φ8i,j − φ8i,j+1

)
− ∆t

2∆y

[
vi,j+1φ

n+ 1
2

i,j+1 − vi,jφ
n+ 1

2
i,j

]
+

1

16

(
φ8i+1,j − φ8i+1,j+1

)
− ∆t

2∆y

[
vi+1,j+1φ

n+ 1
2

i+1,j+1 − vi+1,jφ
n+ 1

2
i+1,j

]
where the primed values are defined as

φ′ij := minmod
{
φni+1,j − φni,j ,

1

2

(
φni+1,j − φni−1,j

)
, φni,j − φni−1,j

}
,
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φ8ij := minmod
{
φni,j+1 − φni,j ,

1

2

(
φni,j+1 − φni,j−1

)
, φni,j − φni,j−1

}
and the temporal values at the half step are calculated as

φ
n+1/2
i,j := φni,j −

∆t

2∆x
ui,jφ

′
i,j −

∆t

2∆y
vi,jφ

8
i,j .

FIGURE 2. Dynamics of L2 norm for central scheme

Figure 2 illustrates the dynamics of L2 norm of the J-T scheme. The result is similar to that
of the Lax-Wendroff scheme and again we conclude that the J-T scheme also cannot guarantee
strong L2 stability for this example.

• (Case 3) : ENO scheme.

As a final example, we study L2 stability of ENO scheme. The ENO scheme we tested can
be written as the following semi-discrete form

dφij
dt

= − 1

∆x

(
(uφ)i+ 1

2
,j − (uφ)i− 1

2
,j

)
− 1

∆y

(
(vφ)i,j+ 1

2
− (vφ)i,j− 1

2

)
where uφ is constructed by using ENO2 interpolation φ±

i+ 1
2
,j

at the cell interface with Lax-

Friedrichs flux function:

(uφ)i+ 1
2
,j :=

1

2

(
ui+ 1

2
,j

(
φ+
i+ 1

2
,j

+ φ−
i+ 1

2
,j

)
− α

(
φ+
i+ 1

2
,j
− φ−

i+ 1
2
,j

))
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and vφ is also defined in a similar manner. Since the maximum velocity in our example is 1,
we choose α to be 1. For the time integration, we use the TVD-RK3 time integration [17].

FIGURE 3. Dynamics of L2 norm for ENO scheme

Figure 3 presents the result of the test on L2 norm of the solution constructed by the ENO
scheme. It resembles the dynamics of L2 norm of previous two examples and therefore, the
ENO scheme also cannot guarantee strong L2 stability.

According to the several numerical tests above, the well-known second-order schemes some-
times fail to satisfy strong L2 stability, let alone the possibility of being proved rigorously.
However, since strong L2 stability of the solution is one of the most important physical prop-
erty of the solution to convection equation (1.1) with incompressible velocity field, a scheme
guaranteeing strong L2 stability is much more appropriate scheme from the physical point of
view.

3. MODIFIED IMPLICIT RUNGE-KUTTA METHOD

In the previous section, we reported that many standard explicit second-order methods fail
to be L2 stable in the strong sense for the approximation on the linear advection equation
(1.1). In this section, we introduce a second-order implicit method that approximates the linear
advection equation φt + U · ∇φ = 0 with L2 stability in the strong sense.
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With the incompressibility condition on the velocity field U , we may take the conservation
form φt +∇ · (φU) = 0 of (1.1). Among many candidates, we focus on the following second-
order accurate implicit Runge-Kutta method [18]. φn+ 1

2 = φn − ∆t
2 ∇ ·

(
φn+ 1

2U
)
,

φn+1 = φn −∆t∇ ·
(
φn+ 1

2U
)
.

(3.1)

The main advantage of the semi-discretization form (3.1) is that it satisfies the following L2

norm preserving property.

Lemma 3.1. When ∇ · U = 0 in Ω and U · n = 0 on ∂Ω are satisfied, the semi-discretization
form (3.1) preserves the L2 norm, i.e.∥∥φn+1

∥∥
L2 = ‖φn‖L2 .

