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Highlights

• We present temporally first- and second-order accurate methods for the MPFC equation.
• The unconditional stability of the proposed methods is analytically proven.
• The proposed methods represent a good balance between accuracy and energy stability.

Abstract

The phase field crystal (PFC) model was extended to the modified phase field crystal (MPFC) model, which is a sixth-order
nonlinear damped wave equation, to include not only diffusive dynamics but also elastic interactions. In this paper, we present
temporally first- and second-order accurate methods for the MPFC equation, which are based on an appropriate splitting of the
energy for the PFC equation. And we use the Fourier spectral method for the spatial discretization. The first- and second-order
methods are shown analytically to be unconditionally stable with respect to the energy and pseudoenergy of the MPFC equation,
respectively. Numerical experiments are presented demonstrating the accuracy and energy stability of the proposed methods.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Material properties are controlled by complex microstructures exhibiting topological defects, such as vacancies,
grain oundaries, and dislocations. One of models for simulating these defects is the phase field crystal (PFC) equation
proposed by Elder et al. [1,2]. The PFC equation is derived from a free energy functional of Swift–Hohenberg type [3]

E(φ) :=

∫
Ω

(
1
4
φ4

+
1
2
φ
(
−ϵ + (1 + ∆)2)φ) dx, (1)
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where Ω is a domain in Rd (d = 1, 2, 3), φ is the atomic density field, and ϵ is a positive constant with physical
significance. Under the constraint of mass conservation, the PFC equation is given by

∂φ

∂t
= M∆µ, (2)

where M > 0 is a mobility, µ is the chemical potential defined as

µ :=
δE
δφ

= φ3
− ϵφ + (1 + ∆)2φ, (3)

and δE
δφ

denotes the variational derivative of E with respect to φ. We assume that φ and µ are periodic on Ω . Because
(2) is of gradient type, it is easy to see that the energy functional (1) is nonincreasing in time [4]. This model describes
the microstructure of two-phase systems on atomic length scales but on diffusive time scales, leading to significant
computational savings compared to molecular dynamics simulations which are limited by atomic length scales and
femtosecond time scales. The PFC equation has been used to study various phenomena, including grain growth,
dendritic and eutectic solidification, and epitaxial growth [2,5].

The PFC model evolves φ only on diffusive time scales [2,6], thus, it does not contain a mechanism for simulating
elastic interactions, for example, the deformation properties of nanocrystalline solids. In order to overcome this
problem, Stefanovic et al. [6,7] introduced the modified phase field crystal (MPFC) model that includes both diffusive
dynamics and elastic interactions. The MPFC equation with periodicity is a nonlinear damped wave equation

∂2φ

∂t2 + β
∂φ

∂t
= M∆µ, (4)

where β > 0. Note that Eq. (4) is not a mass conservative equation due to the term ∂2φ
∂t2 . The mass conservation

is an important feature required for not only the PFC equation but also the MPFC equation. Integrating Eq. (4)
over Ω with the periodic boundary condition for µ and letting Φ(t) =

∫
Ω

∂φ

∂t dx, we obtain dΦ(t)
dt + βΦ(t) =

M
∫
∂Ω ∇µ · n ds − M

∫
Ω ∇µ · ∇1 dx = 0, where n is a unit normal vector to ∂Ω . A solution of this equation is

Φ(t) = Φ(0)e−βt . Thus, if we use an initial condition satisfying Φ(0) = 0,∫
Ω

∂φ

∂t
(x, 0) dx = 0, (5)

then
∫
Ω

∂φ

∂t (x, t) dx = 0 for all time. We also note that the energy (1) is not necessarily nonincreasing in time along
the solution trajectories of (4). However, solutions of (4) do dissipate the following energy [8]:

F(φ) := E(φ) +
1

2M

∂φ∂t

2

H−1
, (6)

where the H−1 inner product is defined as follows: for given f, g ∈ H0 (H0 is a zero average subspace of a Hilbert
space), ( f, g)H−1 := (∇v f ,∇vg)L2 , where v f , vg ∈ H0 are the solutions of the periodic boundary value problems
−∆v f = f, −∆vg = g in Ω , respectively. Then, a simple calculation shows that

dF
dt

=

(
µ,
∂φ

∂t

)
L2

+
1
M

(
∂φ

∂t
,
∂2φ

∂t2

)
H−1

= −
β

M

(
∂φ

∂t
,
∂φ

∂t

)
H−1

≤ 0, (7)

where we have used the following identity [9]:

−

(
∆µ,

∂φ

∂t

)
H−1

=

(
µ,
∂φ

∂t

)
L2
. (8)

