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Abstract

This article presents a concrete mathematical analysis on Information-Theoretic Metric Learning(ITML)[4]. The
analysis provides theoretical foundation for ITML, by supplying well-posedness, strong duality, and convergence. Our
analysis suggests the correction of a typo in original ITML article [4] that may lead to the loss of accuracy in the metric
learning. The necessity of this correction is con�rmed by several numerical experiments on supervised learning.

1 Introduction

Many algorithms in machine learning depend on the setting of distance metric to measure similarities of data [9]. In the
classi�cation of data, K-Nearest Neighbor (KNN) [3] uses a metric to identify the nearest neighbors. One of the most
popular algorithms in data clustering is K-Means algorithm [11] which is also dependent on the distance measurement
between data.

The simplest distance metric to consider is Euclidean distance, which is a measurement to represent the distance
between two points. Despite of its simplicity, Euclidean distance is often not suitable for distributed data due to the lack
of information about correlation of data sets. Among many attempts to overcome this limitation, Mahalanobis distance
[12] is one of the well-known distance metric. Mahalanobis distance of two points is de�ned by

dMahal (xi, xj) =

√
(xi − xj)T Σ−1 (xi − xj)

where Σ is the covariance matrix of the data. This metric not only measures the distance between two points, but also
re�ects the correlation with given data sets. However, it is hard to obtain the true covariance of data in practice.

Tons of researches have been done to resolve this issue by learning a distance metric to approximate the covariance
matrix Σ. The earliest attempt was the work of Xing et al. [14], where the Mahalanobis metric learning was conducted
in a way that maximizing the sum of distances of between dissimilar pairs while keeping the sum of distances between
similar pairs small. Weinberger et al. [13] proposed a metric learning method so called Large-Margin Nearest Neighbors
(LMNN) based on a statistical learning on a pseudo-metric for KNN classi�cation.

In this article, we focus on Information-Theoretic Metric Learning (ITML) suggested by Davis et al. [4], which has
been one of the most e�cient metric learning methods. Unlike previous works, ITML has no projection step on the positive
semi-de�nite cone which is computationally expensive. The main point of their work is that a metric learning procedure
can be seen as LogDet divergence regularization. The LogDet divergence is a Bregman matrix divergence generated by
the convex function φ (X) = − log |X|, where X is a positive de�nite matrix. The Bregman divergence on positive de�nite
matrices is de�ned as

Dld (A,A0) = tr
(
AA−10

)
− log

∣∣AA−10

∣∣− n (1)

where n is the dimension of the input data. The formulation of ITML proposed in [4] is the following LogDet optimization
problem:

min
A�0

Dld (A,A0) + γ ·Dld (diag (ξ) ,diag (ξ0))

subject to tr
(
A (xi − xj) (xi − xj)T

)
≤ ξc(i,j) (i, j) ∈ S (2)

tr
(
A (xi − xj) (xi − xj)T

)
≥ ξc(i,j) (i, j) ∈ D

Here, S, D denote similar and dissimilar sets, respectively, and the slack variable ξ is introduced to guarantee the existence
of a feasible solution A of (2).
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In [4], authors solved the optimization problem (2) with the iterative method based on the Bregman projection, the
Bregman iteration. This is an extension of the work of Kulis et al. [10]. The Bregman projection is simply performed by
the following iterative procedure

At+1 = At + βAt (xi − xj) (xi − xj)T At (3)

where xi and xj are the constrained data and β is the projection parameter computed through the algorithm.
The main purpose of this article is to provide a mathematical analysis on the ITML algorithm. ITML has been one

of the most applied algorithm in various �elds of machine learning. Nevertheless, there have been no concrete analyses
of the algorithm, especially on the Bregman iteration in the algorithm. Up to the current, ITML algorithm has been
cited thousands of times and applied to numerous areas. To our best searches, a formal discussion of such analyses is still
missing. It can be said that most of its users take just for granted the well-posedness and the basic convergence. Our
aim is to furnish ITML algorithm and its wide-ranged applications with mathematical foundation. Our study reveals that
there is a typo in ITML manuscript [4] that can lead to a serious �aw, and presents its correction.

