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In this paper, we present operator splitting methods for solving the phase field crystal 
equation which is a model for the microstructural evolution of two-phase systems on 
atomic length and diffusive time scales. A core idea of the methods is to decompose the 
original equation into linear and nonlinear subequations, in which the linear subequation 
has a closed-form solution in the Fourier space. We apply a nonlinear Newton-type 
iterative method to solve the nonlinear subequation at the implicit time level and thus 
a considerably large time step can be used. By combining these subequations, we achieve 
the first- and second-order accuracy in time. We present numerical experiments to show 
the accuracy and efficiency of the proposed methods.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Material properties at the meso- and macro-scales are to a large extent controlled by complex microstructures exhibiting 
topological defects, such as vacancies, grain boundaries, and dislocations. An understanding of formation and evolution 
of these defects is of great interest, and defects pose significant challenges to modeling and simulation because of the 
complexity they introduce. Recently, a new model called the phase field crystal (PFC) model for simulating defects has been 
proposed by Elder et al. [1,2]. This model describes the microstructure of two-phase systems on atomic length scales but on 
diffusive time scales, leading to significant computational savings compared to molecular dynamics simulations which are 
limited by atomic length scales and femtosecond time scales. In the PFC model, a phase-field formulation is introduced that 
accounts for the periodic structure of a crystal lattice through a free energy functional of Swift–Hohenberg type [3]

E(φ) :=
∫
�

(
1

4
φ4 + 1 − ε

2
φ2 − |∇φ|2 + 1

2
(�φ)2

)
dx, (1)

where φ : � ⊂R
d →R (d = 1, 2, 3) is the density field, ε is a positive constant with physical significance, and ∇ and � are 

the gradient and Laplacian operators, respectively. The PFC equation is derived from the energy functional E(φ) under the 
constraint of mass conservation:

∂φ

∂t
= ∇ · (M(φ)∇μ) , (2)
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where M(φ) > 0 is a mobility function and μ is the chemical potential defined as μ := δE
δφ

= φ3 + (1 − ε)φ + 2�φ + �2φ. 
δE
δφ

denotes the variational derivative of E with respect to φ. We assume that φ, �φ, and μ are periodic on �. Because 
(2) is of gradient type, it is easy to see that the energy functional E(φ) is non-increasing in time. Taking M(φ) = 1 for 
convenience, we obtain the PFC equation

∂φ

∂t
= �(φ3 + (1 − ε)φ + 2�φ + �2φ). (3)

The PFC equation is a sixth-order nonlinear partial differential equation. It is not easy to get an analytic solution in gen-
eral, therefore, accurate and efficient numerical algorithms are essential in the computer simulations. Various computational 
algorithms [1,2,4–8] have been applied to solve the PFC equation numerically. In [1,2], Elder et al. use an explicit Euler 
method which is known to be unstable for time step �t above a threshold proportional to (�x)6 where �x is grid spacing. 
Thus, the explicit Euler method is computationally expensive to evolve large systems.

In [4], Cheng and Warren propose a method which improves the time step restriction considerably larger by splitting the 
linear terms into backward and forward pieces while treating the nonlinear term explicitly. In [5], Backofen et al. present 
a semi-implicit finite element method which is a backward Euler method, whereas the nonlinear term φ3 in the chemical 
potential μ is linearized via (φn+1)3 ≈ 3(φn)2φn+1 − 2(φn)3. In [6], Hu et al. present first-order one-step and second-order 
two-step methods where a considerably large time step can be used by computing the nonlinear term at an implicit time 
level. However, an effective time step becomes smaller than the specified time step, as the authors observed for larger time 
steps.

We here present accurate and efficient operator splitting methods for solving the PFC equation that are first- and second-
order time accurate. Operator splitting schemes have been and continue to be used for many types of evolution equations 
[9–12]. It is easy to construct a first-order solution A(tn+1) of time evolution equation

∂ A

∂t
= f1(A) + f2(A)

by computing

A(tn + �t) ∼= (
S�t

1 ◦ S�t
2

)
A(tn)

where S�t
1 and S�t

2 are the evolution operators for ∂ A
∂t = f1(A) and ∂ A

∂t = f2(A), respectively. Then a second-order scheme 
can be derived simply by symmetrizing the first-order scheme [10]:

A(tn + �t) ∼=
(
S�t/2

1 ◦ S�t
2 ◦ S�t/2

1

)
A(tn).

