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Abstract

We present a new phase-field method for modeling surfaceteaBects on multi-component
immiscible fluid flows. Interfaces between fluids havingeliffnt properties are represented
as transition regions of finite thickness across which trespHield varies continuously. At
each point in the transition region, we define a force denditigh is proportional to the cur-
vature of the interface times a smoothed Dirac delta functide consider a vector valued
phase-field, the velocity, and pressure fields which are rgpedeby multi-component ad-
vective Cahn-Hilliard and modified Navier-Stokes equatiorhe new formulation makes it
possible to model any combination of interfaces without atigfitional decision criteria. It
is general, therefore it can be applied to any number of flardmonents. We give compu-
tational results for the four component fluid flows to ill@ge the properties of the method.
The capabilities of the method are computationally denrated with phase separations
via a spinodal decomposition in a four-component mixturesgure field distribution for
three stationary drops, and the dynamics of two dropleidénanother drop embedded in
the ambient liquid.

Key words. Continuum surface tension, phase-field model, Navier€d@aquation,
multi-component Cahn-Hilliard equation, interfacial $&m, nonlinear multigrid method

1 Introduction

The interfacial hydrodynamics of a mixture of different élsiplays an increasingly
important role in many current scientific and bio-medicalieeering applications

[28]. Examples include extractors, separators, reactprays, polymer blends, and
microfluidic technology [29,30]. A fluid-fluid interface is ia state of tension, as
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though interfaces have an elastic skin, because fluid mieleat or near the inter-
face experience uneven molecular forces of attraction [3d¢ to the inherent non-
linearities, topological changes, and the complexity ailihg with the unknown,
active, and moving surfaces, multiphase flows are chaltengvluch effort has
been put into studying such flows through analysis, asyngstoand numerical
simulation.

There are many ways to characterize and model moving icesfal he two main
approaches to simulating multiphase and multicomponensfaye interface track-
ing and interface capturing. In interface tracking meth@damples include volume-
of-fluid [12,33], which tracks the volume of the fluid in eacllgfront-tracking
[41], immersed boundary [44], and immersed interface [A&yrangian (or semi-
Lagrangian) particles are used to track the interfacesiterface capturing meth-
ods such as level-set [8,32,37,38] and phase-field metl28,45], the interface
is implicitly captured by a contour of a particular scalandtion (for example, a
signed distance function in a level-set method and masseotration in a phase-
field method). Readers can review a recent review paper [@4fiétails of the
two-phase flow models.

However, compared to the large body of research on two-dB#6,12,13,35,36,42]
and three-phase [5,21,23,40] fluid flows, there have beerttearetical and nu-
merical studies of flows containing four (or more) liquid qoonents with a sur-
face tension effect. The basic idea underlying all contmwsurface tension models
is the representation of surface tension as a continuous foer unit volume that
acts in a neighborhood of the interface. Previous methods &affered, however,
from difficulties in modeling more than three component flfiavs with surface
tension. One of the greatest difficulties in modeling foumiscible fluid flows is
modeling surface tension effects.

(b)
Fig. 1. Schematic of domain. (a&); denotes the surface tension coefficient of the interface

I';; of fluids 2; and(2;. (b) Phase specific surface tension coefficient.on interfacesl'»
andI'y3. (c) and (d) are similarly defined.

(d)

In three component fluids [5,21,23,40], the phase speciftom@osition surface
forces are used. We decompose the given physical surfesietecoefficientsy; ;,

of the interfacd’;; between fluid(2;) and fluid;j($2;) (see Fig. 1(a)) into the phase
specific surface tension coefficients o, andos such that:



012 = 01+ 02, 013 = 01 + 03, 093 = 09 + 03. (1)

The decomposition is uniquely defined@s= (o015 — 023 + 013)/2, 02 = (012 +
093 — 013) /2, @ndos = (—o12 + 093 + 013) /2 (See Fig. 1(b), (c), and (d)). Then the
continuous surface tension force is defined as

SF = 23: SF;, = 23: ork(cr)n(cg)d(cg), 2

k=1 k=1

wherer(ci), n(c;), andd(c;) are the total curvature, the unit normal vector, and
the smoothed Dirac delta function of theth fluid interface, respectively, is the
phase variable to be defined.

It has been noted by several authors [5,23] that in the quatgicase, the use of
phase specific decomposition cannot be used. This is betlaeiskecomposition
generates a system of over-determined equations and &satody not exist. In
fact, in [40], “n > 2" only means h = 3". Here n represents the number of
fluid components. For example,qif = 4, then given the physical surface tension
coefficientss;; of the interfacd’;; between fluid: and fluidj, we may consider a
linear system of six equations to determine the four unkrsawn o,, o3, andoy:

012 = 01+ 02, 013 = 01 + 03, 014 = 01 + 04,
093 = 09 + 03, 094 = O + 04, 034 = 03 + 04. (3)

But the above systems of equations are over-determinediensiagtherefore, it is
possible that there is no solution. In order that these @mumpossess a unique
solution, some restrictions must be imposedogn Note that, in general, fon
component immiscible fluid system there are. — 1)/2 possible interfaces and
n(n —1)/2 > n for n > 4. This implies that we have more equations than the
unknowns.

To the author’s knowledge, there are no four (or more) corepofiuid flow con-
tinuum models with surface tension effects. The main objeatf this work is
to develop a generalized continuous surface tension f@GSE) formulation for
phase-field models for multi-component immiscible fluid fpwaving no diffi-
culty with the over-determined system problem. Phase-fiedthods have become
popular tools for physical modeling of multiphase systefos & review of the
development of diffuse-interface models, see [1]). Gdimat@ons of phase-field
models to any number of components without hydrodynamitasartension ef-
fects have been recently introduced and studied in [104115122]. Here, we view
the phase-field model as a computational method. The prdpisese-field model
is a hybrid method which combines a level set type surfacgdarforce formula-
tion and a concentration relaxation by a phase-field model.

The outline of the paper is as follows. In Section 2, we premophase-field model



for four immiscible fluids. In Section 3, we give an efficientdeaccurate numerical
solution. In Section 4, we perform some characteristic misakexperiments for
guaternary fluid flows. In Section 5, conclusions are drawn.

2 A phase-field model for the mixture of four component immisdle fluids

The composition of a quaternary mixture (A, B, C, and D) camiag@ped onto an
equilateral tetrahedron (the Gibbs simplex [34]) whosaers represent a 100%
concentration of A, B, C, or D as shown in Fig. 2(a). Mixtureshwcomponents
lying on planes parallel to the triangl& BC' D, contain the same percentage of
A; those with planes parallel to the triangle®(C' D A, have the same percentage of
B concentration; analogously, for the C and the D concdotiat In Fig. 2, the
mixture at the position marked”contains20% A, 24% B, 48%C and8% D.

b

(b)
Fig. 2. (a) Gibbs tetrahedron. (b) A slice plane paralleh®®BC D triangle.

Letc = (c1, c2, c3,cq4) be the phase variables (i.e. the mole fractionsipB, C,
andD, respectively). Thus, admissible states will belong toGitabs tetrahedron

GT = {CER4

4

i=1

Without loss of generalities, we postulate that the freerggnean be written as
follows

62 4 )

where F(c) = 0.25%%, c2(1 — ¢;)?, € is a positive constant, and is an open
bounded subset @"(n = 2, 3) occupied by the system. The time evolutiorcaé
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