This guarantees that the energy F(φ) defined in (6) is nonincreasing in time.
The MPFC equation is a sixth-order nonlinear partial differential equation and cannot generally be solved

analytically. Therefore, accurate and efficient numerical methods are desirable. Because of the close relationship
between the PFC and MPFC models, methods for the former equation can be adapted and applied to the latter.
Dehghan and Mohammadi [10] used a semi-implicit method for the PFC and MPFC equations, which splits the linear
terms into backward and forward pieces while treating the nonlinear term φ3 explicitly. Gomez and Nogueira [4]
proposed a second-order energy stable method for the PFC equation and the method was extended to the MPFC
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equation by Galenko et al. [11]. In [12–15], first- and second-order energy stable methods for the PFC equation are
presented, which are based on the observation that the energy (1) can be split into two convex energies:

E(φ) = Ec
DF(φ) − Ee

DF(φ),

=

∫
Ω

(
1
4
φ4

+
1 − ϵ

2
φ2

+
1
2

(∆φ)2
)

dx −

∫
Ω

|∇φ|
2 dx (9)

with ϵ ≤ 1. Here, the diffusion (DF) term is used for Ee
DF(φ). And, in the methods, Ec

DF(φ) and Ee
DF(φ) are treated

implicitly and explicitly, respectively, by following the idea in [16]. Wang and Wise [8] presented a first-order energy
stable method for the MPFC equation by applying the convex splitting (9) for the PFC equation. Subsequently, a
second-order energy stable method was presented in [17].

In this paper, we propose temporally first- and second-order accurate methods for the MPFC equation, which are
based on the following convex splitting of the energy (1) for the PFC equation [9]:

Ec
BF(φ) =

∫
Ω

(
1
4
φ4

+
1
2
φ(1 + ∆)2φ

)
dx, Ee

BF(φ) =

∫
Ω

ϵ

2
φ2 dx. (10)

Here, the bifurcation (BF) term is used for Ee
BF(φ). The first- and second-order methods are analytically shown to

be unconditionally stable with respect to the energy and pseudoenergy of the MPFC equation, respectively. We also
numerically compare the proposed convex splitting methods with the previous ones based on the DF convex splitting
(9).

This paper is organized as follows. In Sections 2 and 3, we propose first- and second-order energy stable
methods for the MPFC equation, respectively. In Section 4, we describe numerical implementations of the proposed
methods and present numerical examples showing the accuracy and energy stability of the proposed methods. Finally,
conclusions are given in Section 5.

2. First-order energy stable method, CSBF(1)

In this section, we present a first-order convex splitting method for the MPFC equation (4). And we will show that
the method is unconditionally energy stable. Introducing a new variable ψ , one can split Eq. (4) as

∂ψ

∂t
= M∆µ− βψ, (11)

∂φ

∂t
= ψ (12)

and redefine the energy (6) as

F(φ,ψ) := E(φ) +
1

2M
∥ψ∥

2
H−1 . (13)

Eqs. (11) and (12) can be discretized with first-order time accuracy as follows:

ψn+1
− ψn

∆t
= M∆µn+1

− βψn+1, (14)

φn+1
− φn

∆t
= ψn+1. (15)

In Eq. (14), µn+1 can be discretized in various forms. In developing an energy stable method for the MPFC equation
from the convex splitting perspective, it is important to split the energy E(φ) into two convex energies appropriately
and then the discretization of µn+1 is determined by the splitting. Thus, an energy stability of a numerical method for
the MPFC equation depends mainly on the discretization of µn+1. In [8], Wang and Wise discretized µn+1 based on
the splitting (9):

µn+1
DF =

δEc
DF

δφ
(φn+1) −

δEe
DF

δφ
(φn) = (φn+1)3

+ (1 − ϵ)φn+1
+ ∆2φn+1

+ 2∆φn (16)

and showed the method (14)–(16), referred to as CSDF(1), is unconditionally stable with respect to the energy F(φ,ψ)
defined in (13).
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We here introduce the following discretization of µn+1 based on the splitting (10):

µn+1
BF =

δEc
BF

δφ
(φn+1) −

δEe
BF

δφ
(φn) = (φn+1)3

+ (1 + ∆)2φn+1
− ϵφn. (17)

Lemma 1. The first-order convex splitting method (14), (15), and (17), referred to as CSBF(1), for the periodic MPFC
equation (4) with zero mean condition (5) is mass conserving.

Proof. Suppose that the method CSBF(1) has a solution. From Eq. (14), we have

(ψn+1
− ψn, 1)L2 = M∆t(∆µn+1

BF , 1)L2 − β∆t(ψn+1, 1)L2

= −β∆t(ψn+1, 1)L2 ,

where (∆µn+1
BF , 1)L2 =

∫
∂Ω ∇µn+1

BF · n ds −
∫
Ω ∇µn+1

BF · ∇1 dx = 0 is given by the periodic boundary condition for
µn+1

BF . This gives the relation

(ψn+1, 1)L2 =
1

1 + β∆t
(ψn, 1)L2 .

