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Abstract
MILU preconditioner is well known [16, 3] to be the optimal choice among all the ILU-type preconditioners in

solving the Poisson equation with Dirichlet boundary conditions. However, it is less known which is an optimal
preconditioner in solving the Poisson equation with Neumann boundary conditions. The condition number of an
unpreconditioned matrix is as large as O

(
h−2

)
, where h is the step size of grid. Only the optimal preconditioner

results in condition number O
(
h−1

)
, while the others such as Jacobi and ILU result in O

(
h−2

)
.

We review Relaxed ILU and Perturbed MILU preconditioners in the case of Neumann boundary conditions,
and present empirical results which indicate that the former is optimal in two dimensions and the latter is optimal
in two and three dimensions. To the best of our knowledge, these empirical results have not been rigorously
verified yet. We present a formal proof for the optimality of Relaxed ILU in rectangular domains, and discuss
its possible extension to general smooth domains and Perturbed MILU.

1 Introduction
The Poisson equation has been intensively studied in sciences and engineering, and applied to a variety of areas such
as fluid mechanics, electrical engineering, and image processing. A common problem faced in the applications is to
solve a linear system with a large condition number, which delays the convergence of its iterative approximations
and generates round-off errors that may result in the loss of many significant digits [8]. The large condition number
is innate in the Poisson equation, because the Laplace operator is unbounded. The eigenvalues of the Laplace
operator are real and countable, and range from a nonpositive value to the negative infinity [4]. On a certain
numerical method for solving the Poisson equation, its associated matrix, approximating the Laplace operator,
would have eigenvalues ranging from a nonpositive value to a negative number with very large absolute value. As
a result, the condition number of the matrix is large and grows larger as the grid of computation is refined.

For such an ill-conditioned linear system Ax = b, preconditioning is required to mitigate the large condition
number. A matrixM is called a preconditioner of A, if it is easy to invertM andM ≈ A. With a preconditionerM
of A present, it is advantageous to solve M−1Ax = M−1b instead of Ax = b. The Laplace operator is self-adjoint
and elliptic [4]. Being its discrete analogue, the matrix A is symmetric and an M-matrix [24]. For such types of
matrices, Jacobi, Symmetric Gauss-Seidel (SGS), Incomplete LU (ILU), and Modified ILU (MILU) are well known
to be effective [24].

In his seminal paper [16], Gustafsson analyzed aforementioned preconditioners on the standard five-point scheme
in rectangular domains with Dirichlet boundary conditions. The matrixA associated with the scheme has a condition
number of size O

(
h−2

)
on a grid of step size h. His analysis showed that all the preconditioners except MILU have

a condition number of size O
(
h−2

)
, and the necessary condition among ILU types to have O

(
h−1

)
is only MILU.

He failed to show that MILU is indeed a sufficient condition for O
(
h−1

)
. The original conjecture was later proved

[3]. Furthermore, the conjecture turns out to hold true even in general smooth domains with Dirichlet boundary
conditions. Min et al. [29] proved the conjecture in the case of Shortley-Weller’s method [25], and Yoon et al. [28]
proved the conjecture in the case of Gibou et al’s method [14].

In the case of Neumann boundary conditions, the optimal choice of preconditioner becomes unclear. The solution
of the Poisson equation with Neumann boundary conditions is not unique since the addition of any constant to
the solution makes another solution. Usually, the sum-zero condition is imposed to make the solution unique, the
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boundary value problem becomes well posed, and the condition number is measured excluding the zero eigenvalue.
While Jacobi, SGS, and ILU preconditioners are still effective for Neumann conditions, MILU fails to be defined
in general. MILU takes the form (L+ E)E−1 (E + U) where E is a diagonal matrix, and L and U denote the
strictly lower and upper triangular parts of A, respectively. E becomes zero at every right-top corner [21], when
grid nodes are ordered either in lexicographical or Cuthill-Mckee orderings [13]. When the grid of computation has
only one right-top corner, the associated matrix A and the diagonal matrix E both have nullity one, and MILU
can be somehow defined [3, 17, 20]. However, when there are more than one right-top corners, there is no known
possible way to define MILU, as far as we know.

There are two conventional preconditioners that can resolve the limitation of MILU when it comes to Neumann
boundary conditions: one is the relaxed ILU (RILU) [1, 2] and the other is the perturbed MILU (PMILU) [3, 16].
The RILU preconditioner takes an interpolated form of ILU and MILU with a small mixing ratio of ILU. Though
small, the presence of ILU makes the RILU nonsingular and well-defined. In earlier works [5, 21], the similar
strategies, called MILU-ILU mixture, were introduced but, from our survey, they turn out to be identical to the
RILU. As MILU does in the case of the Dirichlet boundary conditions, the authors in [21] empirically found out
that the optimal size O

(
h−1

)
is attained by RILU of 1 : O

(
h2
)
in 2D, which is called RILU conjecture.

While the RILU manipulates the existing preconditioners in its construction, the PMILU chooses to perturb
the original matrix A to resolve the singularity. By noting that the vector 1 is in the null space of A, the PMILU
preconditioner is defined by the MILU preconditioner of the diagonally perturbed matrix A + εD for sufficiently
small ε > 0. Although many researchers [17, 3] analyzed the performance of the PMILU for the Dirichlet boundary
conditions, concrete analysis for Neumann boundary conditions is unsettled, to the best to our survey.

The aim of this paper is to remind this community of the optimality in RILU and PMILU preconditioners for the
Neumann boundary conditions, and to provide a mathematical analysis on the optimality. In section 2, we review
Gustafsson’s conjecture on Dirichlet boundary conditions and the MILU preconditioner. The RILU and PMILU
are reviewed in section 3 and 4, respectively, with conjectures on the optimality supported by empirical results.
In section 5, the RILU conjecture in the case of rectangular domain is proved, equipped with a novel rectangular
inequality and a non-local decomposition of Heaviside weights. Numerical results are presented in section 6 to
validate the optimality conjectured in this work and conclusions and future work are presented in section 7.