An outline of the article as follows. In section 2, we present a brief explanation of the Bregman iteration. Section 3
provides a mathematical analysis on ITML and a correction to original ITML paper [4] based on this analysis. Several
numerical experiments are implemented in section 4 to verify the necessity of a correction from section 3. The last section
includes conclusions.

2 Bregman Iteration

Note that the formulation for ITML (2) is a constrained optimization problem as follow:

Minimize f(x)
Subject to x ∈ Ci,∀i ∈ {1, . . . ,m}

(4)

In this section, we will present a brief review of the Bregman iteration [2], which is one of the most successful algorithm
in convex optimization.

Assume that the closed convex sets Ci for the constraints are given for i ∈ {1, . . . ,m} and R = ∩mi=1Ci is not empty.
The key idea of Bregman iteration is to �nd extrema of f(x) via the function D : S × S → R satisfying the following six
conditions.

I. D(x, y) ≥ 0, D(x, y) = 0 if and only if x = y.

II. For any y ∈ S, i ∈ T , a point x = Piy ∈ Ci ∩ S exists such that

D(x, y) = min
z∈Ci∩S

D(z, x)

This point x is called the D-projection of the point y onto the set Ci.

III. For each i ∈ T , y ∈ S, the function G(z) = D(z, y)−D(z, Piy) is convex over Ci ∩ S.

IV. A derivative ∂D
∂x (x, y) of the function D(x, y) exists and ∂D

∂x (y, y) = 0.

V. For each z ∈ R ∩ S and for every real number L, the set T = {x ∈ S|D(z, x) ≤ L} is compact.

VI. If D(xn, yn)→ 0, yn → y∗ ∈ S̄, and the set of elements of the series {xn} is compact, then xn → y∗.

Once the function D(x, y) is chosen, the optimization problem (4) can be solved by the iterative process

xn+1 = arg min
z∈Ci∩S

D(z, xn) (5)

as was proposed by Bregman in [2]. We restate the convergence result of the iterative process (5) from [2] to be self-
contained.

Lemma 1. For any sequence of indices, we have the following:
(1) The set of elements of the relaxation sequence {xn} is compact.
(2) For any z ∈ S, there exists limn→∞D(z, xn).
(3) D(xn+1, xn)→ 0 when n→∞.
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The universal choice for the function D is the one so called �Bregman distance�. The Bregman distance corresponding
to a convex function f at the point y is de�ned by

D(x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 (6)

With the Bregman distance, the optimization problem (4) for the inequality constraint

Minimize f(x)
Subject to x ∈ R = ∩mi=1Ci =

{
x|Ax ≥ b, x ∈ S̄

} (7)

was proved to be convergent provided the function D satis�es the following additional two conditions.

VII. The function D(x, y) is de�ned when x ∈ S̄,and if yn → y∗ ∈ S, then D(y∗, yn)→ 0.

VIII. The D-projection of any point x belonging to the interior of the set S onto the set {x|Ax = b} also belong to the
interior of S.

We �nalize this section with restatement of the convergence result of the problem (7) from [2].

Theorem 1. Assume that Bregman distance D(x, y) satis�es the conditions I-VIII. Then, the sequence {xn} obtained as
a result of applying KKT conditions on (7) converges to the point x∗, which is a solution of the problem (7).

3 Mathematical analysis on ITML

In this section, we provide a concrete mathematical analysis on ITML algorithm. There are three parts in the analysis. The
�rst part checks the well-posedness of the optimization, the second part discusses the strong duality of the optimization,
and the third one presents the convergence analysis of the Bregman iteration.

3.1 Well-posedness of optimization

ITML algorithm solves the following minimization problem with linear constraints.