With an initial condition (5) satisfying (ψ0, 1)L2 = 0, the relation ensures that (ψn+1, 1)L2 = 0 for all n ≥ 0. Now,
from Eq. (15), we observe that

(φn+1
− φn, 1)L2 = 0 if and only if (ψn+1, 1)L2 = 0,

and the result follows: (φn+1, 1)L2 = (φn, 1)L2 . □

Theorem 2. The method CSBF(1) for the periodic MPFC equation (4) with zero mean condition (5) is unconditionally
stable with respect to the energy F(φ,ψ) defined in (13), meaning that for any time step ∆t > 0,

F(φn+1, ψn+1) ≤ F(φn, ψn).

Proof. The convexity of Ec
BF(φ), Ee

BF(φ), and 1
2M ∥ψ∥

2
H−1 yields the following inequalities [8]:

E(φn+1) − E(φn) ≤

(
δEc

BF

δφ
(φn+1) −

δEe
BF

δφ
(φn), φn+1

− φn
)

L2

and
1

2M

ψn+1
2

H−1 −
1

2M

ψn
2

H−1 ≤
1
M

(ψn+1, ψn+1
− ψn)H−1 .

Using these inequalities, we have

F(φn+1, ψn+1) − F(φn, ψn) ≤ (µn+1
BF ,∆tψn+1)L2 +

1
M

(ψn+1, ψn+1
− ψn)H−1

=

(
ψn+1,−∆t∆µn+1

BF +
1
M

(ψn+1
− ψn)

)
H−1

= −
β∆t
M

(ψn+1, ψn+1)H−1 ≤ 0,

where (µn+1
BF ,∆tψn+1)L2 = (ψn+1,−∆t∆µn+1

BF )H−1 is given by the identity (8). □

3. Second-order energy stable method, CSBF(2)

In this section, we present a second-order convex splitting method for the MPFC equation, which can be described
in a similar way to CSBF(1). Eqs. (11) and (12) can be discretized with second-order time accuracy as follows:

ψn+1
− ψn

∆t
= M∆µn+

1
2 − β

ψn+1
+ ψn

2
, (18)

φn+1
− φn

∆t
=
ψn+1

+ ψn

2
. (19)
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In [17], Baskaran et al. discretized µn+
1
2 based on the splitting (9):

µ
n+

1
2

DF =
(φn+1)2

+ (φn)2

2
φn+1

+ φn

2

+ (1 − ϵ)
φn+1

+ φn

2
+ ∆2

(
φn+1

+ φn

2

)
+ ∆(3φn

− φn−1), (20)

where φ−1
= φ0. Here, δEc

DF
δφ

is treated implicitly using a second-order secant type approach and δEe
DF
δφ

is treated
explicitly using a second-order extrapolation. The authors showed the method (18)–(20), referred to as CSDF(2), is
unconditionally stable with respect to the following pseudoenergy:

FDF(φn, φn−1, ψn) := F(φn, ψn) +
1
2
∥∇(φn

− φn−1)∥
2
L2 . (21)

In other words, for any ∆t > 0,

FDF(φn+1, φn, ψn+1) ≤ FDF(φn, φn−1, ψn).

We here introduce the following discretization of µn+
1
2 based on the splitting (10):

µ
n+

1
2

BF =
(φn+1)2

+ (φn)2

2
φn+1

+ φn

2
+ (1 + ∆)2

(
φn+1

+ φn

2

)
− ϵ

3φn
− φn−1

2
. (22)

Lemma 3. The second-order convex splitting method (18), (19), and (22), referred to as CSBF(2), for the periodic
MPFC equation (4) with zero mean condition (5) is mass conserving.

Proof. The proof for the method CSBF(2) is similar to the proof for the method CSBF(1) in Lemma 1. □

Theorem 4. The method CSBF(2) for the periodic MPFC equation (4) with zero mean condition (5) is unconditionally
stable with respect to the following pseudoenergy:

FBF(φn, φn−1, ψn) := F(φn, ψn) +
ϵ

4
∥φn

− φn−1
∥

2
L2 . (23)

In other words, for any ∆t > 0,

FBF(φn+1, φn, ψn+1) ≤ FBF(φn, φn−1, ψn).