Proof. First, note that φ
n+1

2−φn
∆t/2 = ∇ ·

(
φn+ 1

2U
)

= φn+1−φn
∆t implies φn+ 1

2 = φn+1+φn

2 , and
then ∫

Ω

(
φn+1

)2 − (φn)2

2∆t
dx =

∫
Ω

φn+1 + φn

2

φn+1 − φn

∆t
dx

= −
∫
Ω

φn+ 1
2∇ ·

(
φn+ 1

2U
)
dx

=

∫
Ω

∇φn+ 1
2 ·
(
φn+ 1

2U
)
dx (∵ U · n = 0 on ∂Ω)

=

∫
Ω

(
∇ ·
(
φn+ 1

2U
))

φn+ 1
2 dx (∵ ∇ · U = 0 in Ω)

= 0

∵= −
∫
Ω

φn+ 1
2∇ ·

(
φn+ 1

2U
)
dx

 .

�

For the above lemma to be valid in the discrete level, the integration-by-parts and the product
rule in the discrete level need to be satisfied. For that purpose, we assume a rectangular domain
Ω and take the Marker-And-Cell (MAC) space configuration.

As depicted in Figure 4, the velocity fieldU = (u, v) is sampled on
{
ui+ 1

2
,j

}
and

{
vi,j+ 1

2

}
.

The incompressibility of the velocity field is defined as(
∇h · U

)
i,j

:=
ui+ 1

2
,j − ui− 1

2
,j

∆x
+
vi,j+ 1

2
− vi,j− 1

2

∆y
= 0. (3.2)
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: pij : ui+ 1
2
,j, ϕi+ 1

2
,j

: vi,j+ 1
2
, ϕi,j+ 1

2

Γ

b

(0, 0)

b

(imax, 0)

b
(0, jmax)

b
(imax, jmax)

FIGURE 4. MAC configuration

We bear in our mind that the method for solving the linear convection is to be applied to
solving the Navier-Stokes equations. Thus, the scalar φ is assumed to be sampled either on{
φi+ 1

2
,j

}
or on

{
φi,j+ 1

2

}
. Due to the symmetry, it is enough to describe the case

{
φi+ 1

2
,j

}
.

Utilizing the central finite differences on the MAC configuration, the full discretization of our
method is as follows.

φ
n+ 1

2

i+ 1
2
,j

= φn
i+ 1

2
,j
− ∆t

2 ∇ ·
(
φn+ 1

2U
)
i+ 1

2
,j

φn+1
i+ 1

2
,j

= φn
i+ 1

2
,j
−∆t∇ ·

(
φn+ 1

2U
)
i+ 1

2
,j

∇ ·
(
φn+ 1

2U
)
i+ 1

2
,j

:=

u
i+3

2 ,j
+u

i+1
2 ,j

2

φ
n+1

2

i+3
2 ,j

+φ
n+1

2

i+1
2 ,j

2 −
u
i+1

2 ,j
+u

i− 1
2 ,j

2

φ
n+1

2

i+1
2 ,j

+φ
n+1

2

i− 1
2 ,j

2

 1
∆x

+

v
i+1,j+1

2
+v

i,j+1
2

2

φ
n+1

2

i+1
2 ,j+1

+φ
n+1

2

i+1
2 ,j

2 −
v
i+1,j− 1

2
+v

i,j− 1
2

2

φ
n+1

2

i+1
2 ,j

+φ
n+1

2

i+1
2 ,j−1

2

 1
∆y

(3.3)
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With the discrete incompressibility condition (3.2), the above full discretization can be sim-
plified as follows.

φn
i+ 1

2
,j

= φ
n+ 1

2

i+ 1
2
,j

+
4t

84x

(
ui+ 3

2
,j + ui+ 1

2
,j

)
φ
n+ 1

2

i+ 3
2
,j
− 4t

84x

(
ui+ 1

2
,j + ui− 1

2
,j

)
φ
n+ 1

2

i− 1
2
j

+
4t

84y

(
vi+1,j+ 1

2
+ vi,j+ 1

2

)
φ
n+ 1

2

i+ 1
2
,j+1
− 4t

84y

(
vi+1,j− 1

2
+ vi,j− 1

2

)
φ
n+ 1

2

i+ 1
2
,j−1

φn+1
i+ 1

2
j

= 2φ
n+ 1

2

i+ 1
2
j
− φn

i+ 1
2
j
.