Given A0 ∈
(
Sn+
)o
, ξ0 ∈

(
Dm

+

)o
{v1, · · · , vm} ∈ Rn

{δ1, · · · , δm} ∈ {±1} , and γ ∈ R+,

minimize f (A, ξ) := D (A,A0) + γD (ξ, ξ0)

subject to A−A0 ∈ Sn+ and ξ − ξ0 ∈ Dm
+

(A, ξ) ∈ Ci =
{

(A, ξ) |
(〈
A, viv

T
i

〉
− ξi

)
δi ≤ 0

}
, ∀i ∈ {1, · · · ,m} . (8)

Lemma 2. Let R be the set of (A, ξ) satisfying the constraints, then R is nonempty, convex and closed.

Proof. The choice of A = A0 and ξ with ξi =
〈
A0, viv

T
i

〉
, ∀i satis�es the constraints, and Ci is nonempty. Sn+ and Dm

+

are closed convex, and so are their a�ne translations. Each linearly constrained set is closed and convex. Since R is the
intersection of closed and convex sets, R is closed and convex.

Lemma 3. For A ∈ Sn+, − log |A| = −
∑n
i=1 log λi and

∂
∂A [− log |A|] = −A−1, where λ1, · · · , λn are the eigenvalues of A.

Proof. See page 641 of [1].

Lemma 4. f (A, ξ) is convex in the domain
(
A0 + Sn+

)
×
(
ξ0 +Dm

+

)
. Furthermore, f (A, ξ) is strictly convex in the

interior and takes value +∞ on the boundary.

Proof. When (A, ξ) is on the boundary, either A−A0 ∈ ∂Sn+ or ξ− ξ0 ∈ ∂Dm
+ , which implies that either A−A0 or ξ− ξ0

has a zero eigenvalue. By Lemma 3, f (A, ξ) = +∞ in either case.
Take any (A1, ξ1) and (A2, ξ2) from the domain. For λ ∈ (0, 1), consider the inequality of the convex condition,

(1− λ) f (A1, ξ1) + λf (A2, ξ2) ≥ f ((1− λ)A1 + λA2, (1− λ) ξ1 + λξ2) .

When (A1, ξ1) or (A2, ξ2) is on the boundary, LHS becomes +∞, and the inequality holds. Otherwise, both are inside.
As shown in page 74 of [1], − ln | · | is strictly convex interior of Sn+, and so is D (·, A0) in

(
A0 + Sn+

)o
. In the similar

manner, D (·, A0) is strictly convex in
(
ξ0 +Dm

+

)o
, and so is f (A, ξ) in the interior domain.
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Lemma 5. f (A, ξ) is coercive in
(
A0 + Sn+

)
×
(
ξ0 +Dm

+

)
.

Proof. When ‖ (A, ξ) ‖=
√
‖ A ‖2 + ‖ ξ ‖2 → +∞, either ‖ A ‖→ +∞ or ‖ ξ ‖→ +∞. We show that D (A,A0) is coercive

in A0 + Sn+. The other case can be similarly dealt with

D (A,A0) = − log |A|+ log |A0|+
〈
A−A0, A

−1
0

〉
Let A = λ1v1v

T
1 + · · ·+ λnvnv

T
n , λi ≥ 0, vi · vj = δij and A0 = µ1w1w

T
1 + · · ·+ µnwnw

T
n , µi ≥ 0, wi · wj = δij .

Since
∑n
j=1 (vi · wj)2 = 1, we have

D (A,A0) = −
n∑
i=1

log λi +

n∑
j=1

logµj − n+

n∑
i=1

n∑
j=1

λi
µj

(vi · wj)2

= −
n∑
i=1

log λi

n∑
j=1

(vi · wj)2 +

n∑
j=1

logµj

n∑
j=1

(vi · wj)2 − n+

n∑
i=1

n∑
j=1

λi
µj

(vi · wj)2

=

n∑
i=1

n∑
j=1

(
− log λi + logµj +

λi
µj
− 1

)
(vi · wj)2

=

n∑
i=1

 n∑
j=1

(
λi
µj
− log

λi
µj
− 1

)
(vi · wj)2


Consider x− lnx− 1 ≥ 1

2 (lnx)
2
, if x > 1.