Proof. Let ψn+
1
2 =

ψn+1
+ψn

2 for simplicity of notation. Using the identities(
φn+1

− φn,−ϵ
3φn

− φn−1

2

)
L2

+
ϵ

2
∥φn+1

∥
2
L2 −

ϵ

2
∥φn

∥
2
L2

=
ϵ

4
∥φn+1

− φn
∥

2
L2 −

ϵ

4
∥φn

− φn−1
∥

2
L2 +

ϵ

4
∥φn+1

− 2φn
+ φn−1

∥
2
L2

and (
φn+1

− φn,
(φn+1)2

+ (φn)2

2
φn+1

+ φn

2
+ (1 + ∆)2

(
φn+1

+ φn

2

))
L2

= E(φn+1) − E(φn) +
ϵ

2
∥φn+1

∥
2
L2 −

ϵ

2
∥φn

∥
2
L2 ,

we obtain

(∆tψn+
1
2 , µ

n+
1
2

BF )L2 = (φn+1
− φn, µ

n+
1
2

BF )L2

= E(φn+1) +
ϵ

4
∥φn+1

− φn
∥

2
L2 − E(φn) −

ϵ

4
∥φn

− φn−1
∥

2
L2

+
ϵ

4
∥φn+1

− 2φn
+ φn−1

∥
2
L2 . (24)
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Next, from Eq. (18), we have

− (ψn+
1
2 ,∆tµ

n+
1
2

BF )L2 =
1
M

(ψn+
1
2 ,M∆t∆µ

n+
1
2

BF )H−1

=
1
M

(ψn+
1
2 , ψn+1

− ψn
+ β∆tψn+

1
2 )H−1

=
1

2M
∥ψn+1

∥
2
H−1 −

1
2M

∥ψn
∥

2
H−1 +

β∆t
M

∥ψn+
1
2 ∥

2

H−1 . (25)

Adding Eqs. (24) and (25), we obtain

FBF(φn+1, φn, ψn+1) − FBF(φn, φn−1, ψn)

= −
β∆t
M

∥ψn+
1
2 ∥

2

H−1 −
ϵ

4
∥φn+1

− 2φn
+ φn−1

∥
2
L2 ≤ 0. □

4. Numerical experiments

4.1. Numerical implementations of CSBF(1) and CSBF(2)

The method CSBF(1) defined in Section 2 can be simplified as follows:

φn+1
− φn

∆t
=

M∆t
1 + β∆t

∆
(
(φn+1)3

+ (1 + ∆)2φn+1
− ϵφn)

+
1

1 + β∆t
ψn, (26)

ψn+1
=
φn+1

− φn

∆t
. (27)

We solve φn+1 using Eq. (26) and then update ψn+1 by Eq. (27) for the next time level. The nonlinearity in Eq. (26)
comes from the cubic term (φn+1)3 and this can be handled using a Newton-type linearization [9,13,17]

(φn,m+1)3
≈ (φn,m)3

+ 3(φn,m)2(φn,m+1
− φn,m)

for m = 0, 1, . . .. We then develop a Newton-type fixed point iteration method as[
I −

M∆t2

1 + β∆t
∆
(
3(φn,m)2

+ (1 + ∆)2)]φn,m+1

= φn
+

M∆t2

1 + β∆t
∆
(
−2(φn,m)3

− ϵφn)
+

∆t
1 + β∆t

ψn, (28)

where φn,0
= φn , and we set

φn+1
= φn,m+1

if a relative l2-norm of the consecutive error

φn,m+1
−φn,m


2

∥φn,m∥2
is less than a tolerance tol (is set to 10−8∆t in this paper).

In this paper, the biconjugate gradient (BICG) method is used to solve the system (28) and we use the following
preconditioner P to accelerate the convergence speed of the BICG algorithm:

P = I −
M∆t2

1 + β∆t
∆
(

ĀI + (1 + ∆)2) ,
where Ā is the average value of 3(φn,m)2. The stopping criterion for the BICG iteration is that the relative residual
norm is less than tol (is set to 10−8∆t in this paper).

And we emphasize time discretization since the energy stability in time is the central issue. In particular, our
time stepping method CSBF can be combined with any spatial discretization (e.g., finite difference [8,9,17], finite
element [4,11], radial basis function [18] methods) as long as the spatial discretization provides the desired tolerance.
We here use the Fourier spectral method for the spatial discretization and the fast Fourier transform in MATLAB is
applied for the whole numerical simulations to solve the MPFC equation with the periodic boundary condition.
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The method CSBF(2) defined in Section 3 can be simplified as follows:

φn+1
− φn

∆t
=

M∆t
2 + β∆t

∆

(
(φn+1)2

+ (φn)2

2
φn+1

+ φn

2
+ (1 + ∆)2

(
φn+1

+ φn

2

)
− ϵ

3φn
− φn−1

2

)
+

2
2 + β∆t

ψn, (29)

ψn+1
= 2

φn+1
− φn

∆t
− ψn. (30)

We solve φn+1 using Eq. (29) and then update ψn+1 by Eq. (30) for the next time level. Using the linearizations