If we regard φn and φn+ 1
2 as a vector in R(imax−1)jmax , then the first step can be written as the

following linear equation:

Aφn+ 1
2 = φn,

where
{
φn
i+ 1

2
,j

}
,
{
φ
n+ 1

2

i+ 1
2
,j

}
∈ R(imax−1)jmax and the matrix A is defined by

A(i+ 1
2
,j),(̃i+ 1

2
,j̃) :=



1 if ĩ = i and j̃ = j,

− 4t84x

(
ui+ 1

2
,j + ui− 1

2
,j

)
if ĩ = i− 1 and j̃ = j,

4t
84x

(
ui+ 3

2
,j + ui+ 1

2
,j

)
if ĩ = i+ 1 and j̃ = j,

− 4t84y

(
vi+1,j− 1

2
+ vi,j− 1

2

)
if ĩ = i and j̃ = j − 1,

4t
84y

(
vi+1,j+ 1

2
+ vi,j+ 1

2

)
if ĩ = i and j̃ = j + 1,

0 if otherwise.
(3.4)

Before we address the L2 preserving of the scheme, we first prove the matrix A is non-
singular so that φn+ 1

2 is well-defined under the appropriate CFL condition.

Lemma 3.2 (Solvability). The matrix A given in (3.4) is invertible under the CFL condition
4t < min{4x,4y}

max{‖u‖∞,‖v‖∞} .

Proof. The proof follows from the direct application of Gershgorin circle theorem. Note that
the following holds for every 1 ≤ i ≤ N :∑

j 6=i
|ai,j | =

4t
84x

(∣∣∣ui+ 1
2
j + ui− 1

2
j

∣∣∣+
∣∣∣ui+ 3

2
j + ui+ 1

2
j

∣∣∣)
+
4t

84y

(∣∣∣vi+1j− 1
2

+ vij− 1
2

∣∣∣+
∣∣∣vi+1j+ 1

2
+ vij+ 1

2

∣∣∣)
≤ 4t

24x
‖u‖∞ +

4t
24y

‖v‖∞

< 1 = |ai,i| .

Hence, the Gershgorin circle theorem guarantees the invertibility of A. �
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Next, we provide the L2 preserving property of the modified implicit RK2 method (3.3).

Theorem 3.1 (L2 preserving). For every n ∈ N, ‖φn+1‖L2 = ‖φn‖L2 .

Proof. Let 〈 , 〉 be the standard inner-product in R(imax−1)jmax . Regarding ∇ · (φn+ 1
2U) as a

vector in R(imax−1)jmax , we can obtain

〈φn+1, φn+1〉

= 〈φn, φn〉+ 24t
〈
φn,∇ · (φn+ 1

2U)
〉

+4t2
〈
∇ · (φn+ 1

2U),∇ · (φn+ 1
2U)

〉
= 〈φn, φn〉+ 24t

〈
φn+ 1

2 − 4t
2
∇ · (φn+ 1

2U),∇ · (φn+ 1
2U)

〉
+4t2

〈
∇ · (φn+ 1

2U),∇ · (φn+ 1
2U)

〉
= 〈φn, φn〉+ 24t

〈
φn+ 1

2 ,∇ · (φn+ 1
2U)

〉
.