As ‖ A ‖=
√
〈A,A〉 =

√
λ1 + · · ·λn →∞, we have max (λ1, · · · , λn)→∞. This implies that

D (A,A0) ≥
n∑
j=1

(
λi
µj
− log

λi
µj
− 1

)
(vi · wj)2 , for some i,

λi
µj

> 1

≥ 1

2

n∑
j=1

(
log

λi
µj

)2

(vi · wj)2

≥ 1

2

(
log

λi
µmax

)2

= max
i

(
log

λi
µmax

)2

=

(
log

maxi λi
µmax

)
→∞

Theorem 2. ITML optimization described by (8) has a unique solution.

Proof. By Lemma 2 and Lemma 4, ITML optimization is a proper convex optimization problem. Since f (A, ξ) is strictly
convex inside and �nite only inside, the minimum point is unique. By Lemma 5, a minimum point exists by Proposition
VI.2.2 in [6].

3.2 Strong Duality

ITML optimization has m number of linear constraints, but Bregman iteration solves the optimization with a single linear
constraint that is iteratively chosen from the m constraints. In this section, we analyze the duality of the optimization
with a single linear constraint.

inf
x∈S∩H

D
(
x, xk

)
= inf
x∈S

sup
α∈R+

φ
(
x, xk, α

)
Here, H =

{
x = (A, ξ) |δ

(〈
A, viv

T
i

〉
− ξi

)
≤ 0
}
, and the Lagrangian is denoted by

φ (x, xn;α) = D
(
x, xk

)
+ αδ

(〈
A, viv

T
i

〉
− ξi

)
.

The weak duality, which holds by default, is the inequality,

inf
x∈S

sup
α∈R+

φ (x, xn;α) ≥ sup
α∈R+

inf
x∈S

φ (x, xn;α) .

The strong duality, which may not hold in general, is the equality in the above. A consequence of the strong duality is
the extremal condition between primal and dual optimizations, the so called Karush-Kuhn-Tucker (KKT) condition.
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Lemma 6.

inf
x∈S

sup
α∈R+

φ (x, xn;α) = min
x∈S

sup
α∈R+

φ (x, xn;α) = sup
α∈R+

inf
x∈S

φ (x, xn;α)

Proof. When x = (A, ξ) ∈ ∂S, either A or ξ has a zero eigenvalue, − log |A| − γ log |ξ| = +∞. Consequently φ (x, xn;α) =
+∞ on ∂S, and the in�mum is attained inside S. The result follows from the coercivity of D

(
x, xk

)
in Lemma 5 and

Proposition IV.2.3 in [6].

Lemma 7. supα∈R+
infx∈S φ

(
x, xk;α

)
= maxα∈R+

infx∈S φ
(
x, xk, α

)
Proof. Let g (α) = infx∈S φ

(
x, xk;α

)
. It is enough to show that g is coercive in each of the following cases. Then the

result follows again from Proposition IV.2.3 in [6].
(a) Case δ = −1

Take x = (x, ξ) =
(
Ak + viv

T
i , ξ

k
)
. Then φ

(
x, xk;α

)
= −α ‖vi‖4 + (const w.r.t.α) and g(α) ≤ −α ‖vi‖4. Thus

g(α)→ −∞ as α→∞.
(b) Case δ = 1

Take x = (x, ξ) =
(
Ak, ξk + ei

)
. Then φ

(
x, xk;α

)
= −α+ (const w.r.t.α). Thus g(α)→ −∞ as α→∞.

Theorem 3. (KKT condition) There exists a unique solution x = (A, ξ) for inf D
(
x, xk

)
subject to x ∈ S ∩H, and x is

characterized by 
α = min

(
0, γ

1+γ δi

(
1
ξki
− 1

p

))
A = Ak − αδi

1+αδip
Akviv

T
i A

k

ξi =
ξki γ

γ−αδiξki

where p =
〈
Ak, viv

T
i

〉
and ξj = ξkj when j 6= i.

