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The phase-field crystal equation derived from the Swift–Hohenberg energy functional is a 
sixth order nonlinear equation. We propose numerical methods based on a new convex 
splitting for the phase-field crystal equation. The first order convex splitting method based 
on the proposed splitting is unconditionally gradient stable, which means that the discrete 
energy is non-increasing for any time step. The second order scheme is unconditionally 
weakly energy stable, which means that the discrete energy is bounded by its initial 
value for any time step. We prove mass conservation, unique solvability, energy stability, 
and the order of truncation error for the proposed methods. Numerical experiments are 
presented to show the accuracy and stability of the proposed splitting methods compared 
to the existing other splitting methods. Numerical tests indicate that the proposed convex 
splitting is a good choice for numerical methods of the phase-field crystal equation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Phase-field models have emerged as a powerful approach for modeling and predicting mesoscale morphological and 
microstructural evolution in materials. Many of such models try to minimize an energy functional E(φ) associated with a 
phase field function φ(x, t). In general, the phase field equation is modeled by gradient flows for E(φ),

∂φ

∂t
= −grad E(φ), (1)

where the symbol “grad” denotes the gradient in the sense of the Gâteaux derivative. For example, the Allen–Cahn and 
Cahn–Hilliard equations are gradient flows of the Ginzburg–Landau free energy [1,2]. It is worth to note that the energy 
functional E(φ) is non-increasing in time since (1) is of gradient type.

The main difficulty developing a numerical method for phase field equations is a severe stability restriction on the time 
step due to nonlinear terms and high order differential ones. There have been many numerical attempts to overcome the 
stability restriction. The convex splitting (CS) methods have been revitalized by the work of Eyre [3], which are originally 
attributed to Elliott and Stuart [4]. Recently, many researchers [5–11] have developed noteworthy schemes by using CS 
idea where an energy functional E(φ) is split into two convex functionals (so called contractive and expansive parts), 
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E(φ) = Ec(φ) −Ee(φ). The energy of the first order numerical solution by a convex splitting method monotonically decreases 
when Ec(φ) is numerically treated implicitly and Ee(φ) explicitly, i.e.,

φn+1 − φn

Δt
= −grad Ec(φn+1) + grad Ee(φn). (2)

The convex splitting methods allusively indicate that we might have many kinds of energy splittings.
The phase-field crystal (PFC) model, which is the main subject of this paper, has been suggested to study the microstruc-

tural evolution of two-phase systems on atomic length and diffusive time scales. Elder et al. [12,13] introduce the PFC model 
to minimize the Swift–Hohenberg free energy functional [14],

E(φ) =
∫
�

(
1

4
φ4 + 1

2
φ

(
−ε + (1 + �)2

)
φ

)
dx, (3)

where φ is the density field and ε is a positive bifurcation constant with physical significance. Here, � is the Laplacian 
operator and (1 + �)2 = 1 + 2� + �2. For the interested readers, we refer to [14] for a detailed physical meaning of the 
functional. In particular, (1 + �)2 of free energy is from fitting to an experimental structure factor [13]. The PFC equation 
arising from E(φ) under the constraint of mass conservation can be written as follows:

∂φ

∂t
= �μ = �

(
φ3 − εφ + (1 + �)2φ

)
, (4)

where μ is the chemical potential defined as μ = δE
δφ

and δ
δφ

denotes the variational derivative with respect to φ. Since it 
is originally modeled to produce the periodic states [12], we assume that the density field φ is periodic on �.

Some researchers try to use a convex splitting method based on the following form of the Swift–Hohenberg energy 
functional,

E(φ) =
∫
�

(
1

4
φ4 + 1 − ε

2
φ2 − |∇φ|2 + 1

2
(�φ)2

)
dx (5)

which is identical to (3) and can be easily split into two convex functionals,

Ec
D F (φ) =

∫
�

(
1

4
φ4 + 1 − ε

2
φ2 + 1

2
(�φ)2

)
dx, Ee

D F (φ) =
∫
�

|∇φ|2dx, (6)

with ε ≤ 1. Here, the diffusion (DF) term is used for the expansive part. Wise et al. [5] propose a first order and uncondi-
tionally gradient stable scheme based on the convex splitting (6),

φn+1 − φn

Δt
= �μn+1, (7)

μn+1 =
(
φn+1

)3 + (1 − ε)φn+1 + �2φn+1 + 2�φn, (8)

which we are going to refer to as CSD F (1). Hu et al. [6] propose a second order convex splitting method, which is weakly 
energy stable. The second order method can be written as

φn+1 − φn

Δt
= �μn+ 1

2 , (9)

μn+ 1
2 = 	

(
φn+1

)
+ 1 − ε

2

(
φn+1 + φn

)
+ 1

2
�2

(
φn+1 + φn

)
+ �

(
3φn − φn−1

)
, (10)

where 	 
(
φn+1

) = 1
4

(
φn+1 + φn

)((
φn+1

)2 + (
φn

)2
)

and φ−1 = φ0, which we are going to refer to as CSD F (2). We can give 
an account for this method as a multi-step implicit–explicit method [15]. The implicit part is designed with a secant-type 
difference method like as in [16] and explicit part is from a second order Adams–Bashford method. The secant-type differ-
ence is second order accurate and plays an important role for the proof of the energy stability.

In order to solve the PFC equation accurately and efficiently, we propose new numerical methods based on the following 
convex splitting

Ec
B F (φ) =

∫
�

(

c(φ) + 1

2
φ (1 + �)2 φ

)
dx, Ee

B F (φ) =
∫
�


e(φ)dx, (11)

where 
c(φ) = 1
4 φ4 and 
e(φ) = ε

2 φ2. Note that (11) has a different form to (6) but it is closely related to the original 
form (3). Here, the bifurcation (BF) term is used for the expansive part. We can easily show that (11) is a convex splitting 
and the detailed proof is presented in Appendix A.
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The proposed energy splitting is also applicable to the frameworks of first and second order convex splitting methods 
[5,6]. Applying these frameworks, we propose the first and second order convex splitting methods and completely prove 
mass conservation, unique solvability, energy stability, and the order of truncation error for the proposed methods. Moreover, 
we try to numerically demonstrate that (11) is a good choice in the convex splitting strategy for accurate numerical methods.

For interested readers to the second order methods with the energy stability, there have been notable studies for solving 
the PFC equation. Vignal et al. [7] propose a nonlinear, second order time accurate, and unconditionally gradient stable 
method by using the Crank–Nicolson method and the additional stabilization approach proposed in [8] for the Cahn–Hilliard 
equation. The accuracy and stability of their method depend on the value of the stabilization parameter. The second order 
method in [7] can be considered as the method based on the convex splitting (11). Glasner et al. [9] propose a linear, 
second order time accurate, and unconditionally gradient stable method based on a linear convex splitting. In addition, 
Gomez et al. [17] propose a nonlinear, second order time accurate, and unconditionally gradient stable method with the 
modified Crank–Nicolson method, which is not based on the convex splitting.

This paper is organized as follows. In Sections 2 and 3, we propose the first and second convex splitting methods, 
respectively, for the PFC equation with detailed proofs for the mass conservation, unique solvability, and energy stability. 
In Section 4, a one-dimensional numerical experiment is presented to show the accuracy and stability of the proposed 
methods. In addition, we describe nonlinear iterative methods with numerical implementations. In Section 5, we numerically 
demonstrate the order of accuracy with a two-dimensional example. We also simulate two- and three-dimensional examples 
to show the applicability of the numerical method. Finally, conclusions are drawn in Section 6. In Appendix B, we show that 
the error estimate in time for the first and second order methods. In addition, we provide a comparison of our second order 
method with the method of [7] in Appendix C.

