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Abstract

We present a new phase-field method for modeling surface tension effects on multi-component
immiscible fluid flows. Interfaces between fluids having different properties are represented
as transition regions of finite thickness across which the phase-field varies continuously. At
each point in the transition region, we define a force densitywhich is proportional to the cur-
vature of the interface times a smoothed Dirac delta function. We consider a vector valued
phase-field, the velocity, and pressure fields which are governed by multi-component ad-
vective Cahn-Hilliard and modified Navier-Stokes equations. The new formulation makes it
possible to model any combination of interfaces without anyadditional decision criteria. It
is general, therefore it can be applied to any number of fluid components. We give compu-
tational results for the four component fluid flows to illustrate the properties of the method.
The capabilities of the method are computationally demonstrated with phase separations
via a spinodal decomposition in a four-component mixture, pressure field distribution for
three stationary drops, and the dynamics of two droplets inside another drop embedded in
the ambient liquid.

Key words: Continuum surface tension, phase-field model, Navier-Stokes equation,
multi-component Cahn-Hilliard equation, interfacial tension, nonlinear multigrid method

1 Introduction

The interfacial hydrodynamics of a mixture of different fluids plays an increasingly
important role in many current scientific and bio-medical engineering applications
[28]. Examples include extractors, separators, reactors,sprays, polymer blends, and
microfluidic technology [29,30]. A fluid-fluid interface is in a state of tension, as
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though interfaces have an elastic skin, because fluid molecules at or near the inter-
face experience uneven molecular forces of attraction [31]. Due to the inherent non-
linearities, topological changes, and the complexity of dealing with the unknown,
active, and moving surfaces, multiphase flows are challenging. Much effort has
been put into studying such flows through analysis, asymptotics, and numerical
simulation.

There are many ways to characterize and model moving interfaces. The two main
approaches to simulating multiphase and multicomponent flows are interface track-
ing and interface capturing. In interface tracking methods(examples include volume-
of-fluid [12,33], which tracks the volume of the fluid in each cell; front-tracking
[41], immersed boundary [44], and immersed interface [26]), Lagrangian (or semi-
Lagrangian) particles are used to track the interfaces. In interface capturing meth-
ods such as level-set [8,32,37,38] and phase-field methods [9,20,45], the interface
is implicitly captured by a contour of a particular scalar function (for example, a
signed distance function in a level-set method and mass concentration in a phase-
field method). Readers can review a recent review paper [24] for details of the
two-phase flow models.

However, compared to the large body of research on two-phase[2,8,9,12,13,35,36,42]
and three-phase [5,21,23,40] fluid flows, there have been fewtheoretical and nu-
merical studies of flows containing four (or more) liquid components with a sur-
face tension effect. The basic idea underlying all continuum surface tension models
is the representation of surface tension as a continuous force per unit volume that
acts in a neighborhood of the interface. Previous methods have suffered, however,
from difficulties in modeling more than three component fluidflows with surface
tension. One of the greatest difficulties in modeling four immiscible fluid flows is
modeling surface tension effects.
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Fig. 1. Schematic of domain. (a)σij denotes the surface tension coefficient of the interface
Γij of fluidsΩi andΩj. (b) Phase specific surface tension coefficient,σ1, on interfaces,Γ12

andΓ13. (c) and (d) are similarly defined.

In three component fluids [5,21,23,40], the phase specific decomposition surface
forces are used. We decompose the given physical surface tension coefficients,σij ,
of the interfaceΓij between fluidi(Ωi) and fluidj(Ωj) (see Fig. 1(a)) into the phase
specific surface tension coefficientsσ1, σ2, andσ3 such that:
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σ12 = σ1 + σ2, σ13 = σ1 + σ3, σ23 = σ2 + σ3. (1)

The decomposition is uniquely defined asσ1 = (σ12 − σ23 + σ13)/2, σ2 = (σ12 +
σ23 − σ13)/2, andσ3 = (−σ12 + σ23 + σ13)/2 (see Fig. 1(b), (c), and (d)). Then the
continuous surface tension force is defined as

SF =
3

∑

k=1

SFk =
3

∑

k=1

σkκ(ck)n(ck)δ(ck), (2)

whereκ(ck), n(ck), andδ(ck) are the total curvature, the unit normal vector, and
the smoothed Dirac delta function of thek-th fluid interface, respectively.ck is the
phase variable to be defined.