Proof. By the above two lemmas and Proposition VI.1.2 in [6], there exists a saddle point x = (A, ξ). Being strictly
convex in S, the saddle point is unique. By the extremal condition of Proposition VI.1.6 in [6], we have{

−A−1 +A−1k + αδiviv
T
i = 0(

−ξ−1 + ξ−1k −
αδi
γ ei

)
· α = 0

when α 6= 0 or α > 0, {
A−1 =

(
Ak
)−1

+ αδiviv
T
i

ξ−1 =
(
ξk
)−1 − αδi

γ ei
or

By Sherman-Morrison formula, we have

A = Ak − αδi
1 + αδip

Akviv
T
i A

k , and

ξi =
γξki

γ − αδiξki
.

Finally, from
〈
A, viv

T
i

〉
− ξi = 0, we obtain α = γ

1+γ · δi
(

1
ξki
− 1

p

)
.

3.3 Convergence of Bregman iteration

In this subsection, we consider the application of Bregman iteration to solving ITML optimization. As reviewed in Section
2, Bregman iteration was proved to be convergent if the Bregman distance Df generated by an objective function f(x)
satis�es conditions I-VI and VII-VIII.

Let S =
(
Sn+
)o × (Dm

+

)o
and f (x) = Dld (A,A0) + γ · Dld (diag (ξ) ,diag (ξ0)), where x = (A, ξ). We begin with

computing the Bregman distance Df generated by f(x).

Lemma 8. Df (x, y) = Dld (A,B) + γDld (diag (ξ) , diag (ζ)), when x = (A, ξ) and y = (B, ζ).
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Proof. By Lemma 3, ∇f (y) =
(
−B−1 +A−10 , γ

(
−ζ−1 + ξ−10

))
. Then

Df (x, y) = f (x)− f (y)− 〈x− y,∇f (y)〉
= Dld (A,A0) + γDld (diag (ξ) , diag (ξ0))−Dld (B,A0)− γDld (diag (ζ) ,diag (ξ0))

−
〈
A−B,−B−1 +A−10

〉
− γ

〈
diag (ξ)− diag (ζ) ,−diag (ζ)

−1
+ diag (ξ0)

−1
〉

= − log |A|+ log |B|+
〈
A−B,B−1

〉
+ γ

(
− log |diag (ξ) |+ log |diag (ζ) |+

〈
diag (ξ)− diag (ζ) , diag (ζ)

−1
〉)

= Dld (A,B) + γDld (diag (ξ) , diag (ζ)) .

Hence, we prove that the Bregman distance Df in lemma 8 satis�es conditions I-VI' and VII'-VIII.

Lemma 9. Df satis�es the conditions I-IV.

Proof. By Lemma 4 and Lemma 5, − log | · | is strictly convex and continuously di�erentiable in
(
Sn+
)o

and in
(
Dm

+

)o
, and

so is f (x) in S. By the argument in page 206 of [2], conditions I-IV are satis�ed.

Lemma 10. Df satis�es the condition V.

Proof. Condition V holds true when D (x, y) is coercive with respect to y. D (x, y) = Dld (A,B)+γDld (diag (ξ) , diag (ζ)),
where x = (A, ξ) and y = (B, ζ). It is enough to show that Dld (A,B) is coercive w.r.t. B. Let A =

∑n
i=1 µiviv

T
i and

B =
∑n
i=1 λiwiw

T
i .