2. Numerical analysis of the first order numerical method, CSB F (1)

In this section, we propose a first order numerical method based on the convex splitting (11) with detailed proofs for 
the mass conservation, unconditional unique solvability, and unconditional gradient stability. The first order convex splitting 
method, referred to as CSB F (1), is written as

φn+1 − φn

Δt
= �

((
φn+1

)3 + (1 + �)2 φn+1 − εφn
)

. (12)

For simple description for the proof, we rewrite (12) as

φn+1 − φn = Δt�μn+1, (13)

μn+1 =
(
φn+1

)3 + (1 + �)2 φn+1 − εφn. (14)

Theorem 1. The scheme (13) is mass conserving.

Proof. The mass conservation of (13) follows from(
φn+1 − φn,1

)
L2

= Δt
(
�μn+1,1

)
L2

= −Δt
(
∇μn+1,∇1

)
L2

= 0, (15)

where (φ,ψ)L2 = ∫
�

φψdx denotes the L2 inner product. Here, the integration by parts formula can be derived for φ and ψ
satisfying the periodic boundary conditions,

(φ,�ψ)L2 = − (∇φ,∇ψ)L2 . (16)

Thus, if (13) has a solution φn+1, then it must be 
(
φn+1,1

)
L2 = (

φn,1
)

L2 .

We introduce the useful lemma, which will be used for the proof of the solvability for both of the first and second order 
methods.

Lemma 2. We consider the Hilbert space H0 as a zero average space. For given v1, v2 ∈ H0 , we define the inner product of dual space 
by (v1, v2)H−1 = (∇ϕv1 ,∇ϕv2

)
L2 , where ϕv1 , ϕv2 ∈ H0 are the solutions of the periodic boundary value problem −�ϕv1 = v1 and 

−�ϕv2 = v2 in �. From the above definition, if ψ ∈ H0 , then we have the identity

(−�φ,ψ)H−1 = (φ,ψ)L2 . (17)

Theorem 3. The scheme (13) is uniquely solvable for any time step Δt > 0.
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Proof. We consider the following functional on H̃ = {
φ | (φ,1)L2 = (

φn,1
)

L2

}
:

G (φ) = 1

2

∥∥φ − φn
∥∥2

H−1 + ΔtEc (φ) − Δt

(
δ

δφ
Ee

(
φn) , φ

)
L2

. (18)

It may be shown that φn+1 ∈ H̃ is the unique minimizer of G if and only if it solves, for any ψ ∈ H0,

dG

ds
(φ + sψ)

∣∣∣∣
s=0

= (
φ − φn,ψ

)
H−1 + Δt

(
δ

δφ
Ec (φ) ,ψ

)
L2

− Δt

(
δ

δφ
Ee

(
φn) ,ψ

)
L2

=
(

φ − φn − Δt�

(
δ

δφ
Ec (φ) − δ

δφ
Ee

(
φn)) ,ψ

)
H−1

= 0,

(19)

because it is clear that the functional G is strictly convex by

d2G

ds2 (φ + sψ)

∣∣∣∣
s=0

= 1

2
‖ψ‖2

H−1 + Δt

2

(
δ2

δφ2
Ec (φ)ψ,ψ

)
L2

≥ 0. (20)

Therefore, (19) is true for any ψ ∈ H0 if and only if the given equation holds

φn+1 − φn

Δt
= �

(
δ

δφ
Ec

(
φn+1

)
− δ

δφ
Ee

(
φn)) . (21)

Hence, minimizing the strictly convex functional (18) is equivalent to solving (12) (or (13)).

Before proving the energy stability, we present two useful lemmas. For the simplicity, we define time difference operators 
as �φn � = φn+1 − φn and 

�



(
φn

)� = 

(
φn+1

) − 

(
φn

)
.

Lemma 4. Suppose that φ , ψ are sufficiently regular and 
 (φ) is two times continuously differentiable. Consider the canonical convex 
splitting of 
 (φ) into 
 (φ) = 
c (φ) − 
e (φ), i.e., both functions 
c (φ) and 
e (φ) are convex functions, then


(φ) − 
(ψ) ≤ (

 ′

c(φ) − 
 ′
e(ψ)

)
(φ − ψ). (22)

Proof. The analogous proof could be found in [5], however we introduce it for a self-contained description. Because both 

c and 
e are convex, we have


c(φ) − 
c(ψ) ≤ 
 ′
c(φ)(φ − ψ), (23)


e(φ) − 
e(ψ) ≥ 
 ′
e(ψ)(φ − ψ). (24)

By using these inequalities, we have


(φ) − 
(ψ) = (
c(φ) − 
c(ψ)) − (
e(φ) − 
e(ψ))

≤ 
 ′
c(φ)(φ − ψ) − 
 ′

e(ψ)(φ − ψ)

= (

 ′

c(φ) − 
 ′
e(ψ)

)
(φ − ψ).

(25)

As the application of Lemma 4, we have the following lemma for the proof of the energy stability for the first order 
method.

Lemma 5. Consider an energy function 
 (φ) = 1
4 φ4 − ε

2 φ2 and a canonical convex splitting into 
c (φ) = 1
4 φ4 and 
e (φ) = ε

2 φ2 . 
Since both 
c (φ) and 
e (φ) are convex, we have�

1

4

(
φn)4 − ε

2

(
φn)2

�
≤

((
φn+1

)3 − εφn
) �φn � . (26)

Now, we prove the energy stability of the first order method (13).

Theorem 6. Suppose that φn+1 is a solution to (13). The convex splitting scheme (13) is unconditionally energy stable, meaning that 
for any time step size Δt > 0,

E(φn+1) ≤ E(φn). (27)
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Proof. Based on Lemma 5, the energy difference is

�E(φn)� =
∫
�

(�
1

4

(
φn)4 − ε

2

(
φn)2

�
+ 1

2

�
φn (1 + �)2 φn

	)
dx

≤
∫
�

(((
φn+1

)3 − εφn
) �φn � + 1

2

�
φn (1 + �)2 φn

	)
dx.

(28)

By (14), we have 
(
φn+1

)3 − εφn = μn+1 − (1 + �)2 φn+1 and (28) follows as

�E(φn)� ≤
∫
�

((
μn+1 − (1 + �)2φn+1

) �φn � + 1

2

�
φn (1 + �)2 φn

	)
dx

=
∫
�

(
μn+1 �φn � − �φn � (1 + �)2φn+1 + 1

2

�
φn (1 + �)2 φn

	)
dx.

(29)

We now proceed to expand the different terms on the right-hand side of (29). Using (13), the first term in (29) is manipu-
lated by∫

�

μn+1 �φn � dx = Δt

∫
�

μn+1�μn+1dx = −Δt

∫
�

∣∣∣∇μn+1
∣∣∣2

dx. (30)

Next, for the second term in (29), we have∫
�

�φn � (1 + �)2 φn+1dx =
∫
�

�φn � (1 + �)2
(

φn+1 + φn

2
+ �φn �

2

)
dx

= 1

2

∫
�

�
φn(1 + �)2φn

	
dx + 1

2

∫
�

�φn � (1 + �)2 �φn � dx

= 1

2

∫
�

�
φn (1 + �)2 φn

	
dx + 1

2

∫
�

(
(1 + �) �φn �)2

dx.

(31)

Here, for the second and third lines in (31), we use the identity∫
�

φ(1 + �)2ψdx =
∫
�

(1 + �)φ(1 + �)ψdx =
∫
�

ψ(1 + �)2φdx. (32)

Rearranging (31), we have∫
�

(
− �φn � (1 + �)2 φn+1 + 1

2

�
φn (1 + �)2 φn

	)
dx = −1

2

∫
�

(
(1 + �) �φn �)2

dx. (33)

Applying (30) and (33) to (29), we have

�E(φn)� ≤ −Δt

∫
�

∣∣∣∇μn+1
∣∣∣2

dx − 1

2

∫
�

(
(1 + �) �φn �)2

dx ≤ 0 (34)

which proves the energy dissipation for any time step Δt > 0.