2 Preliminaries
In this section, we present brief reviews of the MILU preconditioner for the Neumann boundary conditions. Let Ω
be a general smooth domain in R2 with the boundary ∂Ω. Then, the Poisson equation with Neumann boundary
condition reads as follow: {

−4u = f , in Ω
∂u
∂n = g , on ∂Ω

. (1)

2.1 Purvis-Burkhalter Discretization
For solving the Poisson equation with Neumann boundary conditions, there are numerous efficient methodologies
such as finite volume methods, finite element methods [11, 12] and spectral methods [15, 22]. Each methodology
retains its own advantages and disadvantages.

The finite volume method [23, 19] by Purvis and Burkhalter is a simple five-point scheme defined on a uniform
grid. In spite of its simplicity, the method can deal with general smooth domains and attains the second-order
accuracy, which is guaranteed by a mathematical analysis [30]. The method lacks of the adaptivity to resolve
capturing more important details. Since the elliptic nature of the Poisson equation enforces strong coupling between
any two locations in the domain, an adaptive grid may not be effective as expected and the disadvantage lacking the
adaptivity is alleviated. From these reasons, we select the Purvis-Burkhalter method among the many numerical
methods and scrutinize it throughout this paper.

Consider a uniform grid hZ2 with step size h. For each grid point (xi, yj) ∈ hZ2, we define the rectangular
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control volume Cij centered at the grid point with four edges ei± 1
2 ,j

, ei,j± 1
2
as

Cij =
[
xi− 1

2
, xi+ 1

2

]
×

[
yj− 1

2
, yj+ 1

2

]
ei± 1

2 ,j
= xi± 1

2
×

[
yj− 1

2
, yj+ 1

2

]
ei,j± 1

2
=

[
xi− 1

2
, xi+ 1

2

]
× yj± 1

2

.

Let Ωh be the set of grid points whose control volume intersect with the domain Ω. In order to measure the amount
of occupied volume to the domain, we utilize the Heaviside function defined as follows.

Definition 1. (Heaviside function) For each ei+ 1
2 ,j

, ei,j+ 1
2
, the Heaviside function Hi+ 1

2 ,j
and Hi− 1

2 ,j
are defined

by

Hi+ 1
2 ,j

=
length

(
ei+ 1

2 ,j
∩ Ω

)
length

(
ei+ 1

2 ,j

) , Hi,j+ 1
2

=
length

(
ei,j+ 1

2
∩ Ω

)
length

(
ei,j+ 1

2

) ,

respectively.

The Purvis-Burkhalter discretization takes a finite volume approach to approximate the Poisson equation (1).
More precisely, integrating both sides of equation (1) over each control volume and applying the divergence theorem,
we can have ∫ ∫

Cij∩Ω

(−4u) dA =

∫
∂(Cij∩Ω)

∂u

∂n
dΓ =

∫ ∫
Cij∩Ω

fdA,

i.e.,

−
∫
∂Cij∩Ω

∂u

∂n
dΓ =

∫
Cij∩∂Ω

gdΓ−
∫ ∫

Cij∩Ω

fdA (2)

where dA and dΓ denote to the area and length elements, respectively.
With the aid of Heaviside function, the difference equation Au = b associated with (2) can be attained by

introducing a linear operator A : Ωh → R defined as

(Au)(i,j) =
[
u(i,j) − u(i+1,j)

]
Hi+ 1

2 ,j
+
[
u(i,j) − u(i,j+1)

]
Hi,j+ 1

2

+
[
u(i,j) − u(i−1,j)

]
Hi− 1

2 ,j
+
[
u(i,j) − u(i,j−1)

]
Hi,j− 1

2
. (3)

Note that the operator A is a semi-positive definite operator from the definition in (3).

2.2 MILU preconditioners
In this subsection, we review the MILU preconditioners for solving (1). Let A be the matrix as in (3), and L, D,
and U are strictly lower triangular, diagonal, and strictly upper triangular matrices of A, respectively. Then, we
consider the preconditioner M of the form

M = (L+ E)E−1 (E + U) = L+ E + U + LE−1U

where E is a diagonal matrix. Note that M can be treated as an approximation of A, that is, M = A + R where
R = E + LE−1U −D.

The ILU preconditioner M is obtained by enforcing diagonal elements of R to be zero. Hence, the diagonal
matrix E is defined by (

E + LE−1U
)
i,i

= Di,i, i = 0, 1, . . . ,K − 1. (4)

Let Ei,j be the diagonal element of E corresponding to the grid point (xi, yj). Then, each Ei,j can be computed
by the following recursive relation, obtained from (4):

Definition 2 (ILU). We define ILU to be the matrix M = (L+ E)E−1 (E + U) where E is defined by the formula
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E0,0 = a0,0

Ei,j = ai,j −
H2
i− 1

2 ,j

Ei−1,j
−
H2
i,j− 1

2

Ei,j−1
,

Here Ei,j is recursively updated in the lexicographical order [13].

In [16], Gustafsson found that the ILU preconditioner could reduce computational cost but keeps the order of
condition number, it remains to be of order O

(
h−2

)
when the matrix A is associated with the standard five-point

scheme with Dirichlet boundary conditions. As a matter of fact, for the ILU preconditioner M , one can easily
choose u ∈ C1

0 (Ω) for which 〈Ru, u〉 = O
(
h−2

)
, which results in 〈Au, u〉 /〈Mu, u〉 = O

(
h2
)
with the fact that

〈Au, u〉 = O (1) for any u ∈ C1
0 (Ω). Then, κ

(
M−1A

)
is of order O

(
h−2

)
since 〈Ae1, e1〉 / 〈Me1, e1〉 = O (1) where

e1 = (1, 0, . . . , 0).
Based on this observation, he suggested the MILU preconditioner M taking E of the form

K∑
j=1

(
E + LE−1U

)
ij

= Dii i = 1, . . . ,K. (5)

Note that E in (5) is defined so as to satisfy a necessary condition

−O (1) ≤ 〈Ru, u〉 ≤ O
(
h−1

)
, ∀u ∈ C1

0 (Ω)

for κ
(
M−1A

)
= O

(
h−1

)
. The recursive formula for Ei,j corresponding to the grid point (xi, yj) reads as follow:

Definition 3 (MILU). We define MILU to be the matrix M = (L+ E)E−1 (E + U) where E is defined by the
formula

E0,0 = a0,0

Ei,j = ai,j −
Hi− 1

2 ,j

Ei−1,j

(
Hi− 1

2 ,j
+Hi−1,j+ 1

2

)
−
Hi,j− 1

2

Ei,j−1

(
Hi,j− 1

2
+Hi+ 1

2 ,j−1

)
,

Here Ei,j is recursively updated in the lexicographical order [13].