Thus, it suffices to show that 〈φn+ 1
2 ,∇ · (φn+ 1

2U)〉 = 0. However, it can be estimated as

〈
φn+ 1

2 ,∇ ·
(
φn+ 1

2U
)〉

=

imax−2∑
i=1

jmax−1∑
j=1

φ
n+ 1

2

i+ 1
2
,j

(∇ · (φn+ 1
2U))i+ 1

2
,j

=

imax−2∑
i=1

jmax−1∑
j=1

φ
n+ 1

2

i+ 1
2
,j

4x

φn+ 1
2

i+ 3
2
,j

+ φ
n+ 1

2

i+ 1
2
,j

2

ui+ 3
2
,j + ui+ 1

2
,j

2

−
φ
n+ 1

2

i+ 1
2
,j

+ φ
n+ 1

2

i− 1
2
,j

2

ui+ 1
2
,j + ui− 1

2
,j

2


+

imax−2∑
i=1

jmax−1∑
j=1

φ
n+ 1

2

i+ 1
2
,j

4y

φn+ 1
2

i+ 1
2
,j+1

+ φ
n+ 1

2

i+ 1
2
,j

2

vi+1,j+ 1
2

+ vi,j+ 1
2

2

−
φ
n+ 1

2

i+ 1
2
,j

+ φ
n+ 1

2

i+ 1
2
,j−1

2

vi+1,j− 1
2

+ vi,j− 1
2

2


=: I1 + I2.

We estimate I1 and I2 separately as follows:
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• (Estimates for I1) : For I1, we have

I1 =

imax−3∑
i=1

jmax−1∑
j=1

φ
n+ 1

2

i+ 1
2
,j
φ
n+ 1

2

i+ 3
2
,j

24x
ui+ 3

2
,j + ui+ 1

2
,j

2
−
imax−2∑
i=2

jmax−1∑
j=1

φ
n+ 1

2

i+ 1
2
,j
φ
n+ 1

2

i− 1
2
,j

24x
ui+ 1

2
,j + ui− 1

2
,j

2

+

imax−2∑
i=1

jmax−1∑
j=1

(
φ
n+ 1

2

i+ 1
2
,j

)2

4

(ui+ 3
2
,j − ui+ 1

2
,j

4x
+
ui+ 1

2
,j − ui− 1

2
,j

4x

)

=

imax−2∑
i=1

jmax−1∑
j=1

(
φ
n+ 1

2

i+ 1
2
,j

)2

4

(ui+ 3
2
,j − ui+ 1

2
,j

4x
+
ui+ 1

2
,j − ui− 1

2
,j

4x

)
.

• (Estimates for I2) : For I2,

I2 =

imax−2∑
i=1

jmax−2∑
j=1

φ
n+ 1

2

i+ 1
2
,j

4y

φn+ 1
2

i+ 1
2
,j+1

+ φ
n+ 1

2

i+ 1
2
,j

2

vi+1,j+ 1
2

+ vi,j+ 1
2

2


−
imax−2∑
i=1

jmax−1∑
j=2

φ
n+ 1

2

i+ 1
2
,j

4y

φn+ 1
2

i+ 1
2
,j

+ φ
n+ 1

2

i+ 1
2
,j−1

2

vi+1,j− 1
2

+ vi,j− 1
2

2



=

imax−2∑
i=1

jmax−2∑
j=2

(
φ
n+ 1

2

i+ 1
2
,j

)2

4

(vi+1,j+ 1
2
− vi+1,j− 1

2

4y
+
vi,j+ 1

2
− vi,j− 1

2

4y

)

+

imax−2∑
i=1

(
φ
n+ 1

2

i+ 1
2
,1

)2

4

vi+1, 3
2

+ vi, 3
2

4y
−

(
φ
n+ 1

2

i+ 1
2
,M−1

)2

4

vi+1,M− 3
2

+ vi,M− 3
2

4y
.
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It follows from the discrete boundary condition that

imax−2∑
i=1

(
φ
n+ 1

2

i+ 1
2
,1

)2

4

vi+1, 3
2

+ vi, 3
2

4y
−

(
φ
n+ 1

2

i+ 1
2
,M−1

)2

4

vi+1,M− 3
2

+ vi,M− 3
2

4y

=

imax−2∑
i=1

(
φ
n+ 1

2

i+ 1
2
,1

)2

4

(vi+1, 3
2
− vi+1, 1

2

4y
+
vi, 3

2
− vi, 1

2

4y

)

+

imax−2∑
i=1

(
φ
n+ 1

2

i+ 1
2
,M−1

)2

4

(vi+1,M− 1
2
− vi+1,M− 3

2

4y
+
vi,M− 1

2
− vi,M− 3

2

4y

)
,

which yields

I2 =

imax−2∑
i=1

jmax−1∑
j=1

(
φ
n+ 1

2

i+ 1
2
,j

)2

4

(vi+1,j+ 1
2
− vi+1,j− 1

2

4y
+
vi,j+ 1

2
− vi,j− 1

2

4y

)
.