3. Numerical analysis of the second order method, CSB F (2)

Now, we propose a second order numerical method based on the convex splitting (11) with detailed proofs for the 
mass conservation, unconditional unique solvability, and unconditional (weakly) gradient stability. The second order convex 
splitting method, referred to as CSB F (2), is written as

φn+1 − φn

Δt
= �

(
	

(
φn+1

)
+ 1

2
(1 + �)2

(
φn+1 + φn

)
− ε

2

(
3φn − φn−1

))
, (35)
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where a secant-type difference 	 
(
φn+1

)
is defined by

	
(
φn+1

)
= 
c

(
φn+1

) − 
c
(
φn

)
φn+1 − φn

= 1

4

(
φn+1 + φn

)((
φn+1

)2 + (
φn)2

)
(36)

for given φn and an initial setting φ−1 = φ0. The first time step reduction does not affect the overall second order accuracy 
of the scheme as the numerical results will be shown. If one could like to avoid this reduction, refer to [10] and consider 
the their suggestion.

For simple description for the proof, (35) can be written as

φn+1 − φn = Δt�μn+ 1
2 , (37)

μn+ 1
2 = 	

(
φn+1

)
+ 1

2
(1 + �)2

(
φn+1 + φn

)
− ε

2

(
3φn − φn−1

)
, (38)

where 	 
(
φn+1

)
is defined as in (36) and φ−1 = φ0.

Theorem 7. The scheme (37) is mass conserving, i.e., 
(
φn+1,1

)
L2 = (

φn,1
)

L2 .

Proof. We skip the proof since it is similar to Theorem 1.

Theorem 8. The scheme (37) is uniquely solvable for any time step Δt > 0.

Proof. We consider the following functional on H̃ = {
φ | (φ,1)L2 = (

φn,1
)

L2

}
:

G (φ) = 1

2

∥∥φ − φn
∥∥2

H−1 + Δt Q (φ) + Δt

(
1

2
(1 + �)2 φn − ε

2

(
3φn − φn−1

)
, φ

)
L2

, (39)

where

Q (φ) = 1

4

(
φ4

4
+ φ3

3
φn + φ2

2

(
φn)2 + φ

(
φn)3

,1
)

L2
+ 1

4
‖(1 + �)φ‖2

L2 . (40)

The functional Q is convex because ‖(1 + �)φ‖2
L2 is convex and

d2

d2φ

[
1

4

(
φ4

4
+ φ3

3
φn + φ2

2

(
φn)2 + φ

(
φn)3

)]
= 1

2
φ2 + 1

4

(
φ + φn)2 ≥ 0. (41)

Also note that by construction

d

dφ

[
1

4

(
φ4

4
+ φ3

3
φn + φ2

2

(
φn)2 + φ

(
φn)3

)]
= 1

4

(
φ + φn)(

φ2 + (
φn)2

)
= 	(φ) . (42)

Now, it may be shown that φn+1 ∈ H̃ is the unique minimizer of G if and only if it solves, for any ψ ∈ H0,

dG

ds
(φ + sψ)

∣∣∣∣
s=0

= (
φ − φn,ψ

)
H−1 + Δt

(
	(φ) + 1

2
(1 + �)2 φ,ψ

)
L2

+ Δt

(
1

2
(1 + �)2 φn − ε

2

(
3φn − φn−1

)
,ψ

)
L2

= (
φ − φn − Δt�μ,ψ

)
H−1 = 0,

(43)

where

μ = 	(φ) + 1

2
(1 + �)2 (

φ + φn) − ε

2

(
3φn − φn−1

)
, (44)

because it is clear that the functional G is strictly convex by

d2G

ds2 (φ + sψ)

∣∣∣∣
s=0

= 1

2
‖ψ‖2

H−1 + Δt

2

((
1

2
φ2 + 1

4

(
φ + φn)2

)
ψ + 1

4
(1 + �)2 ψ,ψ

)
L2

≥ 0. (45)

Therefore, (43) is true for any ψ ∈ H if and only if the given equation holds

φn+1 − φn

Δt
= �

(
	

(
φn+1

)
+ 1

2
(1 + �)2

(
φn+1 + φn

)
− ε

2

(
3φn − φn−1

))
. (46)

Hence, minimizing the strictly convex function (39) is equivalent to solving (35) (or (37)).
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Theorem 9. Suppose that φn+1 is a solution to (37). The second order scheme (37) is unconditionally (weakly) gradient stable, meaning 
that for any time step size Δt > 0 and n ≥ 1,

E
(
φn) ≤ E

(
φ0

)
. (47)

Proof. Suppose that n ≥ 1. Taking the inner product of μn+ 1
2 with (37) and using integration by parts, we obtain

−Δt

∫
�

∣∣∣∇μn+ 1
2

∣∣∣2
dx = E(φn+1) − E(φn)

+ ε

2

∫
�

(
φn+1

)2
dx − ε

2

∫
�

(
φn)2

dx − ε

2

∫
�

�φn � (
3φn − φn−1

)
dx.

(48)

With the identity∫
�

�φn � (
3φn − φn−1

)
dx =

∫
�

�φn � (
φn+1 − φn

)
dx

−
∫
�

�φn � (
φn+1 + φn

)
dx +

∫
�

�φn � (
φn − φn−1

)
dx,

(49)

we have

E
(
φn+1

)
− E

(
φn) = −Δt

∫
�

∣∣∣∇μn+ 1
2

∣∣∣2
dx − ε

2

∫
�

�φn �2 dx − ε

2

∫
�

�φn � �
φn−1

	
dx. (50)

Using Cauchy’s inequality, we have the following inequality

−
∫
�

�φn � �
φn−1

	
dx ≤ 1

2

∫
�

�φn �2 dx + 1

2

∫
�

�
φn−1

	2
dx. (51)

Combining (50) and (51), we have

E
(
φn+1

)
− E

(
φn) ≤ −Δt

∫
�

∣∣∣∇μn+ 1
2

∣∣∣2
dx − ε

4

∫
�

�φn �2 dx + ε

4

∫
�

�
φn−1

	2
dx. (52)

Now, summing (52), we have

E
(
φn+1

)
− E

(
φ1

)
=

n∑
k=1

(
E(φk+1) − E(φk)

)

≤
n∑

k=1

⎛⎝−Δt

∫
�

∣∣∣∇μk+ 1
2

∣∣∣2
dx − ε

4

∫
�

�
φk

	2
dx + ε

4

∫
�

�
φk−1

	2
dx

⎞⎠
= −Δt

n∑
k=1

∫
�

∣∣∣∇μk+ 1
2

∣∣∣2
dx − ε

4

∫
�

�φn �2 dx + ε

4

∫
�

�
φ0

	2
dx.

(53)

For the case of n = 0, using φ−1 = φ0, the last term on the right-hand-side of (50) disappears to yield

E
(
φ1

)
− E

(
φ0

)
= −Δt

∫
�

∣∣∣∇μ
1
2

∣∣∣2
dx − ε

2

∫
�

�
φ0

	2
dx. (54)

Adding (54) to (53) yields

E
(
φn+1

)
− E

(
φ0

)
≤ −Δt

n∑
k=0

∫
�

∣∣∣∇μk+ 1
2

∣∣∣2
dx − ε

4

∫
�

�φn �2 dx − ε

4

∫
�

�
φ0

	2
dx ≤ 0, (55)

and it means that the weakly gradient stability is proven.
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Fig. 1. Time evolution of solution for the PFC equation in 1D.

Remark 10. An alternative approach to the question of energy stability is to introduce a modified energy functional Ẽ (φ)

as

Ẽ
(
φn+1

)
= E

(
φn+1

)
+ ε

4

∫
�

�φn �2 dx. (56)

(52) shows that this energy is non-increasing from one time step to the next. In other words, the second order scheme 
(37) is strongly energy stable with respect to Ẽ (φ). Meanwhile, Ẽ (φ) is consistent with E (φ) as Δt tend to zero. For more 
details, please refer to [6,10].