While it is proven that the MILU preconditioner is the optimal choice among ILU types for Dirichlet boundary
conditions, the problem of selecting an optimal preconditioner for Neumann boundary conditions remains unsettled.
A strong candidate for the optimal choice might be the MILU, but it fails to be defined for Neumann boundary
conditions since it produces zero entries in E at every right-top corner of the domain [21].

3 Relaxed ILU
The relaxed ILU (RILU) was first introduced by [1, 2] to apply an MILU-type preconditioner to singular systems.
The main idea of RILU is to mix the ILU and MILU with a specific ratio r so that it avoids the singularity that
arises from the Neumann conditions as well as it takes advantage of the optimality inherent in MILU. The RILU
preconditioner M can be computed by the following formula for Ei,j corresponding to the grid point (xi, yj) of the
diagonal matrix E.

Definition 4 (RILU). For r ∈ (0, 1), we define RILU(r) to be the matrix M = (L+ E)E−1 (E + U) where E is
defined by the formula

E0,0 = a0,0

Ei,j = ai,j −
Hi− 1

2 ,j

Ei−1,j

(
Hi− 1

2 ,j
+ (1− r)Hi−1,j+ 1

2

)
−
Hi,j− 1

2

Ei,j−1

(
Hi,j− 1

2
+ (1− r)Hi+ 1

2 ,j−1

)
,

Here Ei,j is recursively updated in the lexicographical order [13].
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Figure 1: The domain Ω for the numerical test in section 6.1 (left) and its corresponding grid configuration Ωh

(right). Each cell Cij is surrounded by dotted lines.

There have been several researches on choosing the optimal ratio r. Van der Vorst [27] reported empirically that
r = C · h2 for some constant C > 0 provides the best performance and Chan [6] showed that this ratio achieves
the optimal order O

(
h−1

)
in condition number for the Poisson equation with periodic boundary conditions. For

all practical purposes, Van der Vorst [26] and Bridson [5] proposed to select r to be 0.05 and 0.03, respectively. In
the recent research by Park et al. [21] , the authors verified that the optimality in condition number of the matrix
associated with the Neumann problem (1) is obtained by RILU(r) when the ratio is r = C · h2 for some constant
C. Based on this observation, they posed the following conjecture, so called the RILU conjecture.

Conjecture. Let A be the matrix associated with the Purvis-Burkhalter discretization [23, 19] for solving the
Poisson equation with Neumann boundary conditions in a smooth domain Ω, and let M be the RILU preconditioner
with mixing ratio r. When r = C · h2 for some moderate constant C > 0 independent of h, then we have

κ
(
M−1A

)
= O

(
h−1

)
,

for any smooth domain Ω ⊂ R2. In practice, we may set C = 1.

This conjecture was supported by numerous empirical tests in [21]. For example, see section 6.1 and section 6.2.

4 Perturbed MILU
Another well-known preconditioner for solving (1) is so called perturbed MILU (PMILU) preconditioner proposed
by [3, 16]. The PMILU preconditioner M is simply obtained by adding small perturbation of diagonal matrix D to
MILU preconditioner. The recursive formula for each diagonal element Ei,j of E in PMILU is defined as follow.

Definition 5 (PMILU). For sufficient small ε > 0, we define PMILU(ε) to be the matrixM = (L+ E)E−1 (E + U)
where E is defined by the formula

E0,0 = a0,0

Ei,j = (1 + ε) ai,j −
Hi− 1

2 ,j

Ei−1,j

(
Hi− 1

2 ,j
+Hi−1,j+ 1

2

)
−
Hi,j− 1

2

Ei,j−1

(
Hi,j− 1

2
+Hi+ 1

2 ,j−1

)
,

Here Ei,j is recursively updated in the lexicographical order [13].

To the best of our knowledge, the estimation of condition number of PMILU preconditioned matrix for the
Neumann boundary conditions is not fully understood. Beauwens [3] analyzed the relation between upper bounds
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of the condition number of the preconditioned matrix and the selection of perturbation parameter ε for nonsingular
Stieltjes matrices. As an extension to this work, Notay [20] proposed several strategies to select the parameter ε for
PMILU so that it achieves the optimal order of O

(
h−1

)
with numerical evidences.

An interesting observation in PMILU preconditioner is that it attains the optimal condition number of order
O
(
h−1

)
for any smooth domain in both two and three dimension with a certain choice of ε. From numerous

empirical tests, we found out that ε = Ch2 is an optimal choice for the parameter ε as in RILU conjecture. For
example, see the examples in section 6.1 and section 6.2. From this observation, we finalize this section by posing
the following conjecture.

Conjecture. Let A be the matrix associated with the Purvis-Burkhalter discretization [23, 19] for solving the
Poisson equation with Neumann boundary conditions in a smooth domain Ω, and letM be the PMILU preconditioner
with perturbation parameter ε. When ε = C · h2 for some moderate constant C > 0 independent of h, then we have

κ
(
M−1A

)
= O

(
h−1

)
,

for any smooth domain Ω ⊂ Rd, d = 2, 3. In practice, we may set C = 1.

5 Mathematical proof for RILU conjecture
Since the seminal work of Gustafsson [16], MILU preconditioner has been renowned for its optimality among all
ILU-type preconditioners in solving the Poisson equation with Dirichlet boundary conditions. In this article, we
empirically showed that RILU and PMILU achieve the optimality in solving the Poisson equation with Neumann
boundary conditions. We are not the first to report empirical results stating the optimality: e.g. Chan et al. [7]
and references therein. However, to the best of our knowledge, there is no known rigorous analysis to support the
empirically observed optimality in the case of Neumann boundary conditions. We have endeavored to provide a
rigorous analysis to explain the results of RILU and PMILU in section 3 and section 4, and managed to prove the
result of RILU in the case of rectangular domains, which we report here.