Therefore, we use the discrete divergence condition to conclude that

I1 + I2 = 0.

This implies our desired result. �

Remark. (Comment on Explicit RK2)
If we adopt an explicit scheme, i.e.{

φn+ 1
2 = φn − 4t2 ∇ · (φ

nU),

φn+1 = φn −4t∇ · (φn+ 1
2U),

then, the L2 norm at the (n+ 1)-th step can be estimated as

〈φn+1, φn+1〉 = 〈φn, φn〉+
(4t)4

4
〈∇ · (U∇ · (φnU)),∇ · (U∇ · (φnU))〉

≥ 〈φn, φn〉.

Thus, we can not expect the strong L2 stability of the scheme.
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4. MODIFIED IMPLICIT RK2 METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS

Based on the previous section, we present the implicit RK2 discretization for the incom-
pressible Navier-Stokes equations:

Ut + (U · ∇)U = −∇p+ µ4U in Ω,

∇ · U = 0 in Ω,

U = 0 on ∂Ω.

In order to take advantage of implicit RK2 method, we constructed the following saddle system
type 2-step time discretization.

1st step :

 Un+1
2−Un

4t/2 +
(
V n+ 1

2 · ∇
)
Un+ 1

2 = −∇pn+ 1
2 + µ4Un+ 1

2

∇ · Un+ 1
2 = 0

in Ω,

2nd step : Un+1 = 2Un+ 1
2 − Un in Ω.

(4.1)

Here, V n+ 1
2 is extrapolated as below to mitigate the nonliearity:

V n+ 1
2 = Un +

4t
2

Un − Un−1

tn − tn−1
.

The following theorem guarantees the L2 energy stability of above time discretization.

Theorem 4.1 (L2 energy stability of time discretization). Let Un+1 be generated from Un by
the time discretization (4.1). Then

∥∥Un+1
∥∥ ≤ ‖Un‖.

Proof. With ∇ · Un+ 1
2 = 0 and integration-by-parts, we have∥∥Un+1

∥∥2 − ‖Un‖2 =
〈
Un+1 + Un, Un+1 − Un

〉
= −4t

〈
2Un+ 1

2 ,
(
V n+ 1

2 · ∇
)
Un+ 1

2 +∇pn+ 1
2 − µ4Un+ 1

2

〉
= −24t

[〈
Un+ 1

2 ,
(
V n+ 1

2 · ∇
)
Un+ 1

2

〉
+
〈
Un+ 1

2 ,∇pn+ 1
2

〉
− µ

〈
Un+ 1

2 ,4Un+ 1
2

〉]
= −24t

[
0−

〈
∇ · Un+ 1

2 , pn+ 1
2

〉
+ µ

〈
∇Un+ 1

2 ,∇Un+ 1
2

〉]
= −24tµ

∥∥∥∇Un+ 1
2

∥∥∥2
≤ 0.

Here, we utilized the fact that Un+1 = 2Un+ 1
2 − Un equals to

Un+1 − Un

4t
+
(
V n+ 1

2 · ∇
)
Un+ 1

2 = −∇pn+ 1
2 + µ4Un+ 1

2 .

�
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The first system in (4.1) can be written as the following large linear saddle system:

[
I + 4t

2

(
V n+ 1

2 · ∇
)
− 4t2 µ4

4t
2 ∇

∇· O

][
Un+ 1

2

pn+ 1
2

]
=

[
Un

0

]
. (4.2)

In order to solve this system, we need to specify the space discretization of (4.1). Since the dis-
crete version of integration-by-parts is essential for discrete L2 energy stability, we selected the
centered finite difference approximation based on MAC configuration for the space discretiza-
tion. For example, let un+ 1

2 be the x-component of Un+ 1
2 with V n+ 1

2 =
(
un+ 1

2
,f , vn+ 1

2
,f
)