4. Convergence and stability test of the numerical methods in 1D

In this section, we present one dimensional examples to numerically demonstrate the accuracy, stability, and efficiency 
of the proposed methods CSB F (1) and CSB F (2). Because proposed numerical methods are nonlinear, we need a nonlinear 
iterative method. We present the detailed numerical implementations for first and second order methods in Sections 4.2
and 4.4, respectively. A numerical tolerance tol is defined as 10−9 unless mentioned otherwise.

We begin by showing the solution evolution of the PFC equation with the periodic boundary condition and the following 
initial condition

φ(x,0) = 0.07 − 0.02 cos

(
π(x − 12)

16

)
+ 0.02 cos2

(
π(x + 10)

32

)
− 0.01 cos2

(πx

8

)
(57)

on a domain � = [0, 32]. For the numerical simulations, ε = 0.2 is used and the grid size is fixed to Δx = 1/2 which 
provides enough spatial accuracy. The numerical solution is evolved to time T f = 128.

Fig. 1 displays the time evolution of solution with a small enough time step Δt = T f /214 using the second order method 
CSB F (2). At the early stage, solutions are rearranged and adjusted to find their desired mode with low magnitude. After 
finishing the adjusting, the solution grows up and approaches to the steady-state solution. This solution will be used as the 
reference solution to estimate the convergence rate.

Fig. 2 displays the time evolution of free energy E (φ) corresponding the solution in Fig. 1. The property of the energy 
dissipation is valid and one steep energy transition is observed. When the solution is arranged with low magnitude at the 
early stage, energy is slightly declined. After that energy is steeply declined because of growing the solution. Finally, energy 
is sluggishly decreasing since the solution is near at the steady state.
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Fig. 2. Energy evolution for the PFC equation in 1D.

Fig. 3. Relative l2-errors at t = 48 with respect to the grid size for various time steps in 1D.

4.1. Spatial accuracy test of CSB F (1) and CSB F (2)

Since we assume the periodic boundary condition and focus only on the time marching method, we use the Fourier 
spectral method for the spatial discretization. And, the fast Fourier transform with the MATLAB program is applied for the 
whole numerical simulations.

We demonstrate the numerical convergence in space with the same conditions and parameters in the beginning of this 
section. To estimate the convergence rate with respect to a grid size, simulations are performed by varying the grid points 
16, 24, 32, . . . , 128. Furthermore, we calculate them with various time steps.

Fig. 3 shows the relative l2-errors with respect to various grid size. Here, the errors are computed by comparison with 
the reference numerical solution obtained using the second order method CSB F (2) with a time step Δt = T f /214 and 256
grid points. As can be seen, the spatial convergence of the results under the grid refinements is evident. Furthermore, it 
shows that 64 grid points (Δx = 1/2) provide the sufficient spatial accuracy.

4.2. Numerical implementation of the first order method, CSB F (1)

For complete description of the numerical solver, let us recall the first order numerical method CSB F (1)

φn+1 − φn

Δt
= �

((
φn+1

)3 + (1 + �)2 φn+1 − εφn
)

. (58)

Since (58) is nonlinear, we introduce the Newton-type iterative method, which is a well-known nonlinear solver. Using the 
linearization of the nonlinear term(

φn,m+1
)3 = 3

(
φn,m)2

φn,m+1 − 2
(
φn,m)3

, (59)

we develop a Newton-type iterative method as[
I − Δt�

((
3φn,m)2 + (1 + �)2

)]
φn,m+1 = φn − εΔt�φn − 2Δt�

(
φn,m)3

. (60)
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Fig. 4. Number of nonlinear and BICG iterations for the first order method.

The initial guess is set as φn,0 = φn and the nonlinear iteration (60) is recursively applied until a relative l2-norm of the 
consecutive error of φn,m+1 is less than tolerance tol, i.e., 

∥∥φn,m+1−φn,m
∥∥

2‖φn,m‖2
< tol. Then let φn+1 be φn,m+1.

In addition, we need to solve the linear system (60) for each m-step. Since (60) is not symmetry, we use the bi-conjugate 
gradient (BICG) method in this study. The stopping criterion for the BICG iteration is that a relative l2-norm of the residual 
error is less than a tol. Moreover, to accelerate the convergence speed of the BICG algorithm, we suggest a pre-conditioner

M = I − Δt�
(

Ā I + (1 + �)2
)

, (61)

where Ā is the average value of 3 
(
φn,m

)2.
We note that the above description for the numerical implementation is not specified in one dimensional case. We 

also remark that spectral methods are used in all of numerical computations. Simulations are executed by using MATLAB 
program with a fast Fourier transform. Even in two and three dimensions, the computational speed is reasonably fast.

To show the robustness of nonlinear solver and the necessity of pre-conditioner, we count the number of both iterations 
and display the average number with respect to the various time step Δt = T f /212, T f /211, . . . , T f /23. The initial state and 
other parameters are identical to those in the beginning of this section except the tolerance tol = 10−8. The relatively small 
tolerance is because of the convergence issue of BICG when we use the large time step without the pre-conditioner.

The number of nonlinear iterations averaged over the simulation time 0 < t = nΔt ≤ T f is shown as a function of time 
step Δt in Fig. 4 (a). On average, 2–4 iterations were involved in proceeding to the next time step. We can explain that 
such a fast iterative convergence can be achieved since the successive iterations are Newton-type iterative methods. On the 
other hand, the number of BICG iterations averaged over the simulation time is shown as a function of time step Δt in 
Fig. 4 (b). In this case, we regard the number of BICG iteration of one time step as the averaged number of BICG iteration 
in the nonlinear iterations for one time step. As shown in the figure, the BICG iterations are remarkably reduced with the 
pre-conditioner.

4.3. Comparison between CSB F (1) and CSD F (1)

Now, we compare the proposed first order scheme CSB F (1) to other well-known convex splitting method CSD F (1) using 
the numerical convergence. We demonstrate the numerical convergence with the same conditions and parameters in the 
beginning of this section. To estimate the convergence rate with respect to a time step Δt , simulations are performed by 
varying the time step Δt = T f /212, T f /211, . . . , T f /23.

Fig. 5 shows the relative l2-errors with respect to various time steps. Here, the errors are computed by comparison with 
a quadruply over-resolved reference numerical solution obtained using the second order method CSB F (2). It is observed that 
both schemes give desired first order accuracy in time.

Fig. 6 shows the time evolutions of the free energy functional with Δt = 1/2, 1/23, and 1/25. Using the proposed 
method, CSB F (1), the free energy functional at the same time t is almost similar for the different time steps, whereas 
significant difference emerges with larger time steps for CSD F (1).

4.4. Numerical implementation of the second order method, CSB F (2)

Numerical solvers for CSB F (2) are similar to those for CSB F (1) in Section 4.2, so that we simply describe the derivation 
of the iterative method for the second order method CSB F (2)

φn+1 − φn

Δt
= �

(
	

(
φn+1

)
+ 1

2
(1 + �)2

(
φn+1 + φn

)
− ε

2

(
3φn − φn−1

))
, (62)
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Fig. 5. Relative l2-errors of the computed solutions at t = 48 for various time steps Δt in 1D.

Fig. 6. Time evolutions of the free energy functional with different time steps.

where 	 
(
φn+1

) = 1
4

(
φn+1 + φn

) (
(φn+1)2 + (φn)2

)
and φ−1 = φ0. Because (62) is also nonlinear, we need a nonlinear itera-

tive solver. Applying the linearization, we have

	
(
φn,m+1

)
= 	′ (φn,m)(

φn,m+1 − φn,m
)

+ 	
(
φn,m)

= 	′ (φn,m)
φn,m+1 + R

(
φn,m)

,

(63)

where

	′ (φn,m) = 1

4

(
3
(
φn,m)2 + 2φnφn,m + (

φn)2
)

, (64)

R
(
φn,m) = −1

4

(
2
(
φn,m)3 + (

φn,m)2
φn − (

φn)3
)

. (65)

Using this linearization (63), we develop the Newton-type iterative method[
I − Δt�

(
	′ (φn,m) + 1

2
(1 + �)2

)]
φn,m+1

= φn + Δt�

(
R

(
φn,m) + 1

2
(1 + �)2φn − ε

2
(3φn − φn−1)

)
.