(φn,m+1)3
≈ (φn,m)3

+ 3(φn,m)2(φn,m+1
− φn,m),

(φn,m+1)2
≈ (φn,m)2

+ 2φn,m(φn,m+1
− φn,m),

we develop a Newton-type fixed point iteration method as[
I −

M∆t2

2 + β∆t
∆

(
3(φn,m)2

+ 2φn,mφn
+ (φn)2

4
+

1
2

(1 + ∆)2
)]
φn,m+1

= φn
+

M∆t2

2 + β∆t
∆

(
−2(φn,m)3

− (φn,m)2φn
+ (φn)3

4
+

1
2

(1 + ∆)2φn

− ϵ
3φn

− φn−1

2

)
+

2∆t
2 + β∆t

ψn. (31)

For the system (31), we use the following preconditioner P:

P = I −
M∆t2

2 + β∆t
∆

(
ĀI +

1
2

(1 + ∆)2
)
,

where Ā is the average value of 3(φn,m )2
+2φn,mφn

+(φn )2

4 . The other components of the numerical algorithm of the method
CSBF(2) are the same as those of the method CSBF(1).

4.2. Numerical convergence with a smooth test function in 1D

We demonstrate the convergence of the proposed methods CSBF(1) and CSBF(2) with an initial condition

φ(x, 0) = 0.07 − 0.02 cos
(

2π (x − 12)
32

)
+ 0.02cos2

(
π (x + 10)

32

)
− 0.01sin2

(
4πx
32

)
, ψ(x, 0) = 0 (32)

on Ω = [0, 32]. We set M = 1 and ϵ = 0.25, and the grid size is fixed to ∆x = 1/2 which provides enough
spatial accuracy. In order to estimate the convergence rate with respect to ∆t , simulations are performed by varying
∆t = 100β/213, 100β/212, . . . , 100β/23 for β = 0.1, 1, and 10. We take the quadruply over-resolved numerical
solution using the method CSBF(2) as the reference solution.

For β = 1, Fig. 1 shows the evolution of the reference solution φ(x, t). The initial oscillation changes little by little
until a new oscillation is generated. Then the new oscillation grows for a relatively short time and reaches a steady
state.

In order to show the robustness of the nonlinear solver and the necessity of the preconditioner, we count the number
of nonlinear and BICG iterations for the method CSBF(2). The number of nonlinear iterations averaged over the
simulation time 0 < t = n∆t ≤ 100 is shown as a function of ∆t in Fig. 2(a). The stopping criterion for the nonlinear
iteration is that a relative l2-norm of the consecutive error is less than tol = 10−8∆t . On average, 2–4 nonlinear
iterations were involved in proceeding to the next time level. We believe that such a fast iterative convergence can be
achieved since the successive iteration (31) is a Newton-type fixed point iteration method. And the number of BICG
iterations averaged over the simulation time is shown as a function of ∆t in Fig. 2(b). Here, we regard the number of
BICG iterations at each time level as the averaged number of BICG iterations for the nonlinear iterations at each time
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Fig. 1. Evolution of the reference solution φ(x, t) with β = 1 and ϵ = 0.25.

Fig. 2. Number of (a) nonlinear and (b) BICG iterations for the method CSBF(2).

Fig. 3. Relative l2-errors of φ(x, t) at t = 37.5 and 50 for 16, 24, 32, . . . , 128 grid points and ∆t = 100/213, . . . , 100/23. Here, β = 1 and
ϵ = 0.25, and the method CSBF(2) is used.
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Fig. 4. (a) Evolution of the energies E(t) and F (t) with β = 1 and ϵ = 0.25. (b)–(c) Relative l2-errors of φ(x, t) at t = 37.5 and 50 for
∆t = 100/213, . . . , 100/23.

Fig. 5. (a) Evolution of the energies E(t) and F (t) with β = 10 and ϵ = 0.25. (b)–(c) Relative l2-errors of φ(x, t) at t = 250 and 375 for
∆t = 1000/213, . . . , 1000/23.

level, and the stopping criterion for the BICG iteration is that the relative residual norm is less than tol = 10−8∆t . As
shown in Fig. 2(b), the BICG iterations were remarkably reduced by using the preconditioner.

Next, to show spatial accuracy of the numerical solution, we take the same initial condition (32) and parameter
values used to create Fig. 1. Simulations are performed by using the method CSBF(2) and varying the number of grid
points 16, 24, 32, . . . , 128. Fig. 3 shows the relative l2-errors of φ(x, t) at t = 37.5 and 50 for various numbers of grid
points and time steps. Here, the errors are computed by comparison with the reference solution using 256 grid points
and ∆t = 100/215. As we can see in Fig. 3, the spatial convergence of the method under grid refinement is evident
and 64 grid points (∆x = 1/2) give sufficient spatial accuracy.