A core idea of the proposed methods is to decompose the PFC equation into linear and nonlinear subequations, in which the 
linear subequation has a closed-form solution in the Fourier space. We apply a nonlinear Newton-type iterative method to 
solve the nonlinear subequation at the implicit time level and thus a considerably large time step can be used. In particular, 
we combine a half-time linear solver and a second-order nonlinear solver followed by a final half-time linear solver for a 
second-order method.

This paper is organized as follows. In Section 2, we propose new operator splitting methods for the PFC equation. 
Numerical experiments showing the accuracy and efficiency of the proposed methods are presented in Section 3. Finally, 
conclusions are drawn in Section 4.

2. Operator splitting methods for the phase field crystal equation

We consider the PFC equation (3) in two-dimensional space � = [0, L1] × [0, L2]. Let N1 and N2 be positive integers, 
h1 = L1/N1 and h2 = L2/N2 be uniform grid sizes, and �t be the time step size. We denote xl1 = l1h1 and yl2 = l2h2 for 
l1 = 0, 1, . . . , N1 − 1 and l2 = 0, 1, . . . , N2 − 1. Let φn

l1l2
be the approximation of φ(xl1 , yl2 , t

n), where tn = n�t .

For simplicity of notation, we define the “linear operator” L�t as follows

L�t(φ(tn)) := φ(tn + �t), (4)

where φ(tn + �t) is a solution of the linear differential equation

∂φ

∂t
= (1 − ε)�φ + 2�2φ + �3φ (5)

with an initial condition φ(tn). To solve the PFC equation with the periodic boundary condition, we employ the discrete 
Fourier transform φ̂ =F [φ]:

φ̂k1k2 =
N1−1∑ N2−1∑

φl1l2 e
−i

(
xl1 ξk1 +yl2 ξk2

)
, (6)
l1=0 l2=0
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where ξk1 = 2πk1/L1 and ξk2 = 2πk2/L2 for k1 = 0, 1, . . . , N1 − 1 and k2 = 0, 1, . . . , N2 − 1. Then, we have an analytical 
formula for the evolution operator L�t in the discrete Fourier space

L�t(φ) = F−1
[

e A�tF [φ]
]
, (7)

where A(k1, k2) = −(1 −ε) 
(
ξ2

k1
+ ξ2

k2

)
+2 

(
ξ2

k1
+ ξ2

k2

)2 −
(
ξ2

k1
+ ξ2

k2

)3
. We also define the “nonlinear operator” N�t as follows

N�t(φ(tn)) := φ(tn + �t), (8)

where φ(tn + �t) is a solution of the nonlinear differential equation

∂φ

∂t
= �φ3 (9)

with an initial condition φ(tn).
A first-order operator splitting method for the PFC equation can be represented as

φn+1 = (
L�t ◦N1

�t)φn, (10)

where φn ∼= φ(tn) and φn+1 ∼= φ(tn + �t). To solve the evolution operator N1
�t with the first-order accuracy, we apply the 

backward Euler method to Eq. (9) and represent the resulting equation to the decoupling form by introducing the auxiliary 
variable ν as

φn+1 − φn = �t �νn+1, (11)

νn+1 =
(
φn+1

)3
. (12)

Because of the nonlinearity for φn+1, we linearize the nonlinear term at φn,m as(
φn+1

)3 ≈ (
φn,m)3 + 3

(
φn,m)2

(
φn+1 − φn,m

)
(13)

for m = 0, 1, · · · . We then get the nonlinear Newton-type iterative method as[
I −�t �

−3
(
φn,m

)2
I

][
φn,m+1

νn,m+1

]
=

[
φn

−2
(
φn,m

)3

]
, (14)

where φn,0 = φn . We can eliminate φn,m+1 in (14) and obtain the following equation for νn,m+1:

−3�t
(
φn,m)2

�νn,m+1 + νn,m+1 = 3
(
φn,m)2

φn − 2
(
φn,m)3

. (15)

From the numerical solution νn,m+1 of (15), we can obtain

φn,m+1 = φn + �t �νn,m+1. (16)

And we set

φn+1 = φn,m+1 (17)

if a relative l2-norm of the consecutive error 
∥∥φn,m+1−φn,m

∥∥
‖φn,m‖ is less than tol.