Dld (A,B) = − log |A|+ log |B|+
〈
A,B−1

〉
− n

= −
n∑
i=1

log (µi) +

n∑
j=1

log (λj) +
∑
i

∑
j

µi
λj

(vi · wj)2 − n

=

n∑
i=1

n∑
j=1

(
µi
λj
− log

µi
λj
− 1

)
(vi · wj)2

Note that x − lnx − 1 ≥ 1
4

(
1
x − 1

)
if 0 < x < 1. As ‖ B ‖=

√
〈B,B〉 = λ21 + λ22 + · · · + λ2n → ∞, we have

max (λ1, · · · , λn)→∞. This implies that

Dld (A,B) =

n∑
i=1

n∑
j=1

(
µi
λj
− log

µi
λj
− 1

)
(vi · wj)2

≥
n∑
i=1

(
µi
λj
− log

µi
λj
− 1

)
(vi · wj)2 for some j

≥ 1

4

n∑
i=1

(
λj
µi
− 1

)
(vi · wj)2

≥ 1

4

(
λmax

µi
− 1

)
≥ 1

4
max
i

(
λmax

µi
− 1

)
→∞

Lemma 11. Df satis�es the condition VI.

Proof. Let xk =
(
Ak, ξk

)
and yk =

(
Bk, ζk

)
for each k, and y∗ = (B∗, ζ∗). Using the orthogonal diagonalization, we have

Ak = λk1v
k
1

(
vk1
)T

+ · · ·+ λknv
k
n

(
vkn
)T

Bk = µk1w
k
1

(
wk1
)T

+ · · ·+ µknw
k
n

(
wkn
)T
,
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where the eigenvalues are listed in the increasing order. Since D
(
xk, yk

)
= Dld

(
Ak, Bk

)
+ γDld

(
ξk, ζk

)
→ 0, we also

have Dld

(
Ak, Bk

)
→ 0.

Dld

(
Ak, Bk

)
=

n∑
i=1

n∑
j=1

(
λki
µkj
− log

(
λki
µkj

)
− 1

)(
vki · wkj

)2
Step I : we show that λk1 → µ∗1.
Otherwise, for each small ε > 0, there are in�nitely many xk's such that either λk1 ∈ (−∞, µ∗1 − ε), or λk1 ∈

(µ∗1 + ε, µ∗2 − ε). Then

lim
k→∞

Dld

(
Ak, Bk

)
≥ lim
k→∞

n∑
j=1

(
λk1
µkj
− log

(
λk1
µkj

)
− 1

)(
vk1 · wkj

)2
=

n∑
j=1

(
λk1
µ∗j
− log

(
λk1
µ∗j

)
− 1

)(
vk1 · w∗j

)2
≥ (log ε)

2

4
· 1 > 0,

which contradicts the assumption that Dld

(
Ak, Bk

)
→ 0.

Step II : we show that vk1 → w∗1 , the �rst eigenvector. We may assume µ∗1 < µ∗2, otherwise w
∗
2 can be taken as the �rst

eigenvector.

Otherwise, for each small ε > 0, there are in�nitely many xk's such that
∑n
j=2

(
vk1 · w∗j

)2
> ε. Then

lim
k→∞

Dld

(
Ak, Bk

)
≥ lim
k→∞

n∑
j=1

(
µ∗1
µkj
− log

(
µ∗1
µkj

)
− 1

)(
vk1 · wkj

)2
≥
(
µ∗1
µ∗2
− log

(
µ∗1
µ∗2

)
− 1

)
ε > 0,

which contradicts the assumption that Dld

(
Ak, Bk

)
→ 0.

Step III :
we showed that the argument is true for the �rst eigenpair. We can recursively apply the argument to the next

eigenpairs to show that Ak → B∗. The case of Dld

(
ξk, ζk

)
can be similarly treated.

Lemma 12. Df satis�es the condition VII.