5.1 Conventional analysis in the case of Dirichlet boundary conditions
Gustafsson in [16] showed that an ILU-type preconditioner is necessarily the MILU preconditioner when it achieves
the optimal condition number O

(
h−1

)
in numerically solving the Poisson equation. Precisely speaking, it is nec-

essarily more or less the MILU preconditioner with a margin of error of O
(
h2
)
allowed. His argument is succinct

and easy to understand, but its reverse is not a simple matter at all. He could not prove the reverse argument that
the MILU preconditioner, the unperturbed one, results in O

(
h−1

)
condition number. The reverse argument was

posted as a conjecture, and was proved in [3, 28, 30] in the case of Dirichlet boundary conditions.
In this section, we review some conventional analysis used in the proofs and point out the obstacles that the

analysis faces in the case of Neumann boundary conditions. The first step of the analysis is to convert the estimation
of eigenvalues into the estimation of Rayleigh quotients.

λmin /max

(
M−1A

)
= min /max

u6=0

〈Au, u〉
〈Mu, u〉

= min /max
u 6=0

1

1 + 〈Ru, u〉 / 〈Au, u〉
Here, R denotes the residue of the preconditioning, R := M − A. When A is the associated matrix of the

standard five-point scheme, the residue value 〈Ru, u〉 is given as

−〈Ru, u〉 =
∑
i,j

Hi+ 1
2 ,j
Hi,j+ 1

2

Ei,j
(ui+1,j − ui,j+1)

2
,

where Hi+ 1
2 ,j

and Hi,j+ 1
2
denote the matrix elements A(i,j),(i+1,j) and A(i,j),(i,j+1), respectively. Utilizing the

following triangular inequality [16] that holds for any w1, w2 > 0 and any u ∈ R2×2

w1w2

w1 + w2
(u1,0 − u0,1)

2 ≤ w1 (u1,0 − u0,0)
2

+ w2 (u0,1 − u0,0)
2
, (6)

the second step of the conventional analysis obtains the following estimate of Rayleigh quotients.
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0 ≤ −〈Ru, u〉 ≤
∑
i,j

Hi+ 1
2 ,j

+Hi,j+ 1
2

Ei,j

[
Hi+ 1

2 ,j
(ui+1,j − ui,j)2

+Hi,j+ 1
2

(ui,j+1 − ui,j)2
]

≤
(

max
i,j

Hi+ 1
2 ,j

+Hi,j+ 1
2

Ei,j

)∑
i,j

[
Hi+ 1

2 ,j
(ui+1,j − ui,j)2

+Hi,j+ 1
2

(ui,j+1 − ui,j)2
]

≤
(

max
i,j

Hi+ 1
2 ,j

+Hi,j+ 1
2

Ei,j

)
〈Au, u〉 .

The inequality (6) bounds the square of diagonal difference by a weighted sum of the squares on the two sides
of a triangle. With this regard, we refer to the inequality as a triangular inequality.

In the case of Dirichlet boundary conditions, the maximum is bounded above by a fraction c
c+h for some constant

c > 0 that is independent of step size h. According to the bound, Rayleigh quotients are estimated as

1 ≤ 1

1 + 〈Ru,u〉
〈Au,u〉

≤ 1

1−
(

maxi,j
H

i+1
2
,j

+H
i,j+1

2

Ei,j

) ≤ c+ h

h
, (7)

and the condition number is estimated as the desired optimal order.

κ
(
M−1A

)
=
λmax

(
M−1A

)
λmin (M−1A)

≤ c+ h

h
= O

(
h−1

)
5.2 Conventional analysis in the case of Neumann boundary conditions
The conventional analysis is very effective in the case of Dirichlet boundary conditions and is valid for arbitrary
smooth domains. However the analysis is not that much effective in the case of Neumann boundary conditions. For
simplicity, let us consider a rectangular domain with Neumann boundary condition imposed on its every side, and
assume a grid {(xi, yj) |i = 0, · · · , imax − 1 and j = 0, · · · , jmax − 1} of uniform step size h placed on the domain.
The matrix A associated with the standard five-point scheme has entries as

Hi+ 1
2 ,j

:= A(i,j),(i+1,j) =

{
0 if i = −1 or imax − 1

1 else
, and

Hi,j+ 1
2

:= A(i,j),(i,j+1) =

{
0 if j = −1 or jmax − 1

1 else
.

It can be shown [21] that the diagonal entries of the MILU preconditioner applied to A is simply

EMILU
i,j = Hi+ 1

2 ,j
+Hi,j+ 1

2
.

Note that EMILU
i,j = 0 when i = imax − 1 and j = jmax − 1. Thus EMILU is not invertible, and MILU precondi-

tioning is not applicable in the case of Neumann boundary conditions. On the other hand, RILU preconditioner has
positive diagonal entries ERILUi,j > 0 and its inverse is well defined. For RILU preconditioner MRILU , the Rayleigh
quotients are bounded as

1

1 + 〈Ru,u〉
〈Au,u〉

≤ 1

1−
(

maxi,j
H

i+1
2
,j

+H
i,j+1

2

Ei,j

) ≤ 1

1− 1
= +∞,

which leads to a meaningless estimation κ
((
MRILU

)−1
A
)
≤ ∞. However, the empirical results, see section

3, indicate κ
((
MRILU

)−1
A
)
≤ O

(
h−1

)
. With this regard, the conventional analysis fails to properly estimate

the condition number of RILU. In order to overcome the failure of the conventional analysis, we introduce a novel
estimate in the next section. Based on this experience, we doubt that the conventional analysis would succeed in
proving the optimality of either PMILU or RILU in irregular domains.
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We scrutinized each part of the conventional analysis to identify the part from which the poor estimation
result, and noticed that the triangle inequality was applied to each grid cell locally. We concluded that any local
application of such triangle inequalities cannot come up with the optimal order O

(
h−1

)
, and devised up a novel

rectangular-type inequality and a global planning in applying the inequality to grid cells, which we report in the
next section.

