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a b s t r a c t

In this paper, we present the Convex Splitting Runge–Kutta (CSRK) methods which
provide a simple unified framework to solve phase-field models such as the Allen–Cahn,
Cahn–Hilliard, and phase-field crystal equations. The core idea of the CSRK methods is the
combination of convex splitting methods and multi-stage implicit–explicit Runge–Kutta
methods. Our CSRK methods are high-order accurate in time and we investigate the
energy stability numerically. We present numerical experiments to show the accuracy and
efficiency of the proposed methods up to the third-order accuracy.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Phase-field models have emerged as a powerful computational approach for modeling and predicting mesoscale
morphological and microstructure evolution in materials. The most popular models are the Allen–Cahn (AC) [1] and
Cahn–Hilliard (CH) [2] equations with non-conserved or conserved order parameters φ that vary continuously over thin
interfacial layers and are mostly uniform in the bulk phases [3]. The equations are derived from the Ginzburg–Landau free
energy:

E(φ) =


Ω


Ψ (φ) +

ϵ2

2
|∇φ|

2

dx, (1)

where Ω is a domain in Rd (d = 1, 2, 3), Ψ (φ) is the bulk free energy with two minima corresponding to the two phases,
and ϵ > 0 is a parameter related to the interfacial thickness. The AC and CH equations are the gradient flow for (1) under the
L2 andH−1 inner product, respectively. The equations have previously been applied to awide range of physical problems [4].

The most significant difficulties in solving phase-field models are their nonlinear and high-order derivative terms, since
they cause a severe restriction on the time step size for stability. In order to overcome this problem, the authors in [5,6]
proposed the first-order convex splitting method. In the method, E(φ) is split appropriately into a contractive part and an
expansive part:

E(φ) =


Ω


Ψc(φ) +

ϵ2

2
|∇φ|

2

dx −


Ω

Ψe(φ) dx = Ec(φ) − Ee(φ), (2)
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where both Ec(φ) and Ee(φ) are convex. Also, Ec(φ) is treated implicitly, whereas Ee(φ) is treated explicitly. The first-
order method has been proven to be unconditionally energy stable, which means that E(φ) is non-increasing in time
for any time step. Since the method is only first-order accurate in time, a number of second-order methods have been
proposed considering the energy stability. For example, the schemes in [7–9] are based on the convex splitting and multi-
step discretization and the schemes in [10,11] are based on the Crank–Nicolson type scheme with convex splitting and
stabilization. Many other attempts have also been made to achieve high-order accuracy without using a convex splitting
scheme [12–19]. However, only a limited number of high-order methods guarantee energy stability [18].

In this paper, we present the Convex Splitting Runge–Kutta (CSRK) methods in order to provide a simple unified
framework to solve phase-field models with high-order time accuracy. The core idea of the methods is to couple convex
splitting methods described in Section 2 with the multi-stage implicit–explicit Runge–Kutta (IMEX-RK) methods described
in Section 3. In Section 4.1, it is numerically shown that the convexity of splitting is crucial to ensure the energy stability
of the CSRK methods. We investigate the order of accuracy and stability of the CSRK methods depending on the IMEX-
RK tables described in Sections 4.2 and 4.3. In Section 5, we numerically demonstrate the order of accuracy with typical
spinodal decomposition examples. We also simulate further complex examples to show the applicability and feasibility of
the proposed method. Finally, conclusions are drawn in Section 6. We briefly introduce the derivation of order conditions
in Appendix A and provide some specific examples in Appendix B. It is worth to note that spectral methods similar to those
in [16,9] are used for spatial discretization in our numerical computations.

2. First-order convex splitting method

Phase-field models such as the AC and CH equations are characterized by a bulk free energy Ψ (φ) and an interfacial
energy ϵ2

2 |∇φ|
2. Time discretization methods have to deal with the nonlinear term Ψ ′(φ) which yields a severe stability

restriction on the time step. This stability issue has motivated a large number of studies in which schemes are developed
that are provably energy stable.