It has been noted by several authors [5,23] that in the quaternary case, the use of
phase specific decomposition cannot be used. This is becausethe decomposition
generates a system of over-determined equations and a solution may not exist. In
fact, in [40], “n > 2” only means “n = 3”. Here n represents the number of
fluid components. For example, ifn = 4, then given the physical surface tension
coefficientsσij of the interfaceΓij between fluidi and fluidj, we may consider a
linear system of six equations to determine the four unknownsσ1, σ2, σ3, andσ4:

σ12 = σ1 + σ2, σ13 = σ1 + σ3, σ14 = σ1 + σ4,

σ23 = σ2 + σ3, σ24 = σ2 + σ4, σ34 = σ3 + σ4. (3)

But the above systems of equations are over-determined equations; therefore, it is
possible that there is no solution. In order that these equations possess a unique
solution, some restrictions must be imposed onσij . Note that, in general, forn
component immiscible fluid system there aren(n − 1)/2 possible interfaces and
n(n − 1)/2 > n for n ≥ 4. This implies that we have more equations than the
unknowns.

To the author’s knowledge, there are no four (or more) component fluid flow con-
tinuum models with surface tension effects. The main objective of this work is
to develop a generalized continuous surface tension force (GCSF) formulation for
phase-field models for multi-component immiscible fluid flows, having no diffi-
culty with the over-determined system problem. Phase-fieldmethods have become
popular tools for physical modeling of multiphase systems (for a review of the
development of diffuse-interface models, see [1]). Generalizations of phase-field
models to any number of components without hydrodynamic surface tension ef-
fects have been recently introduced and studied in [10,11,14,15,22]. Here, we view
the phase-field model as a computational method. The proposed phase-field model
is a hybrid method which combines a level set type surface tension force formula-
tion and a concentration relaxation by a phase-field model.

The outline of the paper is as follows. In Section 2, we propose a phase-field model
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for four immiscible fluids. In Section 3, we give an efficient and accurate numerical
solution. In Section 4, we perform some characteristic numerical experiments for
quaternary fluid flows. In Section 5, conclusions are drawn.

2 A phase-field model for the mixture of four component immiscible fluids

The composition of a quaternary mixture (A, B, C, and D) can bemapped onto an
equilateral tetrahedron (the Gibbs simplex [34]) whose corners represent a 100%
concentration of A, B, C, or D as shown in Fig. 2(a). Mixtures with components
lying on planes parallel to the triangle,∆BCD, contain the same percentage of
A; those with planes parallel to the triangle,∆CDA, have the same percentage of
B concentration; analogously, for the C and the D concentrations. In Fig. 2, the
mixture at the position marked ‘◦’ contains20% A, 24% B, 48%C and8% D.
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Fig. 2. (a) Gibbs tetrahedron. (b) A slice plane parallel to theBCD triangle.

Let c = (c1, c2, c3, c4) be the phase variables (i.e. the mole fractions ofA, B, C,
andD, respectively). Thus, admissible states will belong to theGibbs tetrahedron

GT :=

{

c ∈ R
4

∣

∣

∣

∣

∣

4
∑

i=1

ci = 1, 0 ≤ ci ≤ 1

}

. (4)

Without loss of generalities, we postulate that the free energy can be written as
follows

F =
∫

Ω

[

F (c) +
ǫ2

2

4
∑

i=1

|∇ci|
2

]

dx,

whereF (c) = 0.25
∑

4

i=1
c2

i (1 − ci)
2, ǫ is a positive constant, andΩ is an open

bounded subset ofRn(n = 2, 3) occupied by the system. The time evolution ofc is
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