The evolution of the energies E(t) and F(t) for the reference solution φ(x, t) is shown in Fig. 4(a). At an early
stage, both energies evolve slowly, and then decay rapidly. The flat end in Fig. 4(a) indicates that a steady state is
reached. Figs. 4(b) and (c) show the relative l2-errors of φ(x, t) at t = 37.5 and 50 (these times are indicated by dotted
lines in Fig. 4(a)) for various time steps. Here, the errors are computed by comparison with the reference solution in
Fig. 1. It is observed that both methods CSDF and CSBF give desired order of accuracy in time.

Figs. 5(a) and 6(a) show the evolutions of the energies for the reference solutions φ(x, t) with β = 10 and 0.1,
respectively. When β is large (β = 10, high damping case), the MPFC model behaves like the PFC model and F(t) is
nearly identical to E(t). On the other hand, when β is small (β = 0.1, low damping case), F(t) differs from E(t) and,
in particular, E(t) shows an oscillatory behavior unlike the case with β = 10. For the high and low damping cases,
Figs. 5 and 6(b)–(c) show the relative l2-errors of φ(x, t) at different times (these times are indicated by dotted lines
in Figs. 5 and 6(a)) for various time steps. It is also observed that both methods CSDF and CSBF give desired order of
accuracy in time; however, the methods CSBF(1) and CSBF(2) for all β used in this section are one order of magnitude
more accurate than the methods CSDF(1) and CSDF(2), respectively.



10 H.G. Lee et al. / Comput. Methods Appl. Mech. Engrg. 321 (2017) 1–17

Fig. 6. (a) Evolution of the energies E(t) and F (t) with β = 0.1 and ϵ = 0.25. (b)–(c) Relative l2-errors of φ(x, t) at t = 12.5 and 25 for
∆t = 10/213, . . . , 10/23.

4.3. Numerical dissipation with a smooth test function in 1D

In order to compare methods with the same order of convergence, a concept similar to that of an error constant is
needed. In [19], Guillén-González and Tierra introduced the numerical dissipation of methods as the concept for the
Cahn–Hilliard equation [20,21] and concluded that a method with smaller numerical dissipation is more accurate. In
order to compare the methods CSDF and CSBF, we define the numerical dissipation of methods for the MPFC equation
as follows:

ND := ND1 + ND2,

where

ND1 =
1
∆t

(
δE
δφ

(φn+1, φn), φn+1
− φn

)
L2

−
1
∆t

(
E(φn+1) − E(φn)

)
(33)

and

ND2 =
1

2M∆t

(
δ∥ψ∥

2
H−1

δψ
(ψn+1, ψn), ψn+1

− ψn

)
H−1

−
1

2M∆t

(
∥ψn+1

∥
2
H−1 − ∥ψn

∥
2
H−1

)
. (34)

Here, δE
δφ

(φn+1, φn) and
δ∥ψ∥

2
H−1

δψ
(ψn+1, ψn) must be defined by a numerical method. In a CS method, ND1 is defined

with
δE
δφ

(φn+1, φn) = µn+p,

where p = 1 and 1
2 for the first- and second-order methods, respectively. And ND2 is defined with

δ∥ψ∥
2
H−1

δψ
(ψn+1, ψn) = 2ψn+p,

where ψn+p
= pψn+1

+ (1 − p)ψn . We remark that ND2 =
1

2M∆t ∥ψ
n+1

− ψn
∥

2
H−1 ≥ 0 when p = 1 and ND2 = 0

when p =
1
2 . From (33) and (34), we have

ND = −
F(φn+1, ψn+1) − F(φn, ψn)

∆t
−
β

M
∥ψn+p

∥
2
H−1 . (35)

For β = 0.1, we compute the numerical dissipation (35) of the methods CSDF and CSBF with the same initial
condition (32) and parameter values used in the previous section. Figs. 7 and 8 show the evolution of the numerical
dissipation of the first- and second-order methods, respectively, with ∆t = 10/29, 10/28, and 10/27 (these time steps
lie in the convergence region of both methods CSDF and CSBF, see Figs. 6(b) and (c)). In Fig. 7, both methods
CSDF(1) and CSBF(1) have nonnegative numerical dissipations over the whole evolution; ND ≥ 0 implies that
F(φn+1, ψn+1) ≤ F(φn, ψn). From the results in Figs. 7 and 8, we can see that the numerical dissipations of the
proposed methods, CSBF(1) and CSBF(2), are less than those of the counterparts, CSDF(1) and CSDF(2).
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Fig. 7. Evolution of the numerical dissipation of the first-order methods with different time steps.

Fig. 8. Evolution of the numerical dissipation of the second-order methods with different time steps.

Fig. 9. Evolution of the energy F (t) using the first-order methods with different time steps.