5.3 Novel analysis in the case of rectangular domains
In the previous section, we pointed out the drawbacks of the conventional analysis in dealing with Neumann
boundary conditions. The main feature of the conventional approach is to apply the triangle inequality locally and
independently to each grid cell. Contrary to the conventional analysis, we apply instead the following rectangular
inequality to each grid cell, and its application is not local, but will be maneuvered globally.

Lemma 1. (Rectangular inequality) For any u ∈ R2×2and any w1, w2, r ≥ 0, the following inequality holds.

w1 + w2

2− r

[
(u1,0 − u0,1)

2 − r
(
u2

1,0 + u2
0,1

)]
≤ w1

[
(u1,0 − u0,0)

2
+ (u0,1 − u0,0)

2
]

+ w2

[
(u1,0 − u1,1)

2
+ (u0,1 − u1,1)

2
]

Proof. From (u1,0 − u0,1)
2 ≤ 2

(
u2

1,0 + u2
0,1

)
, we can have

w1 + w2

2− r

[
(u1,0 − u0,1)

2 − r
(
u2

1,0 + u2
0,1

)]
≤ w1 + w2

2− r
(u1,0 − u0,1)

2
[
1− r

2

]
=
w1 + w2

2
(u1,0 − u0,1)

2
.

Comparing the RHS of the rectangular inequality with w1+w2

2 (u1,0 − u0,1)
2 gives the proof of the lemma.

w1

[
(u1,0 − u0,0)

2
+ (u0,1 − u0,0)

2
]

+ w2

[
(u1,0 − u1,1)

2
+ (u0,1 − u1,1)

2
]
− w1 + w2

2
(u1,0 − u0,1)

2

= 2w1

(
u0,0 −

u0,1 + u1,0

2

)2

+ 2w2

(
u1,1 −

u0,1 + u1,0

2

)2

≥ 0.

For the preconditioned matrix by RILU(r = Ch2), the residual value is given as

−〈Ru, u〉 =

imax−1∑
i=0

jmax−1∑
j=0

1

Ei,j

[
(ui+1,j − ui,j+1)

2 − r
(
u2
i+1,j + u2

i,j+1

)]
.

The above summation visits every grid cell. Lemma 1 is going to be applied to every grid cell. Since the lemma
holds for any weight w1, w2 ≥ 0, we have a lot of freedom in the application of the lemma to the summation. We
managed to find some choices of the weights to prove the optimality of RILU(h2). On a grid cell [xi, xi+1]×[yj , yj+1],
we choose the weights w1

i,j and w2
i,j as

w1
i,j = 1− 2− r (imax + jmax)

2 (imax + jmax − 1)
(i+ j) , and

w2
i,j =

2− r (imax + jmax)

2 (imax + jmax − 1)
(i+ j + 1) . (8)

Note that w1
i,j , w2

i,j ∈ [0, 1], since i+ j ≤ (imax − 1) + (jmax − 1) = imax + jmax − 2 and r (imax + jmax) = O (h)
is smaller than 2 for sufficiently small h. The following theorem shows how the choices lead to our main result.
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Theorem 1. Let A be the matrix associated with (3) and let R be the residue matrix R = A −M where M is
the RILU preconditioner with mixing ratio r = Ch2 for some constant C > 0 and sufficiently small h. Then, the
following inequality holds for any u ∈ Rimax×jmax .

imax + jmax

imax + jmax − 1
〈−Ru, u〉 ≤ 〈Au, u〉

Proof. When the domain is rectangular, the diagonal elements Eij of the preconditioner RILU(r) is given as

E0,0 = 2

Ei,j =


3− 2−r

Ei,j−1
, if i = 0

3− 2−r
Ei−1,j

, if j = 0

4− 2−r
Ei−1,j

− 2−r
Ei,j−1

, else .

A mathematical induction on n = i+ j easily leads to Eij ≥ 2, and we have

〈−Ru, u〉 =

imax−1∑
i=0

jmax−1∑
j=0

1

Eij

[
(ui+1,j − ui,j+1)

2 − r
(
u2
i+1,j + u2

i,j+1

)]

≤
imax−1∑
i=0

jmax−1∑
j=0

1

2

[
(ui+1,j − ui,j+1)

2 − r
(
u2
i+1,j + u2

i,j+1

)]
We apply lemma 1 to each grid cell [xi, xi+1]× [yj , yj+1] with the choices of weights w1

i,j and w2
i,j in (8). Using

the fact that w1
i,j + w2

i,j = 2−r
2

imax+jmax

imax+jmax−1 , we have

imax + jmax

imax + jmax − 1
〈−Ru, u〉 ≤

imax−1∑
i=0

jmax−1∑
j=0

imax + jmax

imax + jmax − 1

1

2

[
(ui+1,j − ui,j+1)

2 − r
(
u2
i+1,j + u2

i,j+1

)]

=

imax−1∑
i=0

jmax−1∑
j=0

w1
i,j + w2

i,j

2− r

[
(ui+1,j − ui,j+1)

2 − r
(
u2
i+1,j + u2

i,j+1

)]

≤
imax−1∑
i=0

jmax−1∑
j=0

w1
i,j

[
(ui+1,j − ui,j)2

+ (ui,j+1 − ui,j)2
]

+

imax−1∑
i=0

jmax−1∑
j=0

w2
i,j

[
(ui+1,j − ui+1,j+1)

2
+ (ui,j+1 − ui+1,j+1)

2
]

Note that w1
i,j is multiplied to the left and bottom sides of the grid cell [xi, xi+1] × [yj , yj+1], and w2

i,j to the
right and top sides. Thus, each side, except on the boundary, is multiplied once by w1 and once again by w2.
Combining the two multiplications, we have

imax + jmax

imax + jmax − 1
〈−Ru, u〉 ≤

imax−1∑
i=0

jmax∑
j=0

(
w1
i,j + w2

i,j−1

)
(ui+1,j − ui,j)2

+

imax∑
i=0

jmax−1∑
j=0

(
w1
i,j + w2

i−1,j

)
(ui,j+1 − ui,j)2

.