(66)

The initial guess for nonlinear solver is set as φn,0 = φn and, if a consecutive error of φn,m+1 approaches to zero, we have a 
solution φn+1 = φn,m+1. For (66), we apply a pre-conditioner

M = I − Δt�

(
Ā I + 1

2
(1 + �)2

)
, (67)

where Ā is the average value of 	′ (φn,m
)
. Numerical implementations and stopping criterions are same with those of the 

first order scheme in Section 4.2.
Fig. 7 shows the nonlinear and BICG iterations with respect to the time step and the results are similar with those of 

the first order method. The initial state and other parameters are identical to those of the Section 4.2. Only 2–4 iterations 
are needed to proceed to the next time step and the BICG iterations are remarkably reduced by using the pre-conditioner.
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Fig. 7. Number of nonlinear and BICG iterations for the second order method.

Fig. 8. Relative l2-errors of the computed solutions at t = 48 for various time steps Δt in 1D.

Fig. 9. Time evolutions of the free energy functional with different time steps.

4.5. Comparison between CSB F (2) and CSD F (2)

We compare the proposed second order scheme, CSB F (2), to other convex splitting method, CSD F (2), using the same 
example setting in the previous section.

Fig. 8 shows the relative l2-errors with various time steps. Here, the errors are computed by comparison with a quadruply 
over-resolved reference numerical solution obtained using CSB F (2). It is observed that all schemes give desired second order 
accuracy in time.

Fig. 9 shows the time evolutions of the free energy functional with Δt = 2, 1/2, and 1/23, using second order methods. In 
the case of second order methods, we can observe the time re-scaling effect when we use the existing second order method 
CSD F (2) and a pretty large time step Δt = 2. However, the proposed second order method CSB F (2) gives a reasonable result 
with the same time step.
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Fig. 10. Numerical dissipation of first order methods with different time steps.

Fig. 11. Numerical dissipation of second order methods with different time steps.

4.6. Numerical dissipation

Authors in [18] introduce the numerical dissipation by defining the numerical residual terms and it can be a measure-
ment for comparing the numerical methods. We define numerical dissipation as follows:

NDn+p = −E
(
φn+1

) − E
(
φn

)
Δt

− ∥∥∇μn+p
∥∥2

, (68)

where p = 1 and 1
2 for the first and second order scheme, respectively. It can be motivated from a continuous aspect of the 

energy decreasing property, ∂tE(φ) = − ‖∇μ‖2. In the case of NDn+p ≥ 0, the scheme introduces numerical dissipation, on 
the other hand, the numerical source appears if NDn+p ≤ 0.

Fig. 10 displays the numerical dissipation of first order methods with Δt = 1/2, 1/23, and 1/25, where the numerical 
dissipation appears near the energy transition. (See Fig. 6.) In addition, the positiveness of numerical dissipation over the 
whole time explains the unconditionally gradient stable.

Fig. 11 displays the numerical dissipation of second order methods with Δt = 2, 1/2, and 1/23, where the numerical 
dissipation appears near the energy transition. (See Fig. 9.) In both results of the first and second order methods, we can 
see that the numerical dissipations of proposed methods are one order of magnitude less than those of the counterparts.

Fig. 12 shows the infinite norm error for the numerical dissipation in one dimensions with various times steps Δt =
T f /212, T f /211, . . . , T f /28. It is observed that all convex splitting methods give desired order of accuracy for the numerical 
dissipation.

5. Numerical simulations in 2D and 3D

First, we present a two dimensional test to numerically demonstrate the numerical convergence in time, comparing the 
other convex splitting method. Next, we apply two and three dimensional examples for the hexagonal state which is to 
simulate the growth of a polycrystal in a supercooled liquid. A tolerance tol is defined as 10−9 in all remaining simulations.

5.1. Numerical convergence test with smooth initial data in 2D

We demonstrate the numerical convergence of the convex splitting methods for solving the PFC equation with the 
periodic boundary condition with the following initial condition
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Fig. 12. Maximum norm of the numerical dissipation over 0 ≤ t ≤ T , ‖ND (φ (t))‖∞ for various time steps �t in 1D.

Fig. 13. Solution evolution of the PFC equation with smooth initial condition in 2D. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

φ(x, y,0) = 0.07 − 0.02 cos

(
2π(x − 12)

32

)
sin

(
2π(y − 1)

32

)
+ 0.02 cos2

(
π(x + 10)

32

)
cos2

(
π(y + 3)

32

)
− 0.01 sin2

(
4πx

32

)
sin2

(
4π(y − 6)

32

) (69)

on the domain � = [0, 32] × [0, 32]. For the numerical simulations, ε = 0.2 is used and the grid size is fixed to Δx = Δy =
1/2 which provides enough spatial accuracy. The numerical solution is evolved to time T f = 256.

Fig. 13 displays the time evolution of solution with a small enough time step Δt = T f /215 using the second order 
method CSB F (2). In each figure, the red, green, and blue regions indicate φ = 0.5680, 0.0717, and −0.4245, respectively. 
A similar but more complicated phenomenon is observed, comparing to one dimensional case. The solution grows up after 
the adjustment at the early stage. Before fully developed, the solutions try to change the morphological pattern. Finally, the 
solution approaches to the strip shape solution. This steady-state solution is well matched with the phase diagram in [12], 
which indicates that the solution has a stripe shape if the mean density is 0.07 and ε = 0.2. This solution will be used as 
the reference solution to estimate the convergence rate.

Fig. 14 displays the time evolution of free energy functional E (φ) corresponding the solution evolution in Fig. 13. It is 
clearly shown that the energy is non-increasing. The energy has a relatively long and steep transition after the first stage 
where the energy is slightly decreasing at the early time. We can notice that the slope of energy transition is changed when 
the solution rearranges its morphology. At the final stage, the energy monotonously decreases and the solution reaches to 
the steady-state solution.

Fig. 15 shows the relative l2-errors for the numerical solutions in two dimensions with various time steps Δt =
T f /213, T f /212, . . . , T f /24. Here, the errors are computed by comparison with a quadruply over-resolved reference nu-
merical solution obtained using CSB F (2). It is observed that all convex splitting methods give desired order of accuracy 
in time. However, the proposed methods CSB F (1) and CSB F (2) give one order of magnitude higher accuracy compared to 
CSD F (1) and CSD F (2), where the methods are in convergence regions.

5.2. Crystal growth simulation in 2D

We simulate the growth and interaction of five crystallites, each with a different magnitude and frequency. The initial 
configuration of φ shown in Fig. 16 consists of five small square patches in a homogeneous environment φ̄ = 0.285 on 
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Fig. 14. Energy evolution for the PFC equation in 2D.

Fig. 15. Relative l2-errors of first and second order methods at t = 48 for various time steps Δt in 2D.

a large domain � = [0, 800] × [0, 800]. We use the following expression to define the density field φ in the patch with 
amplitude A and frequency mode q,

φ(xl, yl) = φ̄ + A
[

cos(qyl) cos(
√

3qxl) − 0.5 cos(2qyl)
]
, (70)

where xl and yl define a local system of cartesian coordinates. We choose the parameters for five patches as (A, q) =
(0.45, q0), (0.45, 0.25q0), (0.45, 4q0), (0.9, q0), (0.1, q0) where q0 = 0.1213π . The lower left and the upper right patch rep-
resent lower and higher frequency anomalies, respectively, compared to the center patch. The upper left and the lower right 
patches have the same frequency mode but the amplitudes are bigger and smaller, respectively. For the numerical exper-
iment, we use the second order method CSB F (2) and set ε = 0.25, Δt = 1 and Δx = Δy = 1 with the periodic boundary 
condition.