4.4. Energy stability with a smooth test function in 1D

Next, we investigate the effect of time step on the energy evolution. To this, we take β = 0.1 with the same initial
condition (32) and parameter values used in Section 4.2. Fig. 9 shows the evolution of the energy F(t) using the
first-order methods with ∆t = 10/25, 10/24, and 10/23 (these time steps are sufficiently large, see Figs. 6(b) and (c)).
All the energy curves are nonincreasing in time, however, the energies using the method CSBF(1) with different time
steps are almost similar, whereas significant differences emerge with large time steps for the method CSDF(1).

For the second-order methods, the energy that is guaranteed to be nonincreasing in time is the pseudoenergy
FDF(t) defined in (21) and FBF(t) defined in (23). When the time step is small enough, F(t) is close to FDF(t) or
FBF(t), and thus F(t) is nonincreasing in time (see Fig. 6(a)). However, the difference between F(t) and FDF(t)
or FBF(t) becomes bigger as the time step increases, and thus F(t) is not guaranteed to be nonincreasing in time.
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Fig. 10. Evolution of the energy F (t) using the second-order methods with different time steps.

Fig. 11. Evolution of the pseudoenergies FDF(t) and FBF(t) with different time steps.

Fig. 10 shows the evolution of the energy F(t) using the second-order methods with different time steps. In the case
of the method CSDF(2), the energy dissipation property (7) starts to break down when ∆t = 10/24 and F(t) with
∆t = 10/23 is significantly oscillating in time. However, in the case of the method CSBF(2), F(t) with ∆t = 10/24

is still nonincreasing in time and F(t) with ∆t = 10/23 is nearly nonincreasing in time.
Fig. 11 shows the evolution of the pseudoenergies FDF(t) and FBF(t) with different time steps. All the pseudoenergy

curves are nonincreasing in time. We also observe that the time step effect on the pseudoenergy evolution is more
alleviated using the method CSBF(2) than CSDF(2). From the results in Figs. 9–11, we conclude that the proposed
methods represent a good balance between accuracy and energy stability.

4.5. Numerical convergence with a nonsmooth test function in 1D

In this section, we demonstrate the convergence of the proposed methods with the same parameter values used to
create Fig. 6 except for initial condition and time step. We here take an initial condition as

φ(x, 0) = 0.02 + rand, ψ(x, 0) = 0, (36)

where rand is a random number between −0.1 and 0.1 at the grid points. Unlike the case of the smooth initial condition
(32), a much smaller time step is needed to deal with the high frequency modes in the initial condition (36). Thus, we
vary ∆t = 2−19, 2−18, . . . , 2−6 to estimate the convergence rate with respect to ∆t for the random initial condition.
We take the quadruply over-resolved numerical solution using the method CSBF(2) as the reference solution.
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Fig. 12. Evolution of the reference solution φ(x, t) with β = 0.1 and ϵ = 0.25.

Fig. 13. (a) Evolution of the energies E(t) and F (t) with β = 0.1 and ϵ = 0.25. (b)–(c) Relative l2-errors of φ(x, t) at t = 5 and 15 for
∆t = 2−19, 2−18, . . . , 2−6.

The evolution of the reference solution φ(x, t) and of the energies E(t) and F(t) is shown in Figs. 12 and 13(a),
respectively. And the relative l2-errors of φ(x, t) at t = 5 and 15 (these times are indicated by dotted lines in Fig. 13(a))
for various time steps are shown in Figs. 13(b) and (c). It is observed that the methods CSBF(1) and CSBF(2) give
desired order of accuracy in time even for the random initial condition.

4.6. Time evolution of random perturbation in 2D

We solve the MPFC equation (4) on Ω = [0, 32] × [0, 32] with β = 0.1, M = 1, ϵ = 0.2, and ∆x = ∆y = 0.5.
An initial condition is

φ(x, y, 0) = φ̄ + rand, ψ(x, y, 0) = 0,

where rand is a random number between −0.1 and 0.1 at the grid points. The method CSBF(2) is used to examine the
evolution from a random nonequilibrium state to a steady state. For saving computational time, we choose different
time steps as the solution evolves from random noisy stage to relatively smooth stage. Although we do not try an
adaptive time marching algorithm, we choose relatively fine time step ∆t = 2−12 for 0 < t ≤ 20 and coarse time
step ∆t = 2−9 for 20 < t ≤ 200 based on the observation that smaller time step is needed with a random noisy
initial condition in Section 4.5 compared to a smooth one in Section 4.2. Note that the method CSBF(2) is a multi-step
method and a multi-step method may make the use of adaptive time step more difficult than a single-step method. In
this paper, when a time step changes from the fine time step (∆t = 2−12) to the coarse time step (∆t = 2−9), we
simply choose the solution before 8 fine time steps as the solution at n−1 time level. Figs. 15 and 17 show consistency
error of the energy F(t) and our choice ∆t = 2−12 for early stage and ∆t = 2−9 for later stage seems to provide at
least a single digit of accuracy.