Since w1
i,j + w2

i,j−1 = w1
i,j + w2

i−1,j = 1, we proved that
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imax + jmax

imax + jmax − 1
〈−Ru, u〉 ≤

imax−1∑
i=0

jmax∑
j=0

(ui+1,j − ui,j)2
+

imax∑
i=0

jmax−1∑
j=0

(ui,j+1 − ui,j)2

imax + jmax

imax + jmax − 1
〈−Ru, u〉 ≤ 〈Au, u〉 .

Corollary 1. (Upper bound) Let A be the matrix associated with (3) andM be the RILU preconditioner with mixing
ratio r = Ch2. For any u⊥1 and sufficiently small h, we have an upper bound of the Rayleigh quotient as

〈Au, u〉
〈Mu, u〉

≤ imax + jmax = O(h−1).

Proof. We apply theorem 1 to have

〈Ru, u〉
〈Au, u〉

≥ − imax + jmax − 1

imax + jmax
and

〈Au, u〉
〈Mu, u〉

=
1

1 + 〈Ru,u〉
〈Au,u〉

≤ 1

1− imax+jmax−1
imax+jmax

= imax + jmax.

Now, we turn our attention to seeking a lower bound of Rayleigh quotients. Since the domain Ω is assumed to
be rectangular, one can easily show that the matrix A has eigenvalues

λm,n = 4− 2 cos

(
mπ

imax

)
− 2 cos

(
nπ

jmax

)
,

for m = 0, · · · , imax − 1 and n = 0, · · · , jmax − 1, and their corresponding eigenvectors are

um,ni,j = cos

(
mπ

imax

(
i+

1

2

))
cos

(
nπ

jmax

(
j +

1

2

))
,

for i = 0, · · · , imax−1 and j = 0, · · · , jmax−1. Using the above facts, we now introduce a lower bound for Rayleigh
quotients 〈Au, u〉 / 〈Mu, u〉.

Lemma 2. Let A be the matrix associated with (3) and let R be the residue matrix R = A −M where M is the
MILU-ILU preconditioner with mixing ratio r > 0. For any u⊥1,

〈−Ru, u〉 ≥ − [max (imax, jmax)]
2

π2
r 〈Au, u〉 .

Proof.

〈−Ru, u〉 =

imax−1∑
i=0

jmax−1∑
j=0

1

Eij

[
(ui+1,j − ui,j+1)

2 − r
(
u2
i+1,j + u2

i,j+1

)]

≥
imax−1∑
i=0

jmax−1∑
j=0

−r
(
u2
i+1,j + u2

i,j+1

)
≥ −r 〈u, u〉

Note that λ0,0 = 0 = minλ(A) and u0,0 = 1. Since u⊥1, and we can apply the Min-Max theorem to obtain

〈Au, u〉
〈u, u〉

≥ min
λ(A)6=0

λ (A)

= min
(
λ1,0, λ0,1

)
= 2− 2 max

(
cos

π

imax
, cos

π

jmax

)
.

10



From cosx ≥ 1− 1
2x

2, we easily have

〈u, u〉 ≤ [max (imax, jmax)]
2

π2
〈Au, u〉 and

〈−Ru, u〉 ≥ −r 〈u, u〉

≥ − [max (imax, jmax)]
2

π2
r 〈Au, u〉 .

Corollary 2. (Lower bound) Let A be the matrix associated with (3) and M is the MILU-ILU preconditioner with
mixing ratio r. For any u⊥1,

〈Au, u〉
〈Mu, u〉

≥ π2

π2 + [max (imax, jmax)]
2
r
.

Proof. From the above theorem, we have

〈Ru, u〉
〈Au, u〉

≤ [max (imax, jmax)]
2

π2
r and

〈Au, u〉
〈Mu, u〉

=
1

1 + 〈Ru,u〉
〈Au,u〉

≥ 1

1 + [max(imax,jmax)]2

π2 r
=

π2

π2 + [max (imax, jmax)]
2
r
.

Now we are ready to prove a theorem, which is the main argument of this paper.

Theorem 2. Let A be the matrix associated with (3), and let M be the MILU-ILU preconditioner with mixing ratio
r. When r = Ch2 for some constant C > 0 independent of h, we have

κ
(
M−1A

)
= O

(
h−1

)
for a rectangular domain Ω = [ax, bx]× [ay, by].

Proof. Let r = Ch2 for some constant C > 0. Then, from corollary 1, 2 and the fact that imax = (bx − ax) /h,
jmax = (by − ay) /h, we obtain

C1 ≤
〈
M−1Au, u

〉
=
〈Au, u〉
〈Mu, u〉

≤ C2

h

for constants C1, C2 where C1 = π2

π2+C[max(bx−ax,by−ay)]2
, C2 = (bx − ax) + (by − ay). Hence, by the Min-Max

theorem, we have

κ
(
M−1A

)
=
λmax

(
M−1A

)
λmin (M−1A)

≤
(
C2

C1

)
h−1,

which proves the theorem.

6 Numerical results
In this section, we carry out numerical tests to validate the two conjecture in section 3 and 4, and verify the
mathematical analysis in section 5. All the computation were implemented in C++, and conducted on a regular
personal computer with a 3.60 GHz CPU and 16.0 GB memory. Every linear system is solved by the Preconditioned
Conjugate Gradient (PCG) and the stopping criterion for PCG is chosen to be ‖rn‖ / ‖r0‖ < 10−10.
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Figure 2: Plots of condition number κ
(
M−1A

)
when a preconditionerM is Jacobi, ILU, RILU(0.03), and RILU

(
h2
)

for the examples in section 6.1 and 6.2. The results show that RILU
(
h2
)
achieves the optimal condition number of

order O
(
h−1

)
for two dimensional case (left) but fails to attain the optimal condition number for three dimensional

case (right).