Fig. 16 shows the snapshots of the density field φ at different times. In each figure, the red, green, and blue regions 
indicate φ = 0.6403, 0.0841, and −0.4721, respectively. The initial configuration evolves into five crystallites and each has 
a different orientation and a well-defined liquid/crystal interface. The time for developing small crystallite depends on the 
frequency and amplitude of patches. After a patch is changed into a small hexagonal pattern, the interface expands. As time 
evolves the crystallites impinge upon one another and form grain boundaries. Similar computation results can be found 
in [19].

Fig. 17 displays the time evolution of the energy functional E (φ) corresponding the solution evolution in Fig. 16. It is 
clearly shown that the energy is non-increasing in time and it means that the numerical result is energy stable. As shown in 
the figure, the rapid decreasing of energy is observed when the solution struggles to evolve into small hexagonal patterns. 
After that, expanding the interface, the energy decreases gently. Finally, the solution approaches to the steady-state solution 
when crystallites cover the overall domain. For this two dimensional simulation, the whole evolution requires 1.05 hours 
using the MATLAB 8.3 on a computer with 2 Xeon 5570 CPUs and 64 GB memory.
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Fig. 16. Heterogeneous nucleation of five crystallites in a supercooled liquid in 2D. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

Fig. 17. Energy evolution for the PFC equation in 2D.

5.3. Crystal growth simulation in 3D

We simulate the growth and interaction of two crystallites that originate from two nucleation sites in three dimen-
sions. The computational domain is � = [0, 128]3, and we assume periodic boundary conditions in all directions. For this 
calculation, we use the second order method CSB F (2) and we employ ε = 0.25, a uniform mesh Δx = Δy = Δz = 1, and 
Δt = 1.

Fig. 18 shows the numerical evolution of crystal growth at different times. The initial configuration is generated as fol-
lows. We set a randomly perturbed constant (liquid) state φ(x, y, z, 0) = 0.285 + 0.1 · rand(x, y, z) and let it evolve for long 
times to have a periodic lattice (solid) state. Here, rand(x, y, z) is a randomly chosen number between −1 and 1. We extract 
two pieces of the numerical solution at t = 1000 with hexahedric shapes, and superpose them to a constant density field 
φ = 0.285. The first row in Fig. 18 shows isosurfaces of the density field, while the second row presents a slice of the solu-
tion across the indicated plane. In each slice, the red, green, and blue regions indicate φ = 0.6749, −0.0346, and −0.7441, 
respectively. The solution evolution is similar to two dimensional case. The interface expands until the crystallites overspread 
the whole domain. Similar computation results can be found in [17].
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Fig. 18. Crystal growth in a supercooled liquid in 3D. First row shows isosurfaces of the solution, while second row presents a slice of the solution across a 
plane. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 19. Energy evolution for the PFC equation in 3D.

Fig. 19 displays the time evolution of the energy functional E(φ) corresponding the solution evolution of Fig. 18. It is 
clearly shown that the energy is non-increasing in time and it means that the numerical result is energy stable. The energy 
evolution is almost same with the two dimensional case. The difference is the shorter energy transition when the energy is 
rapidly decreasing at the first stage. The reason is from the different initial condition, used the small hexahedric patch with 
the well-defined interface. Consequentially, this saves the time to develop the optimal solution profile at the early stage. For 
this three dimensional simulation, the whole evolution requires 3.31 hours under the same computer in Section 5.2.

6. Conclusions

We proposed first and second order numerical methods based on a new convex splitting of the Swift–Hohenberg energy 
functional for the phase-field crystal equation. The Swift–Hohenberg energy functional, having a nonlinear and high order 
diffusion energies, might allow for the other choice in terms of the convex splitting. The convex splitting, which is intro-
duced in this paper, is different form of the existing energy splitting but is close to the original form of the Swift–Hohenberg 
energy functional. It was motivated to compare the numerical performances consisting the accuracy and energy evolution. 
In addition, we completely proved the unconditional gradient stability of the first order convex splitting method. Also, we 
certified the weakly energy stability of the proposed second order convex splitting method. Furthermore, we established the 
mass conservation, unconditional unique solvability, and error estimate in time for both proposed methods. Numerical ex-
periments were presented to show the accuracy, efficiency, and stability of the proposed splitting methods compared to the 
existing other splitting methods. Numerical tests indicate that the convex splitting methods of the proposed energy splitting 
give a reasonable result comparing those of the existing energy splitting. Therefore, the proposed methods are reasonable 
choices for the numerical methods of the phase-field crystal equation.
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Appendix A. A convex splitting of the energy functional

In this appendix, we prove that the energy splitting (11) is a convex splitting.

Theorem 11. Suppose that φ is sufficiently regular and the energy splitting E (φ) = Ec (φ) − Ee (φ) is

Ec(φ) =
∫
�

(
1

4
φ4 + 1

2
φ (1 + �)2 φ

)
dx, Ee(φ) =

∫
�

ε

2
φ2dx. (71)

Then the gradients of the respective energies are δ
δφ
Ec (φ) = φ3 + (1 + �)2 φ and δ

δφ
Ee (φ) = εφ . In addition, both functional Ec (φ)

and Ee (φ) are convex.

Proof. Suppose that ψ and �ψ are sufficiently regular and 
∫
�

ψdx = 0. For Ec (φ),

Ec (φ + sψ) =Ec (φ) + s

∫
�

(
φ3 + (1 + �)2 φ

)
ψdx

+ 1

2
s2

∫
�

(
3φ2ψ2 + ψ (1 + �)2 ψ

)
dx + O

(
s3

)
.

(72)

Calculating the variation of Ec (φ) shows

dEc

ds
(φ + sψ)

∣∣∣∣
s=0

=
∫
�

(
φ3 + (1 + �)2 φ

)
ψdx, (73)

and the gradient formula follows as δ
δφ
Ec (φ) = φ3 + (1 + �)2 φ. A calculation of the second variation reveals

d2Ec

ds2
(φ + sψ)

∣∣∣∣
s=0

=
∫
�

(
3φ2ψ2 + ((1 + �)ψ)2

)
dx ≥ 0, (74)

which proves that Ec (φ) is convex. For Ee (φ),

Ee (φ + sψ) = Ee (φ) + εs

∫
�

φψdx + ε

2
s2

∫
�

ψ2dx. (75)

Calculating the variation gives

dEe

ds
(φ + sψ)

∣∣∣∣
s=0

= ε

∫
�

φψdx, (76)

and the gradient formula follows as δ
δφ
Ee (φ) = εφ. A calculation of the second variation reveals

d2Ee

ds2
(φ + sψ)

∣∣∣∣
s=0

= ε

∫
�

ψ2dx ≥ 0, (77)

which proves that Ee (φ) is convex.

Appendix B. Error estimate

In this appendix, we describe the error estimate in time for both the first and second order schemes. The existence 
and uniqueness of a smooth solution to the PFC equation (4) may be established. Furthermore, the gradient stability will 
give the uniformly pointwise boundedness of the numerical solutions. For more mathematical background, we refer to [5]. 
Therefore, for the proof of the error estimate, we assume that the pointwise boundedness of the numerical solution. We 
begin by introducing the following estimate showing control of the diffusion term for the proof.
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Lemma 12. Suppose that φ and �φ are sufficiently regular. For 0 < α < 1,

‖�φ‖2 ≤ 1 + α

4α2 (1 − α)
‖φ‖2 + α

(1 − α)2
‖∇ (1 + �)φ‖2 . (78)

Proof. Using the Cauchy’s inequality, for α > 0,

2‖�φ‖2 = −2 (∇φ,∇ (�φ)) ≤ 1

α
‖∇φ‖2 + α ‖∇ (�φ)‖2 . (79)

Subtracting 2α ‖�φ‖2, we have

(2 − 2α)‖�φ‖2 ≤
(

1

α
− α

)
‖∇φ‖2 + α ‖∇φ‖2 − 2α ‖�φ‖2 + α ‖∇ (�φ)‖2

= 1 − α2

α
‖∇φ‖2 − α

(
(1 + �)2 φ,�φ

)
= 1 − α2

α
‖∇φ‖2 + α ‖∇ (1 + �)φ‖2 .