14 H.G. Lee et al. / Comput. Methods Appl. Mech. Engrg. 321 (2017) 1–17

Fig. 14. Evolution of φ(x, y, t) with φ̄ = 0.02, β = 0.1, ϵ = 0.2, and ∆t = 2−12 for 0 < t ≤ 20 and ∆t = 2−9 for 20 < t ≤ 200. In each
snapshots, the red, green, and blue regions indicate φ = 0.5318, 0.0189, and −0.4940, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Evolution of the energy F (t) for φ̄ = 0.02 with different time steps. Numerical solution φ(x, y, t) for 20 < t ≤ 200 starts from a solution
φ(x, y, t = 20) computed with finer time step ∆t/8 for 0 < t ≤ 20.

Fig. 16. Evolution of φ(x, y, t) with φ̄ = 0.2, β = 0.1, ϵ = 0.2, and ∆t = 2−12 for 0 < t ≤ 20 and ∆t = 2−9 for 20 < t ≤ 200. In each
snapshots, the red, green, and blue regions indicate φ = 0.5547, 0.0096, and −0.5355, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Two simulations have been performed with φ̄ = 0.02 and φ̄ = 0.2 to verify that the method CSBF(2) does lead to
the expected states in the phase diagram in [11]. For φ̄ = 0.02, Figs. 14 and 15 show he evolution of φ(x, y, t) and
F(t) with different time steps, respectively. Figs. 16 and 17 show those for φ̄ = 0.2. Depending on the value of φ̄,
we have different patterns, such as stripes (Fig. 14) and triangles (Fig. 16). Both results are consistent with the phase
diagram in [11].

4.7. Crystal growth in 3D

We finally simulate the growth and interaction of two crystallites that originate from two nucleation sites on
Ω = [0, 128] × [0, 128] × [0, 128] with β = 1, M = 1, ϵ = 0.25, ∆x = ∆y = ∆z = 1, and ∆t = 1. An
initial condition is generated as follows: we let a randomly perturbed constant state φ(x, y, z, 0) = 0.285 + rand
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Fig. 17. Evolution of the energy F (t) for φ̄ = 0.2 with different time steps. Numerical solution φ(x, y, t) for 20 < t ≤ 200 starts from a solution
φ(x, y, t = 20) computed with finer time step ∆t/8 for 0 < t ≤ 20.

Fig. 18. Evolution of φ(x, y, z, t) with β = 1 and ϵ = 0.25. The first and second rows show isosurfaces of φ and a slice of φ across the indicated
plane, respectively. In each snapshots, the red, green, and blue regions indicate φ = 0.6813, −0.0331, and −0.7475, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

with ψ(x, y, z, 0) = 0 evolve to a periodic lattice state, where rand is a random number between −0.1 and 0.1 at the
grid points. We then extract two pieces of the final state with a hexahedral shape, and superpose them to a constant
density field φ(x, y, z, 0) = 0.285 with ψ(x, y, z, 0) = 0 (see the first column of Fig. 18). Figs. 18 and 19 show
the evolution of φ(x, y, z, t) and F(t), respectively, using the method CSBF(2). We can see the interaction between
growing crystallites and the energy dissipation.

5. Conclusions

The MPFC equation is a sixth-order nonlinear damped wave equation and cannot generally be solved analytically,
thus, numerical methods are commonly used to study the dynamics of the MPFC equation. One criterion for
developing a numerical method for the MPFC equation is whether the method inherits the energy dissipation property
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Fig. 19. Evolution of the energy F (t) with β = 1 and ϵ = 0.25.

of the MPFC equation. To this, we presented temporally first- and second-order energy stable methods for the MPFC
equation, which are based on the convex splitting of the energy for the PFC equation. The first- and second-order
methods were shown analytically to be unconditionally stable with respect to the energy and pseudoenergy for the
MPFC equation, respectively. We numerically compared with the existing other splitting methods CSDF to demonstrate
the accuracy and energy stability of the proposed methods CSBF and observed that both methods CSDF and CSBF
have the same order of convergence; however, the methods CSBF(1) and CSBF(2) are more accurate than the methods
CSDF(1) and CSDF(2), respectively, from the perspective of error constant and numerical dissipation. We also observed
that the time step effect on the energy evolution is more alleviated using the methods CSBF(1) and CSBF(2) than
CSDF(1) and CSDF(2), respectively. From the results in this paper, we concluded that the proposed methods CSBF
represent a good balance between accuracy and energy stability.
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