6.1 Elliptical domain
Let us consider a domain Ω of tilted ellipse given by Ω =

{
(x, y) ∈ R2|17x2 − 14xy + 17y2 ≤ 12

}
, as in figure 1, and

let A be the matrix associated with the Purvis-Burkhalter method (3). The profiles of condition number κ
(
M−1A

)
are presented in the left of figure 2 and 4, when a preconditioner M is Jacobi, ILU, RILU(0.03), RILU

(
h2
)
, and

PMILU
(
h2
)
. The result shows that RILU

(
h2
)
and PMILU

(
h2
)
attain an optimal condition number of order

O
(
h−1

)
while the others do not. Figure 3 depicts the performance of PCG on the linear system Au = b for

each preconditioner M . In terms of the iteration number to convergence in figure 3, we can see that the iteration
numbers of PMILU

(
h2
)
and RILU

(
h2
)
are sorely about 14% of that of Jacobi, 34% of that of ILU, and 73%

of that of RILU(0.03). This implies that a decrease in condition number κ
(
M−1A

)
by one order of magnitude

can significantly enhance the performance of linear solver, which clarifies the importance of RILU and PMILU
conjectures.

6.2 Three dimensional examples
In this subsection, we test two examples to validate the conjecture of PMILU in section 4. One is an ellipsoidal
domain, and the other is a banana-shaped domain from [9]. At first, we consider a tilted ellipsoid domain Ω ={

(x, y, z) ∈ R3|25x2 − 10xy + 25y2 + 24z2 ≤ 24
}
and let A be the matrix with the Purvis-Burkahalter discretization.

The right plot in figure 2 compares the condition number of RILU
(
h2
)
with those of Jacobi and ILU, from which we

infer that the RILU conjecture does not hold for three dimensional problem with Neumann boundary conditions.
The right plot in figure 4 shows the comparison of the condition number of PMILU

(
h2
)
with those of Jacobi,

ILU, and RILU
(
h2
)
. The result in the plot indicates that PMILU

(
h2
)
in the only preconditioner that achieves the

optimal condition number of order O
(
h−1

)
in three dimension, confirming the conjecture. Furthermore, the plot

shows that PMILU
(
h2
)
has the smallest condition number in magnitude. Therefore, we can expect that PMILU

(
h2
)

converges faster than the others. This can be verified by the figure 5. The iteration number of PMILU
(
h2
)
is sorely

about 19% of those of RILU
(
h2
)
and ILU, and 5.8% of that of Jacobi.
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Figure 3: The plot of the norm of residual with respect to the iteration number when the PCG applies to the linear
system (3) when h = 0.005 for the example in section 6.1.

Figure 4: Plots of condition number κ
(
M−1A

)
when a preconditionerM is Jacobi, ILU, RILU

(
h2
)
, or PMILU

(
h2
)

for the examples in section 6.1 and 6.2. The results show that PMILU
(
h2
)
achieves the optimal condition number

of order O
(
h−1

)
for both two and three dimensional cases.
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Figure 5: The plot of the norm of residual with respect to the iteration number when the PCG applies to the linear
system Au = b when h = 0.005 for the example in section 6.2

Secondly, figure 6 shows the comparison of the condition numbers and the norm of residual with respect to
the iteration number when the domain Ω is a banana-shaped domain from [9], which contains regions with high
curvature. The results are consistent with the fact that PMILU

(
h2
)
in the optimal preconditioner in the sense that

its condition number is of order O
(
h−1

)
, still confirming the conjecture. It also implies that the performance of

preconditioning is not significantly affected by the shape of domain.

6.3 Validation of the analysis
We presented in section 5 a rigorous analysis for the optimality of RILU(h2) in rectangular domains. The analysis
consists of the upper bound in corollary 1 and the lower bound in corollary 2. On a domain [0, 3]× [0, 2], eigenvalues
are numerically generated for each step size h, and compared to the estimates of the analysis. Figure 7 confirms the
upper-bound estimate λmax

(
M−1A

)
≤ imax+jmax, and figure 8 assures the lower-bound estimate λmin

(
M−1A

)
≤

π2/
(
π2 + [max (imax, jmax)]

2
r
)
with choice r = h2. Figure 9 shows the profiles of the condition number κ

(
M−1A

)
and the number (C2/C1)h−1, as in the proof of theorem 2, with respect to the step size h. Combining the two
estimates, the condition number κ

(
M−1A

)
is bounded above by π2+9

π2 (imax + jmax) = O
(
h−1

)
, which is validated

in figure 9. Furthermore, figure 9 implies that the estimation κ
(
M−1A

)
= O

(
h−1

)
is tight.

6.4 Application to the incompressible fluid
One of the main applications of the Poisson equation with Neumann boundary conditions is the incompressible
fluid, whose motion is governed by the following Navier-Stokes equations{

ρ
(
∂U
∂t + (U · ∇U)U

)
= −∇p+∇ ·

(
µ
(
∇U +∇UT

))
+ ρF

∇ · U = 0
. (9)

Here, U is the fluid velocity, ρ is the density, µ is the viscosity, p is the pressure, and F is the acceleration by
external force. A standard method to solve (9) is the splitting type method, called the projection method [10],
based on the Hodge decomposition. The projection method mainly consists of two stages. At the first stage, the
method computes an intermediate velocity U∗ only with terms with momentum, e.g.

ρ

(
U∗ − Un

∆t

)
= µ∇ · (∇Un + (∇Un)) + ρFn.
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Figure 6: Plots of condition number κ
(
M−1A

)
when a preconditionerM is Jacobi, ILU, RILU

(
h2
)
, or PMILU

(
h2
)

(top) and the norm of residual with respect to the iteration number when the PCG applies to the linear system
Au = b with h = 0.005 (bottom), when the domain Ω is a banana-shaped domain from [9].
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Figure 7: Plots of the maximum eigenvalue λ
(
M−1A

)
(solid) and an upper bound imax + jmax of the Rayleigh

quotient 〈Au, u〉 / 〈Mu, u〉 (dotted) for the example in section 6.3. Note that the profile of λmax
(
M−1A

)
is bounded

above by the upper bound as proved in Corollary 1.