(80)

Again, using the Cauchy’s inequality, we have the estimate

‖∇φ‖2 = − (φ,�φ) ≤ 1

4α
‖φ‖2 + α ‖�φ‖2 . (81)

Putting the two estimate (80) and (81) together, we find

(2 − 2α)‖�φ‖2 ≤ 1 − α2

α

(
1

4α
‖φ‖2 + α ‖�φ‖2

)
+ α ‖∇ (1 + �)φ‖2

= 1 − α2

4α2
‖φ‖2 +

(
1 − α2

)
‖�φ‖2 + α ‖∇ (1 + �)φ‖2 .

(82)

For 0 < α < 1, equivalently,

(1 − α)2 ‖�φ‖2 ≤ 1 − α2

4α2
‖φ‖2 + α ‖∇ (1 + �)φ‖2 , (83)

and the desired result follows.

We denote the smooth solution of PFC equation by �, and we establish an error estimate in time of the first order 
method for the semi-discrete approximation to �.

Theorem 13. Given smooth initial data � (x,0), suppose the unique and smooth solution for (4) is given by �(x, t) for 0 < t ≤ T , for 
some T < ∞. Denote �n = � (x,nΔt) and en = �n − φn, where φn is n-th solution of (13) with φ0 = �0 . Then, with N = T /Δt,∥∥∥eN

∥∥∥ ≤ CΔt, (84)

provided Δt is sufficiently small, for some C > 0 that is independent of Δt.

Proof. The continuous function � solves the discrete equations

�n+1 − �n = Δt�Mn+1 + Δtτn+1, (85)

Mn+1 =
(
�n+1

)3 − ε�n + (1 + �)2 �n+1, (86)

where τn+1 is the local truncation error, which satisfies∥∥∥τn+1
∥∥∥ ≤ M1Δt (87)

for some M1 ≥ 0 depending only on T . Subtracting (13) from (85) yields

en+1 − en = Δt�
(

Mn+1 − μn+1
)

+ Δtτn+1. (88)



538 J. Shin et al. / Journal of Computational Physics 327 (2016) 519–542
Multiplying by 2en+1, integrating over �, and applying Green’s second identity, we have∥∥∥en+1
∥∥∥2 − ∥∥en

∥∥2 +
∥∥∥en+1 − en

∥∥∥2

= 2Δt
(

Mn+1 − μn+1,�en+1
)

+ 2Δt
(
τn+1, en+1

)
= 2Δt

((
�n+1

)3 −
(
φn+1

)3
,�en+1

)
− 2Δtε

(
en,�en+1

)
+ 2Δt

(
(1 + �)2 en+1,�en+1

)
+ 2Δt

(
τn+1, en+1

)
.

(89)

Dropping the nonnegative term 
∥∥en+1 − en

∥∥2
and applying the integration by parts as(

(1 + �)2 en+1,�en+1
)

= −
∥∥∥∇ (1 + �) en+1

∥∥∥2
, (90)

we have∥∥∥en+1
∥∥∥2 − ∥∥en

∥∥2 ≤ 2Δt

((
�n+1

)3 −
(
φn+1

)3
,�en+1

)
− 2Δtε

(
en,�en+1

)
− 2Δt

∥∥∥∇ (1 + �) en+1
∥∥∥2 + 2Δt

(
τn+1, en+1

)
.

(91)

Using the Cauchy’s inequality and the pointwise boundedness of both φn+1 and �n+1, we have the following estimate

2

((
�n+1

)3 −
(
φn+1

)3
,�en+1

)
≤

∥∥∥∥(
�n+1

)3 −
(
φn+1

)3
∥∥∥∥2

+
∥∥∥�en+1

∥∥∥2

≤ C1

∥∥∥en+1
∥∥∥2 +

∥∥∥�en+1
∥∥∥2

,

(92)

where C1 is independent of Δt . Two more applications of Cauchy’s inequality yield

−2ε
(

en,�en+1
)

≤ ε2
∥∥en

∥∥2 +
∥∥∥�en+1

∥∥∥2
(93)

and

2
(
τn+1, en+1

)
≤

∥∥∥τn+1
∥∥∥2 +

∥∥∥en+1
∥∥∥2 ≤ M2Δt2 +

∥∥∥en+1
∥∥∥2

, (94)

where M2 = M2
1. Putting these together yields∥∥∥en+1

∥∥∥2 − ∥∥en
∥∥2 ≤ Δt (C1 + 1)

∥∥∥en+1
∥∥∥2 + 2Δt

∥∥∥�en+1
∥∥∥2 + Δtε2

∥∥en
∥∥2

− 2Δt
∥∥∥∇ (1 + �) en+1

∥∥∥2 + M2Δt3.

(95)

Using Lemma 12 with α = 1
3 , we obtain∥∥∥en+1

∥∥∥2 − ∥∥en
∥∥2 ≤ ΔtC2

∥∥∥en+1
∥∥∥2 + Δtε2

∥∥en
∥∥2 − 1

2
Δt

∥∥∥∇ (1 + �) en+1
∥∥∥2 + M2Δt3

≤ ΔtC2

∥∥∥en+1
∥∥∥2 + Δtε2

∥∥en
∥∥2 + M2Δt3,

(96)

where C2 = C1 + 10. Summing over n and using e0 = 0, we obtain∥∥∥eN
∥∥∥2 =

N−1∑
n=0

(∥∥∥en+1
∥∥∥2 − ∥∥en

∥∥2
)

≤ ΔtC2

N∑
n=1

∥∥en
∥∥2 + Δtε2

N−1∑
n=1

∥∥en
∥∥2 + Δt2M2T .

(97)

After manipulating, for sufficiently small Δt < 1/C2, we have∥∥∥eN
∥∥∥2 ≤ Δt

(
C2 + ε2

)
1 − ΔtC2

N−1∑ ∥∥en
∥∥2 + M2T

1 − ΔtC2
Δt2. (98)
n=1
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The discrete Gronwall inequality guarantees that∥∥∥eN
∥∥∥2 ≤ M2T

1 − ΔtC2

(
1 + Δt

(
C2 + ε2

)
1 − ΔtC2

)N−1

Δt2. (99)

The coefficient

M2T

1 − ΔtC2

(
1 + Δt

(
C2 + ε2

)
1 − ΔtC2

)N−1

(100)

is bounded by a positive constant that is dependent on T . This proves the theorem.

In next theorem, we establish an error estimate in time of the second order method.

Theorem 14. Given smooth initial data � (x,0), suppose the unique and smooth solution for (4) is given by � (x, t) for 0 < t ≤ T , for 
some T < ∞. Denote �n = � (x,nΔt) and en = �n − φn, where φn is n-th solution of (37) with φ0 = �0 . We assume that∥∥∥e1

∥∥∥ ≤ M0Δt2. (101)

Then, where N = T /Δt,∥∥∥eN
∥∥∥ ≤ CΔt2, (102)

provided Δt is sufficiently small, for some C > 0 that is independent of Δt.

Proof. The continuous function � solves the discrete equations

�n+1 − �n = Δt�Mn+ 1
2 + Δtτn+ 1

2 , (103)

Mn+ 1
2 = 	

(
�n+1

)
+ 1

2
(1 + �)2

(
�n+1 + �n

)
− ε

2

(
3�n − �n−1

)
, (104)

where

	
(
�n+1

)
= 1

4

(
�n+1 + �n

)((
�n+1

)2 + (
�n)2

)
(105)

and τn+ 1
2 is the local truncation error, which satisfies∥∥∥τn+ 1

2

∥∥∥ ≤ M1Δt2 (106)

for some M1 ≥ 0 depending only on T . Subtracting (37) from (103) yields

en+1 − en = Δt�
(

Mn+ 1
2 − μn+ 1

2

)
+ Δtτn+ 1

2 . (107)

Multiplying by 2en+ 1
2 = en+1 + en , integrating over �, and applying Green’s second identity, we have∥∥∥en+1

∥∥∥2 − ∥∥en
∥∥2 = 2Δt

(
Mn+ 1

2 − μn+ 1
2 ,�en+ 1

2

)
+ 2Δt

(
τn+ 1

2 , en+ 1
2

)
= 2Δt

(
	

(
�n+1

)
− 	

(
φn+1

)
,�en+ 1

2

)
+ 2Δt

(
(1 + �)2 en+ 1

2 ,�en+ 1
2

)
− Δtε

(
3en − en−1,�en+ 1

2

)
+ 2Δt

(
τn+ 1

2 , en+ 1
2

)
.