.
Here, the superscription f indicates that the variable is a frozen coefficient. Then, system (4.2)
reads as

u
n+ 1

2

i+ 1
2
,j
+
4t
2

 1

4x

un+ 1
2
,f

i+ 3
2
,j

+ u
n+ 1

2
,f

i+ 1
2
,j

2
·
u
n+ 1

2

i+ 3
2
,j
+ u

n+ 1
2

i+ 1
2
,j

2
−
u
n+ 1

2
,f

i+ 1
2
,j

+ u
n+ 1

2
,f

i− 1
2
,j

2
·
u
n+ 1

2

i+ 1
2
,j
+ u

n+ 1
2

i− 1
2
,j

2


+

1

4y

vn+ 1
2
,f

i+1,j+ 1
2

+ v
n+ 1

2
,f

i,j+ 1
2

2
·
u
n+ 1

2

i+ 1
2
,j+1

+ u
n+ 1

2

i+ 1
2
,j

2
−
v
n+ 1

2
,f

i+1,j− 1
2

+ v
n+ 1

2
,f

i,j− 1
2

2
·
u
n+ 1

2

i+ 1
2
,j
+ u

n+ 1
2

i+ 1
2
,j−1

2




− 4t
2
µ

[
1

(4x)2

(
u
n+ 1

2

i+ 3
2
,j
− 2u

n+ 1
2

i+ 1
2
,j
+ u

n+ 1
2

i− 1
2
,j

)
+

1

(4y)2

(
u
n+ 1

2

i+ 1
2
,j+1
− 2u

n+ 1
2

i+ 1
2
,j
+ u

n+ 1
2

i+ 1
2
,j−1

)]
+
4t
2

1

4x

(
p
n+ 1

2
i+1,j − p

n+ 1
2

ij

)
= un

i+ 1
2
,j .

A frozen coefficient V n+ 1
2 is set to be a second-order accurate extrapolation of Un and Un−1.

To minimize the error induced by the initial guess V
1
2 , we solve the 1st step of (4.2) about five

times prior to the main iteration and set this solution to be V
1
2 . This technique was suggested

in Brown et.al [13]. The nonsymmetric saddle system (4.2) is solved by the General Minimal
RESidual (GMRES). We finalize this section with the following theorem on L2 energy stability
in full discretization.

Theorem 4.2 (L2 energy stability of full discretization). Let Un+1 be generated from Un by
the full discretization of (4.1). Then

∥∥Un+1
∥∥ ≤ ‖Un‖.

Proof. From Theorem 3.1 and Theorem 4.1, it suffices to show that discrete version of integration-
by-parts for

〈
Un+ 1

2 ,∇pn+ 1
2

〉
,
〈
Un+ 1

2 ,4Un+ 1
2

〉
hold. Note that these two inner products are
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type of 〈U,−∇f〉 for a vector field U = (u, v) and a scalar field f . With the boundary condi-
tion U = 0 and index shifting in MAC configuration, we obtain〈

u,−∂f
∂x

〉
: =

imax−2∑
i=1

jmax−1∑
j=1

ui+ 1
2
,j

−fi+1,j + fi,j
4x

= −
imax−1∑
i=2

jmax−1∑
j=1

ui− 1
2
,j

fi,j
4x

+

imax−2∑
i=1

jmax−1∑
j=1

ui+ 1
2
,j

fi,j
4x

= −
imax−1∑
i=1

jmax−1∑
j=1

ui− 1
2
,j

fi,j
4x

+

imax−1∑
i=1

jmax−1∑
j=1

ui+ 1
2
,j

fi,j
4x(

∵ ui+ 1
2
,j = uimax− 3

2
,j = 0

)
=

imax−1∑
i=1

jmax−1∑
j=1

ui+ 1
2
,j − ui− 1

2
,j

4x
fi,j

+

〈
∂u

∂x
, f

〉
.