Figure 8: Plots of the maximum eigenvalue λ
(
M−1A

)
(solid) and an upper bound π2/

(
π2 + [max (imax, jmax)]

2
r
)

of the Rayleigh quotient 〈Au, u〉 / 〈Mu, u〉 (dotted) when r = h2 for the example in section 6.3. This result validates
Corollary 2, which states λmin

(
M−1A

)
are bounded below by the lower bound.
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Figure 9: Plots of condition numbers κ
(
M−1A

)
and an upper bound (C2/C1)h−1 of k

(
M−1A

)
where C1, C2

are constants in the proof of theorem 2 when r = h2 for the example in section 6.3. Numerical results show that
κ
(
M−1A

)
is bounded above by (C2/C1)h−1, which means κ

(
M−1A

)
= O

(
h−1

)
. Loglog plot of κ

(
M−1A

)
and

(C2/C1)h−1 (top right, subfigure) support this argument.

Once U∗ is obtained, the incompressibility is enforced with the pressure component at the second stage as follow{
ρ
(
Un+1−U∗

∆t

)
= −∇pn+1

∇ · Un+1 = 0
,

which leads to the Poisson equation with Neumann boundary conditions. Since the large linear system appears on
the discretization of the second stage, the computational cost for the projection method heavily depends on the
efficiency in solving the Poisson equation.

In order to verify the enhancement on the projection method from the choice of optimal preconditioner, let us
consider a single vortex flow in a domain

[
−π2 ,

π
2

]3 of three dimensions with the initial velocity U = (u, v, w), which
is given by

u (x, y, z) = −2 cos (x) sin (y) sin (z)

v (x, y, z) = sin (x) cos (y) sin (z)

w (x, y, z) = sin (x) sin (y) cos (z) .

Among many candidates, we choose the SL-BDF [18] method to discretize the Navier-Stokes equations as follows:
3
2U

∗−2Un
d + 1

2U
n−1
d

∆t = ∇ ·
(
∇U∗ + (∇U∗)T

)
+ Fn+1

3
2U

n+1− 3
2U

∗

∆t = −∇
(
pn+1 − pn

)
∇ · Un+1 = 0

.

Here, Ud is the velocity obtained by the semi-Lagrangian approximation. The linear systems associated with
diffusion and the Poisson equation are solved by PCG. For the comparison purpose, we implement several numerical
experiments on a single vortex flow with different preconditioners in solving the Poisson equation.
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Figure 10: Three dimensional fluid simulation in section 6.4. A standard projection method in a grid 2003 is utilized
to solve the fluid flow. The average iteration number (left) in the projection step and the total elapsed time (right,
in hours) are plotted for each preconditioner. PMILU

(
h2
)
outperforms the other conventional preconditioners. Its

average iteration is merely 7.7% of Jacobi, 28% of ILU, 47% of RILU(0.03), and 76% of RILU
(
h2
)
and its total

elapsed time is just 30% of Jacobi, 48% of ILU, 71% of RILU(0.03), and 89% of RILU
(
h2
)
.

Diffusion (s) Poisson equation (s)
Jacobi 36 180
ILU 36 88

RILU(0.03) 36 60
RILU

(
h2
)

36 31
PMILU

(
h2
)

36 25

Table 1: Computation costs (in seconds) of diffusion and the Poisson equation in one iteration of SL-BDF with the
resolution 200× 200× 200

Figure 10 shows the performance of SL-BDF for the single vortex flow when a preconditioner is Jacobi, ILU,
RILU(0.03), and PMILU

(
h2
)
with h = π/200. As we expected, the performance of SL-BDF with PMILU

(
h2
)

preconditioner in solving the Poisson equation outperforms the other methods both in terms of average iteration
numbers (7.7% of Jacobi, 28% of ILU, 47% of RILU(0.03), and 76% of RILU

(
h2
)
) and elapsed times (30% of Jacobi,

48% of ILU, 71% of RILU(0.03), and 89% of RILU
(
h2
)
). Note that there is a discrepancy between the average

iteration numbers and the elapsed times in the improvement of performance. This is due to the fact that the
computational cost of the linear systems for diffusion in SL-BDF is not negligible when the systems become large.
Table 1 shows computational costs of diffusion and the Poisson equation in one iteration for each preconditioner.

7 Conclusion and future work
In this work, we discuss what is an optimal preconditioner in solving the Poisson equation with Neumann boundary
conditions. Only the optimal preconditioner results in condition number O

(
h−1

)
, while the other preconditioners

such as Jacobi and ILU result in O
(
h−2

)
. We reviewed RILU [1, 2] and PMILU [3, 16] preconditioners, and

presented empirical results which show that RILU is optimal only in two dimensions and PMILU is optimal both
in two and three dimensions.

We are not the first to report such empirical results, e.g. Chan et al. [7] and references therein, however, there
is no known rigorous analysis that explains the empirically observed optimality, to the best of our knowledge. We
have endeavored to provide a rigorous analysis that confirms the optimality and managed to prove the optimality
of RILU in the case rectangular domains.
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MILU is well known to be optimal in solving the Poisson equation with Dirichlet boundary conditions and there
have been well established analysis [3, 28, 30] that confirms the optimality. We reviewed in section 5.1 that the
analysis mainly consists of the triangular type inequality (6) and its local and independent application to each grid
cell. In section 5.2, we explained why the conventional analysis fails in the case of Neumann boundary conditions.

The main attribute of our success in the proof is the rectangular inequality in lemma 1. When the triangular
inequality is applied to each grid cell in the conventional analysis, the triangles in the application are edge disjoint
and there is just one way of choosing the weights in the inequality. As explained in section 5.2, the choice is not
successful in dealing with Neumann boundary conditions. However, when the rectangular inequality is applied to
each grid cell, each edge, except on the boundary, is included twice in the inequalities because an edge is adjacent
to two grid cell. With this regard, there are many ways in choosing the weights: any two nonnegative weights are
fine if their sum equals the coefficient of the edge in the residual sum. In the case of rectangular domains, the
weight on the right and top sided is chosen to gradually increase from zero to a number less than one, and the other
weight is then fixed from the constraint on their sum. From these choices, we could prove the optimality of RILU
in rectangular domains. In dealing with general smooth domains and PMILU, we believe that there is a certain
choice of weights to prove the optimalities. Owing to the limitation of time and resource, we confine this work to
RILU in rectangular domains and plan to extend it to RILU and PMILU in smooth domains in near future.
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