In addition, a second-order operator splitting method for the PFC equation can be represented as

φn+1 =
(
L�t/2 ◦N2

�t ◦L�t/2
)

φn. (18)

To solve the evolution operator N2
�t with the second-order accuracy, we apply the Crank–Nicolson method to Eq. (9) and 

represent the resulting equation to the decoupling form by introducing the auxiliary variable ν as

φn+1 − φn = �t �νn+ 1
2 , (19)

νn+ 1
2 =

(
φn+1

)3 + (
φn

)3

2
. (20)

Replacing (φn+1)3 by 
(
φn,m

)3 + 3 
(
φn,m

)2 (
φn+1 − φn,m

)
as in (13) yields[

I −�t �

− 3
2

(
φn,m

)2
I

][
φn,m+1

νn,m+1

]
=

[
φn

− (
φn,m

)3 + 1
2

(
φn

)3

]
(21)

and we also apply nonlinear iterations similar with (15)–(17).
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3. Numerical experiments

In this section, we present examples to numerically demonstrate the accuracy and efficiency of the proposed operator 
splitting (OS) methods compared to the well-known energy stable (ES) methods by Hu et al. [6]. First two numerical exam-
ples show the convergence and effective time of two methods for a one-dimensional test problem. The third example shows 
time evolution of random perturbation in 2D. We then perform a simulation of the growth of a polycrystal in a supercooled 
liquid, which demonstrates the feasibility of the OS method in computing the evolution of large systems.

Here we briefly review the ES methods which will be used for the numerical comparisons. The first-order ES method 
can be summarized as follows:

φn+1 − φn = �t �μn+1, (22)

μn+1 = (φn+1)3 + (1 − ε)φn+1 + 2�φn + �κn+1, (23)

κn+1 = �φn+1. (24)

By applying the linearized nonlinear term (13) to (22)–(24), the following nonlinear iteration is considered,⎡
⎣ I −�t � 0

−3(φn,m)2 − (1 − ε) I −�

−� 0 I

⎤
⎦

⎡
⎣ φn,m+1

μn,m+1

κn,m+1

⎤
⎦ =

⎡
⎣ φn

2�φn − 2(φn,m)3

0

⎤
⎦ . (25)

And the second-order ES method is

φn+1 − φn = �t �μn+ 1
2 , (26)

μn+ 1
2 = 1

4
(φn+1 + φn)((φn+1)2 + (φn)2)

+ 1 − ε

2
(φn+1 + φn) + 3�φn − �φn−1 + �κn+ 1

2 , (27)

κn+ 1
2 = 1

2
(�φn+1 + �φn), (28)

where φ−1 = φ0. For (26)–(28), the following nonlinear iteration is considered,⎡
⎣ I −�t � 0

A21 I −�

− 1
2 � 0 I

⎤
⎦

⎡
⎣ φn,m+1

μn,m+1

κn,m+1

⎤
⎦ =

⎡
⎣ φn

b2

− 1
2 �φn

⎤
⎦ , (29)

where A21 = − 1
4

(
(φn,m)2 + (φn)2

)− 1
2 (1 −ε) and b2 = − 1

4

(
(φn,m)2 + (φn)2

)
φn − 1

2 (1 −ε)φn + 3�φn −�φn−1. One can also 
apply the nonlinear iterations (25) and (29) until a relative l2-norm of the consecutive error of φn,m+1 is less than tol. Then 
let φn+1 to be φn,m+1.

3.1. Numerical convergence with a smooth test function in 1D

We demonstrate the convergence of the OS methods with a numerical solution of the PFC equation with initial condition

φ(x,0) = 0.07 − 0.02 cos

(
2π(x − 12)

32

)
+ 0.02 cos2

(
π(x + 10)

32

)

− 0.01 sin2
(

4πx

32

)
(30)

on a domain � = [0, 32]. The numerical solution is evolved to time T f = 10 with ε = 0.025. The grid size is fixed to h = 1/3
which provides enough spatial accuracy (around 10 digits).

To estimate the convergence rate with respect to a time step �t , simulations are performed by varying the time step 
�t = T f /212, T f /211, . . . , T f . We use the iterative method to solve the discrete nonlinear system (11)–(12) and (19)–(20). 
The stopping criterion for the nonlinear m-iteration is that a relative l2-norm of the consecutive error is less than a tolerance 
(10−10 in this example). The initial guess at each time level is taken from the solution at the previous time level.