Proof. Let yk =
(
Bk, ζk

)
for each k, and y∗ = (B∗, ζ∗). Using the orthogonal diagonalization, we have

B∗ = µ∗1w
∗
1 (w∗1)

T
+ · · ·+ µ∗nw

∗
n (w∗n)

T
,

Bk = µk1w
k
1

(
wk1
)T

+ · · ·+ µknw
k
n

(
wkn
)T
,

where the eigenvalues are listed in the increasing order. Since yk → y∗, we may assume µki → µ∗i and wki → w∗i for

each i = 1, · · · , n. By Lemma 9 in [10],
{
yk
}
and y∗ shares the same range space, so that (B∗)

−1
can be de�ned in the

pseudo inverse on the range space, where µ∗ 6= 0. Then

lim
k→∞

Dld

(
Bk, B∗

)
= lim
k→∞

n∑
i=1

n∑
j=1

(
µki
µ∗j
− log

(
µki
µ∗j

)
− 1

)(
wki · w∗j

)2
=

n∑
i=1

(
µ∗i
µ∗i
− log

(
µ∗i
µ∗i

)
− 1

)
= 0.

The case of Dld

(
ζk, ζ∗

)
can be similarly treated.

Lemma 13. Df satis�es the condition VIII.
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Proof. Let Hi =
{

(A, ξ) |
〈
A, viv

T
i

〉
− ξi = 0

}
. For each x = (A, ξ) ∈

(
Sn+
)o × (Dm

+

)o
, let (B, ζ) = arg minz∈Hi

Df (z, x)
be the D-projection of (A, ξ) on Hi. Then (B, ζ) is characterized by the KKT condition.{(

−B−1 +A−1, γ
(
−ζ−1 + ξ−1

))
= λ

(
viv

T
i ,−ei

)〈
B, viv

T
i

〉
− ζi = 0

As the proof in the theorem 3, we can utilize the Sherman-Morrison to obtain

λ =
γ

1 + γ

(
1〈

A, vivTi
〉 − 1

ξi

)

B = A+
λ

1− λp
Aviv

T
i A

where p =
〈
A, viv

T
i

〉
. For any w, we have

〈
B,wwT

〉
=
〈
A,wwT

〉
+

λ

1− λp
〈
Aviv

T
i A,ww

T
〉

= ‖w‖2A +
λ (vi ·A w)

2

1− λ ‖vi‖2A

=
‖w‖2A − λ

(
‖w‖2A ‖vi‖

2
A − (vi ·A w)

2
)

1− λ ‖vi‖2A
≥ 0

Hence, B is symmetric positive de�nite which proves our lemma.

Theorem 4. Let xk =
(
Ak, ξk

)
be generated from ITML algorithm, then xk converges to the unique solution of optimiza-

tion (2).

Proof. Lemma 9~13 proved thatDf satis�es all the required conditions I~VIII. Then the convergence follows from Theorem
1.

3.4 Correction on ITML algorithm

ITML algorithm, brie�y speaking, is an application of Bregman iteration on the constrained optimization. Figure 1
shows the ITML algorithm that was posted in [4]. Through our mathematical analysis, we found out a typo in the
posted algorithm, and put forth a correction in Figure 1. The authors of [4] should have noticed the typo, since their
programming code open to public (http://www.cs.utexas.edu/users/pjain/itml/) uses the ITML algorithm with correction.
The following section shows that the typo may lead to a great loss of performance.

To our best searches, however, a correction of the typo has not been reported.

4 Numerical results

In this section, several numerical experiments are implemented to verify the necessity of the correction suggested in
the previous section. We have tested with three di�erent examples including popular applications of ITML, supervised
learning. For the comparison purpose, we implement a corrected ITML algorithm with several value of γ in each example
and compare with the case of γ = 1 which corresponds to the original ITML algorithm.

4.1 Simple 2D example

For the �rst example, we take a simple two-dimensional example. Given four points {(−1, 0) , (0,−1) , (4, 3) , (2, 4)} , let{
(−1, 0)=x1

, (0,−1)=x2

}
and

{
(4, 3)=x3

, (2, 4)=x4

}
be similar pairs. Let us set ξ0 = 0.1 when δ = 1 and ξ0 = 0.9 when

δ = −1 . To simply check the constraints, denote two vectors v1 and v2 as v1 = (x1 − x2) and v2 = (x3 − x4). With this
example, we only compare outputs of two algorithms and satisfaction of constraints.