In a simliar way, we can show that
〈
v,−∂f

∂y

〉
=
〈
∂v
∂y , f

〉
in a discrete sense. �

Remark. (Solvability of the saddle system)

Let Ahxh = bh be the full discretized saddle system (4.2) and x̂ =

[
Û
p̂

]
be a solution

of this system. Then one can easily check that x̃ =

[
Û

p̂+ c

]
is also in a solution space of

Ah for any constant c. To handle this singularity, we projected bh onto a range space of Ah.
After this projection, the solvability of (4.2) heavily depends on the nonlinear convection part
I+ 4t2

(
V n+ 1

2 · ∇
)

. Hence,4t ≤ min{4x,4y}
max{‖u‖∞,‖v‖∞}

as in Lemma 3.2 is a proper choice of the

proposed method.

5. NUMERICAL EXPERIMENTS

In this section, we perform several numerical experiments to verify the stability and accuracy
in two and three dimensions of our method. Throughout this section, the saddle system (4.2) is
solved by the restarted GMRES(10). All of the following computations were run on a regular
personal computer (8GB RAM and 2.1GHz CPU).

5.1. Single Vortex in 2D. We begin with an example that confirms the second-order accuracy
of the proposed method. Let us consider a single vortex problem in a domain Ω =

[
−π

2 ,
π
2

]
×
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−π

2 ,
π
2

]
, with a homogeneous Dirichlet boundary condition. An exact solution to this problem

is given by

u(x, y, t) = − cos(x) sin(y) cos(t),

v(x, y, t) = sin(x) cos(y) cos(t),

p(x, y, t) = −1

4
cos2(t) (cos(2x) + cos(2y)) ,

with a corresponding source term F = (f1, f2) where

f1 = − cos(x) sin(y) (2 cos(t)− sin(t)) ,

f2 = sin(x) cos(t) (2 cos(t)− sin(t)) .

Since the energy stability of our method is not relevant to the external force, we utilize the
sourcing term only for the accuracy test. Table 1 shows the second-order accuracy of the
velocity field in the L∞ norm.

Grid resolution ‖u(x, y)− ui+ 1
2
j‖L∞ Order

16× 16 3.41× 10−2

32× 32 7.89× 10−3 2.11
64× 64 1.90× 10−3 2.05

128× 128 4.66× 10−4 2.02
256× 256 1.14× 10−4 2.03

TABLE 1. Accuracy of the velocity U in the L∞ norm of a single vortex in R2

5.2. Single Vortex in 3D. The exact solution of a three dimensional single vortex problem is
given by

u(x, y, z, t) = −2 cos(t) cos(x) sin(y) sin(z),

v(x, y, z, t) = cos(t) sin(x) cos(y) sin(z),

w(x, y, z, t) = cos(t) sin(x) sin(y) cos(z),

p(x, y, z, t) =
1

4
cos2(t) (2 cos(2x) + cos(2y) + cos(2z))

in a domain Ω =
[
−π

2 ,
π
2

]3. Table 2 demonstrates that our method retains the second-order
accuracy of the velocity field in the L∞ norm.

Grid resolution ‖u(x, y, z)− ui+ 1
2
jk‖L∞ Order

16× 16× 16 3.42× 10−2

32× 32× 32 8.13× 10−3 2.07
64× 64× 64 1.96× 10−3 2.05

TABLE 2. Accuracy of the velocity U in the L∞ norm of a single vortex in R3
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(a) Plot of the initial velocity field

(b) Plot of the velocity field at t =
1 by modified Lax-Friedrich

(c) Plot of the velocity field at t =
1 by modified implict RK2

FIGURE 5. Plots of (a) initial velocity field of salt-and-pepper noise and the
velocity field at t = 1 computed by (b) modified Lax-Friedrichs in [1] and (c)
modified Implicit RK2.

5.3. Salt-and-Pepper noise. This example was first introduced in [1]. The initial velocity U0

is randomly selected as either 0 or 1 (component-wise) in the domain Ω = [−1, 1] × [−1, 1]
and then projected onto the divergence-free vector field. A flow generated by this velocity is
assumed to be nonviscous with the unit density: µ = 0, ρ = 1.