(108)

Applying the integration by parts, we have∥∥∥en+1
∥∥∥2 − ∥∥en

∥∥2 = 2Δt
(
	

(
�n+1

)
− 	

(
φn+1

)
,�en+ 1

2

)
− 2Δt

∥∥∥∇ (1 + �) en+ 1
2

∥∥∥2

− Δtε
(

3en − en−1,�en+ 1
2

)
+ 2Δt

(
τn+ 1

2 , en+ 1
2

)
.

(109)

Using the Cauchy’s inequality and the pointwise boundedness of both φn+1 and �n+1, we have the following estimate

2
(
	

(
�n+1

)
− 	

(
φn+1

)
,�en+ 1

2

)
≤

∥∥∥	
(
�n+1

)
− 	

(
φn+1

)∥∥∥2 +
∥∥∥�en+ 1

2

∥∥∥2

≤ 2C1

∥∥∥en+1
∥∥∥2 + 2C2

∥∥en
∥∥2 +

∥∥∥�en+ 1
2

∥∥∥2
,

(110)
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where C1 and C2 are independent of Δt . Two more applications of Cauchy’s inequality yield

−ε
(

3en − en−1,�en+ 1
2

)
= −3ε

(
en,�en+ 1

2

)
+ ε

(
en−1,�en+ 1

2

)
≤ 3ε

(
6ε

∥∥en
∥∥2 + 1

6ε

∥∥∥�en+ 1
2

∥∥∥2
)

+ ε

(
2ε

∥∥∥en−1
∥∥∥2 + 1

2ε

∥∥∥�en+ 1
2

∥∥∥2
)

= 18ε2
∥∥en

∥∥2 + 2ε2
∥∥∥en−1

∥∥∥2 +
∥∥∥�en+ 1

2

∥∥∥2

(111)

and

2
(
τn+ 1

2 , en+ 1
2

)
≤ M2Δt4 +

∥∥∥en+ 1
2

∥∥∥2
, (112)

where M2 = M2
1. Putting these together yields∥∥∥en+1

∥∥∥2 − ∥∥en
∥∥2 ≤ 2ΔtC1

∥∥∥en+1
∥∥∥2 + 2Δt

(
C2 + 9ε2

)∥∥en
∥∥2 + 2Δtε2

∥∥∥en−1
∥∥∥2

+ 2Δt
∥∥∥�en+ 1

2

∥∥∥2 − 2Δt
∥∥∥∇ (1 + �) en+ 1

2

∥∥∥2 + Δt
∥∥∥en+ 1

2

∥∥∥2 + M2Δt5.

(113)

Using Lemma 12 with α = 1
3 and applying Cauchy’s inequality, we obtain

2
∥∥∥�en+ 1

2

∥∥∥2 − 2
∥∥∥∇ (1 + �) en+ 1

2

∥∥∥ +
∥∥∥en+ 1

2

∥∥∥2

≤ 10
∥∥∥en+ 1

2

∥∥∥2 − 1

2

∥∥∥∇ (1 + �) en+ 1
2

∥∥∥2

≤ 5
∥∥en

∥∥2 + 5
∥∥∥en+1

∥∥∥2
.

(114)

Putting these again, we have∥∥∥en+1
∥∥∥2 − ∥∥en

∥∥2 ≤ ΔtC3

∥∥∥en+1
∥∥∥2 + ΔtC4

∥∥en
∥∥2 + 2Δtε2

∥∥∥en−1
∥∥∥2 + M2Δt5, (115)

where C3 = 2C1 + 5 and C4 = 2C2 + 18ε2 + 5. Summing and using e0 = 0, we obtain∥∥∥eN
∥∥∥2 =

N−1∑
n=1

(∥∥∥en+1
∥∥∥2 − ∥∥en

∥∥2
)

+
∥∥∥e1

∥∥∥2

≤ ΔtC3

N∑
n=2

∥∥en
∥∥2 + ΔtC4

N−1∑
n=1

∥∥en
∥∥2 + 2Δtε2

N−2∑
n=0

∥∥en
∥∥2 + Δt4M3 (T ,Δt)

= ΔtC3

∥∥∥eN
∥∥∥2 + ΔtC5

N−1∑
n=1

∥∥en
∥∥2 − ΔtC3

∥∥∥e1
∥∥∥2 − 2Δtε2

∥∥∥eN−1
∥∥∥2 + Δt4M3 (T ,Δt)

≤ ΔtC3

∥∥∥eN
∥∥∥2 + ΔtC5

N−1∑
n=1

∥∥en
∥∥2 + Δt4M3 (T ,Δt) ,

(116)

where C5 = C3 + C4 + 2ε2 and M3 (T ,Δt) = M2 (T − Δt) + M2
0. Manipulating, we have

∥∥∥eN
∥∥∥2 ≤ ΔtC5

1 − ΔtC3

N−1∑
n=1

∥∥en
∥∥2 + M3 (T ,Δt)

1 − ΔtC3
Δt4. (117)

For sufficiently small Δt < 1/C3, the discrete Gronwall inequality guarantees that∥∥∥eN
∥∥∥2 ≤ M3 (T ,Δt)

1 − ΔtC3

(
1 + ΔtC5

1 − ΔtC3

)N−1

Δt4. (118)

The coefficient

M3 (T ,Δt)

1 − ΔtC3

(
1 + ΔtC5

1 − ΔtC3

)N−1

(119)

is bounded by a positive constant that is dependent on T . This proves the theorem.



J. Shin et al. / Journal of Computational Physics 327 (2016) 519–542 541
Fig. 20. Relative l2-errors at t = 48 for various time steps �t and stabilization parameters α in 1D.

Appendix C. Comparison with Vignal’s scheme

Vignal et al. [7] propose a gradient stable and second order method by using the Crank–Nicolson approach and additional 
stabilization. Here, we briefly summarize a second order accurate method of [7] which will be used for the numerical 
comparisons.

φn+1 − φn = Δt�μn+ 1
2 , (120)

μn+ 1
2 = �

(
φn+1

)
+ 1

2
(1 + �)2

(
φn+1 + φn

)
− αΔt�

(
φn+1 − φn

)
,

where

�
(
φn+1

)
= −1

2

(
φn+1

)3 + 3

2

(
φn+1

)2
φn − ε

2
φn+1 − ε

2
φn (121)

and α is the stabilization parameter to guarantee the stability.
Now, we compare the second order scheme (120) to CSB F (2) using the numerical error. We demonstrate the numerical 

test with the same conditions and parameters in Section 4. To estimate the relative error with respect to a time step Δt
and a stabilization parameter α, simulations are performed by varying the time step Δt = T f /212, T f /211, . . . , T f /23 and 
the stabilization parameter α = 1/2, 1/21.5, 1/22, . . . , 1/212.

Fig. 20 shows the relative l2-errors with respect to various time steps and alpha parameters. Here, the errors are com-
puted by comparison with a quadruply over-resolved reference numerical solution obtained using Vignal’s scheme with 
α = 1/28. The dashed line in Fig. 20(b) indicates the corresponding parameter α which is used in Fig. 20(a). The results are 
displayed only when the numerical evolution is stable at all times using a time step Δt . It is worth to note that large sta-
bilization parameter α is needed to guarantee the stability. Note that α = αn is variable at time and it is defined implicitly 
in [7], however, we use the constant α for the simple comparison.
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