The number of m-iterations averaged over the simulation time 0 < t = n�t ≤ T f is shown as a function of time step �t
in Fig. 1. In (14) and (21) for the OS methods, 2–3 iterations were involved in proceeding to the next time level. We believe 
that such a fast iterative convergence can be achieved since the successive iteration (14) is a Newton-type approximation 
of (11) and (12) for the first-order approximation. Likewise, (21) is a Newton-type approximation of (19) and (20) for the 
second-order.

Fig. 2 shows the relative l2-errors at T f = 10 for various time steps �t . Here, the errors are computed by comparison 
with a quadruply over-resolved reference numerical solution. Both OS and ES methods provide the first- and second-order 
accuracy in time; however, the OS methods give two orders of magnitude higher accuracy where both OS and ES methods 
in the convergence region.
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Fig. 1. Number of m-iterations averaged over the simulation time.

Fig. 2. Relative l2-errors at T f = 10 for various time steps with ε = 0.025 and h = 1/3.

3.2. Analysis of effective time step with a smooth test function in 1D

In [4], Cheng and Warren determined an effective time step �teff in the Fourier space and observed that a large time 
step �t does not always translate into a significant amount of system evolution in the PFC equation. Similar time scaling 
effects have been reported also for the Allen–Cahn equation [11,13]. To numerically calculate the effective time step, we 
take the same initial condition (30) as in the previous section on a domain � = [0, 32]. The numerical solution is now 
computed up to time T f = 100 with ε = 0.025 and h = 1/3. The tolerance for the iterative step is set to be 10−10. And we 
take the reference solution with a sufficiently small time step, say �t = T f /212 in the experiments. Fig. 3 shows the time 
evolutions of the total energy with �t = T f /26, T f /24, and T f /22. First-order OS and ES methods are used to generate 
the plots. Using the OS method, the total energy at the same time t are almost the same for different time steps, whereas 
significant differences emerge with larger time steps for the ES method.

To make the comparison quantitatively, we define the effective time teff as shown in Fig. 4,

E�t(n�t) = E ref (teff ),

where E�t is the total energy of the computed solution with a time step �t and we take the reference total energy E ref

from the reference solution.
Fig. 5(a) shows the time dilation ratios R(t) = teff /t using different time steps �t = T f /210, T f /28, . . . , T f /22 for the 

first-order ES and OS methods, respectively. For the first-order ES method, the difference between effective teff and numer-
ical t times becomes bigger and bigger as the time step increases. In this case, the ratio at t = T f is R(T f ) ≈ 1 − 2 · 10−2�t
(see Fig. 5(b)). On the other hand, for the first-order OS method, the effective time teff is almost same as the numerical time 
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Fig. 3. Time evolutions of the total energy with different time steps. First-order OS and ES methods are used to generate the plots.

Fig. 4. Definition of the effective time teff : E�t (n�t) = E ref (teff ).

Fig. 5. Time dilation ratio R(t) = teff /t for 0 ≤ t ≤ T f =100 using different time steps �t = T f /210, T f /28, . . . , T f /22. (a) R(t) for the first-order, (b) 
| R(T f ) − 1 | for the first-order, (c) | R(T f ) − 1 | for the second-order method.

t regardless of time step size and the ratio is R(T f ) ≈ 1 + 4 · 10−5�t . For the second-order ES method, we observe that the 
ratio decreases to R(T f ) ≈ 1 − 1.5 · 10−4(�t)2 (see Fig. 5(c)), but it is still larger than that obtained by the first-order OS 
method. For the second-order OS method, the ratio is R(T f ) ≈ 1 + 4 · 10−7(�t)2.
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Fig. 6. Total energy E(t) of the reference solution and total energy E(n�t) computed by the first-order OS method marked with (·). Four computational 
results closest to the reference energy E(t) at t = 60, 120, 180, 240 are labeled with markers (�, ∗, ◦) and the corresponding density fields φ(n�t) have 
been shown above. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

3.3. Time evolution of random perturbation in 2D

We now perform a 2D simulation of the PFC equation with ε = 0.025 and space grid size h = 1 on a domain � =
[0, 128] × [0, 128]. The initial condition is set to