Testing with two di�erent γ, γ = 0.1 and γ = 0.01, we can observe that outputs A are di�erent. Table 1 shows the
results computed with the corrected ITML and the original ITML. If we take a large value of γ,such as γ = 10000, then
the output of original ITML gets smaller to be zero. Thus the original ITML with typo is more dependent to given value
of γ and it a�ects to the result.
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Figure 1: ITML algorithm posted in the paper [4] (left) and corrected in this manuscript (right). A typo and its correction
are put into boxes for the comparison.

Figure 2: Given dataset {(−1, 0) , (0,−1) , (4, 3) , (2, 4)} with {(−1, 0) , (0,−1)} ∈ S and {(4, 3) , (2, 4)} ∈ S.

4.2 KNN classi�cation with Iris dataset

To perform an application of ITML, we take Iris data set [5] for KNN classi�cation. We give �xed 6 pairs for constraints,
then set ξ0 = 0.5 when δ = 1 and ξ0 = 2 when δ = −1. For given γ ∈ [0.001, 100], we can easily �nd that the performance
of two algorithms are di�erent. The results are shown in Table 2.

4.3 Face identi�cation

The goal of face identi�cation is to determine well whether two images of faces are the same person or not. In the paper
[7], they considered face recognition with the metric learning. Hence face recognition one of the most popular applications
for metric learning. We tried to perform similar work with ITML metric learning, using Labeled Faces in the Wild (LFW)
data set [8]. There are more than 13,000 images of faces in the LFW data set. We took 1288 samples with 7 classes from
the data set that has at least 70 pictures of the same person. For the feature extraction, we applied Principal Component
Analysis method (PCA). For ITML metric learning, given the number of constraints is 200. Finally we performed kNN
method for classi�cation. We changed γ with various range, and the following results are notable cases. As we can check
in the Table 3, there are big di�erences in the accuracy in both cases.
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γ = 0.1 Original ITML (typo) Corrected ITML

Output: A A =

(
0.4667 0.2667
0.2667 0.8667

)
A =

(
0.3492 0.3318
0.3318 0.6985

)
ξ ξ =

(
0.1000
0.1667

)
ξ =

(
0.3841
0.7682

)
constraints

〈
A, v1v

T
1

〉
− ξ1 = 0.700000 ≥ 0〈

A, v2v
T
2

〉
− ξ2 = 1.500000 ≥ 0

〈
A, v1v

T
1

〉
− ξ1 = −0.000001 ≤ 0〈

A, v2v
T
2

〉
− ξ2 = 0.000000 ≤ 0

γ = 0.01 Original ITML (typo) Corrected ITML

Output: A A =

(
1 0
0 1

)
A =

(
0.7091 0.1703
0.1703 0.8821

)
ξ ξ =

(
0.1
0.1

)
ξ =

(
1.2507
3.0374

)
constraints

〈
A, v1v

T
1

〉
− ξ1 = 1.900000 ≥ 0〈

A, v2v
T
2

〉
− ξ2 = 4.900000 ≥ 0

〈
A, v1v

T
1

〉
− ξ1 = −0.000023 ≤ 0〈

A, v2v
T
2

〉
− ξ2 = 0.000000 ≤ 0

Table 1: When γ = 0.1, as shown the above table, constraints are not satis�ed in the case of original ITML. In the case
of γ = 0.01, the original ITML algorithm with typo does not work.

accuracy (%) Original ITML (typo) Corrected ITML
γ = 0.1 88.0 91.3
γ = 0.01 87.3 91.3
γ = 0.001 87.3 90.7
γ = 10 90.7 92.0
γ = 50 85.3 91.3
γ = 100 82.0 91.3

Table 2: Accuracy of Iris dataset with several value of γ.

5 Conclusion

We provide a mathematical analysis on ITML. The mathematical analysis supports the theoretical foundation of ITML,
by supplying well-posedness, strong duality, and convergence. Furthermore we corrected a typo in ITML. Empirical results
were presented to show that the typo may mislead to a great loss of performance.
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