The lack of viscosity to smooth out discontinuities in the velocity field makes it hard to
solve this problem numerically. Also, from Theorem 4.2, the L2 energy of nonviscous flow
must be conserved. We tested this problem with the modified implicit RK2 to validate the
energy preserving nature of the proposed method. We present the velocity profile at t = 1
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FIGURE 6. Graphs for the energy of a salt-and-pepper noise problem on
100 × 100 grid by modified Lax-Friedrichs and modified implicit RK2. This
indicates that the energy computed by modified implicit RK2 is conserved
while that of modified LF is diminished.

on 100 × 100 grid and the corresponding L2 energy in Figure 5 and 6, respectively. For a
comparison purpose, the results from Lee et. al [1] is also presented in the same figures.

While numerical results from [1] show the nonphysical L2 energy decay, proposed implicit
RK2 method exactly preserve physical L2 energy conservation. The reason behind the non-
physical aspect of the method proposed in [1] is that Lax-Friedrichs type methods introduce an
artificial dissipation. This can be verified that the velocity profile generated by [1] is smoothed
out.

5.4. Four-Vortex Problem. In this subsection, we consider the four-vortex problem [19]. The
vorticity is given by the sum of four vortices in the unit square Ω = [0, 1]× [0, 1]. Each vortex
is centered at {(xi, yi) | i = 1, . . . , 4} = {(0.05, 0.05), (0.59, 0.5), (0.455, 0.5 + 0.45

√
3),

(0.455, 0.5− 0.45
√

3)
}

with strength ηi =−150, 50, 50 and 50 respectively. So the initial
vorticity is given by

ω =
4∑
i=1

ηi
1

2
(1 + tanh(100(0.03− ri))) ,
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FIGURE 7. Contour plots of vorticity for the four-vortex on 128× 128 grid at
times t = 0.05 0.15 0.25.

where ri =
√

(x− xi)2 + (y − yi)2. Then the initial velocity can be found from the steam
function, which is the solution of the following Poisson equation

−4ψ = ω in Ω,

ψ = 0 on ∂Ω,

and then projected onto the divergence-free vector field.
Since the initial velocity is generated by strong vortices in a small number of points, enforc-

ing discrete energy stability to the numerical solution seems to be difficult. We demonstrate that
the suggested method based on mathematical analysis does not depend on the complexity of
the given problem. The sourcing term is not considered and the viscosity µ is set to be 0.0001.
Figure 7 depicts the contour lines of the vorticity on 128 × 128 grid at t = 0.05, 0.15, 0.25,
which agree with the one in [19]. In order to verify that Theorem 4.1 is valid for this problem,
we note that the result of Theorem 4.1 can be seen as∥∥En+1

∥∥2
= ‖En‖2 −4tµ||∇Un+ 1

2 ||2.
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FIGURE 8. Comparison on
∥∥En+1

∥∥2 and ‖En‖2−4tµ||∇Un+ 1
2 ||2 of a four-

vortex problem on 128× 128 grid .

Figure 8 shows the profiles of
∥∥En+1

∥∥2 and ‖En‖2 − 4tµ||∇Un+ 1
2 ||2 at the same time for

the above simulation. The result demonstrates that the result of Theorem 4.1 holds regardless
of the complexity inherited in the problem.

6. CONCLUSION

In this study, we first reported that many standard explicit second-order methods fail to
be strongly L2 stable for solving a linear convection equation. We introduced an implicit
finite difference method that is strongly L2 stable and second-order accurate for solving the
linear convection. The implicit method was then applied to solving the incompressible Navier-
Stokes equations. As a result, we obtained a semi-implicit method that can solve the equations
with the guaranteed stability and the second-order accuracy. All the numerical results validate
the proposed stability and accuracy. The salt-and-pepper example is a nasty example that
starts with a random velocity field, either 1 or 0, without a viscosity to damp out. Even with
the hard example, our method showed the sharp preservation of energy. In our analysis, the
integration-by-parts is essential to achieve the stability. For that purpose, we assumed domain
to be rectangular and took the MAC space configuration that enables the integration-by-parts
in discrete level. We acknowledge that the assumption on the domain is very restrictive, and
hope to enhance the method to incorporate general domains in the near future. Though it is
restrictive on the choice of domain, we expect that the method can be a very reliable tool,
especially in real-time simulations, due to its guaranteed stability and second- order accuracy.
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