φ(x, y,0) = 0.07 + 0.07 · rand(x, y),

where rand(x, y) is a randomly chosen number between −1 and 1 but fixed throughout all of the experiments in this 
subsection. The tolerance for the m-iterative steps is set to be tol = 10−8. The simulations are performed by the OS methods 
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Fig. 7. Total energy E(t) of the reference solution and total energy E(n�t) computed by the second-order OS method marked with (·). Four computational 
results closest to the reference energy E(t) at t = 80, 160, 240, 320 are labeled with markers (�, ∗, ◦) and the corresponding density fields φ(n�t) have 
been shown above. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

with different time steps �t = 0.01, 2, 10, and 20 and we consider the numerical solution with �t = 0.01 as the reference 
solution. Figs. 6 and 7 show the time evolutions of the density field φ computed by the first- and second-order methods, 
respectively. In the figure, each rows show the computational results with fixed �t and snapshots in each column are 
chosen to match the total energy of the first row (reference solution) as closely as possible. In each snapshots, the red, 
green, and blue regions indicate φ = 0.14, 0.07, and 0, respectively, and the numerical time and total energy are shown on 
the top of the subplots.

In [6], the authors observed that the numerical times required to reach the same energy levels using different time 
steps are dramatically different for the first-order ES method. The times for the second-order ES method are matched much 



90 H.G. Lee et al. / Journal of Computational Physics 299 (2015) 82–91
Fig. 8. Heterogeneous nucleation of five crystallites in a supercooled liquid. The snapshots show the density field φ at different times. The parameters are 
φ̄ = 0.285, ε = 0.25, �t = 1, and h = 1. The second-order OS method is used in the calculation. (For interpretation of the references to color in this figure, 
the reader is referred to the web version of this article.)

better than the first-order computation, but a significant difference still exists. From Figs. 6 and 7, we can see that the 
density fields obtained at the closest energy levels using different time steps are qualitatively similar for both first- and 
second-order OS methods, and, in particular, the numerical times required to reach the closest energy levels using different 
time steps are nearly matched for the second-order OS method.

3.4. Crystal growth in a supercooled liquid in 2D

We now use the second-order OS method to simulate the growth of a polycrystal in a supercooled liquid with ε = 0.25
on the computational domain � = [0, 800] × [0, 800]. The initial configuration of φ shown in Fig. 8(a) consists of five small 
square patches in a homogeneous environment φ̄ = 0.285. We use the following expression to define the density field φ in 
the patch with amplitude A and frequency mode q,

φ(xl, yl) = φ̄ + A
[

cos(qyl) cos(
√

3qxl) − 0.5 cos(2qyl)
]
,

where xl and yl define a local system of Cartesian coordinates. We choose the parameters for five patches as (A, q) =
(0.45, q0), (0.45, 0.25q0), (0.45, 4q0), (0.9, q0), (0.1, q0) where q0 = 0.1213π . The lower left and the upper right patch 
represent lower and higher frequency anomalies, respectively, compared to the center patch. The upper left and the lower 
right patch have the same frequency mode but the amplitudes are bigger and smaller, respectively.

For the numerical experiment, we also set �t = 1 and h = 1 and the tolerance for the m-iteration is set to be tol = 10−8. 
Figs. 8(b)–(f) show the snapshots of the density field φ at different times. In each figure, the red, green, and blue regions 
indicate φ = 0.6715, 0, and −0.4746, respectively. The initial configuration evolves into five crystallites, each with a different 
orientation and a well-defined liquid/crystal interface. As we can see in the figures, the speed of the moving interfaces 
strongly depends on the patch frequency and amplitude. The frequency and amplitude of the center patch seems to be 
optimal in the sense that the moving speed of the patch is highest while the higher frequency patch moves with the 
slowest speed. As time evolves the crystallites impinge upon one another and form grain boundaries.

4. Conclusions

In this paper, we presented the first- and second-order operator splitting (OS) methods for solving the PFC equation. 
A core idea of the methods was to decompose the original equation into linear and nonlinear subequations, in which the 
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linear subequation has a closed-form solution in the Fourier space. We applied a nonlinear Newton-type iterative method 
to solve the nonlinear subequation at the implicit time level. As a result, only 2–3 iterations were involved in proceeding 
to the next time level. To numerically demonstrate the accuracy and efficiency of the proposed OS methods, we compared 
with the well-known energy stable (ES) methods. And we observed that the OS methods are more accurate than the ES 
methods. We also demonstrated the feasibility of the OS methods for the simulation of physical phenomena such as crystal 
growth.
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