In this section, we briefly review the convex splitting method, which is a successful attempt to overcome the stability
restriction. For simplicity, we consider the AC or CH equation as follows:

∂φ

∂t
= L


Ψ ′(φ) − ϵ2∆φ


, (3)

where L = −1 for AC or L = ∆ for CH. With the energy splitting (2), the first-order convex splitting method is

φn+1
− φn

∆t
= L


Ψ ′

c (φ
n+1) − ϵ2∆φn+1

− Ψ ′

e (φ
n)


. (4)

Considering a typical polynomial energy Ψ (φ) =
1
4 (φ

2
− 1)2, nonlinear convex splitting can be given as follows:

Ψc(φ) =
1
4
φ4

+
1
4
, Ψe(φ) =

1
2
φ2. (5)

Applying the nonlinear convex splitting (5), we have

φn+1
− φn

∆t
= L


φn+13

− ϵ2∆φn+1
− φn


. (6)

In order to treat the nonlinearity of φ3, we consider a Newton-type iterative method. Using the mth Newton’s iteration
φn,m of φn+1, we linearize the nonlinear term


φn+1

3 as follows,
φn+13

≈

φn,m3

+ 3

φn,m2 

φn+1
− φn,m

(7)

form = 0, 1, . . .. We then get

φn,m+1
− φn

∆t
= L


3


φn,m2

φn,m+1
− 2


φn,m3

− ϵ2∆φn,m+1
− φn


(8)

with an initial estimate φn,0
= φn. We then set φn+1

= φn,m+1 if a relative l2-norm of the consecutive error

φn,m+1
−φn,m


∥φn,m∥

is
less than a given tolerance tol.

The nonlinear convex splitting (5) preserves the convexity of Ψc(φ) and Ψe(φ), regardless of the value of φ, whereas
the splitting is computationally expensive due to the nonlinear iterative steps. Fig. 1 shows the number of m-iterations
averaged over the simulation times Tf = 156.25 and Tf = 156.25 · ϵ2 as a function of ∆t and ∆τ = ∆t/ϵ2 for the AC
and CH equations with zero Neumann boundary condition, respectively. Here, an initial condition on a domain Ω = [0, 1]
is φ(x, 0) = 0.001 · rand(x), where rand(x) is a random number between −1 and 1, and ϵ = 0.01, ∆x = 1/128, ∆t =

Tf /212, Tf /211, . . . , Tf /23, and tol = 10−10.
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(a) AC equation. (b) CH equation.

Fig. 1. Number ofm-iterations averaged over the simulation time up to Tf . The scaled time step ∆τ is defined as ∆τ = ∆t/ϵ2 .

An alternative splitting of Ψ (φ) is the linear convex splitting as follows

Ψc(φ) = φ2
+

1
4
, Ψe(φ) =

3
2
φ2

−
1
4
φ4. (9)

Applying the linear convex splitting, (4) becomes

φn+1
− φn

∆t
= L


2φn+1

− ϵ2∆φn+1
− 3φn

+ (φn)3

. (10)

This is linear forφn+1 andwe expect to reduce the computational cost compared to the nonlinear convex splitting. Note that,
because both Ψc(φ) and Ψe(φ) are convex for φ ∈ [−1, 1], we will further investigate the stability of this linear splitting
scheme in Section 4.

3. Implicit–explicit Runge–Kutta methods

Here, we review the implicit–explicit Runge–Kutta (IMEX-RK) methods, proposed in [20]. Discretization of the spatial
derivatives such as (6) and (10) yields a large system of ordinary differential equations. We simply consider the following
system:

yt = f (y) + g(y) and y(0) = y0. (11)

An IMEX-RK scheme for (11) applies an implicit discretization to the term f (y) and an explicit discretization to the term g(y).
For f (y), we consider an s-stage implicit schemewith coefficients A ∈ R(s+1)×(s+1) and b, c ∈ Rs+1. In this work, we consider
the diagonally implicit Runge–Kutta (DIRK) method for implementation convenience, which means that aij = 0 if i < j and
aii ≠ 0 for some i = 1, 2, . . . , s. Also, for g(y), we consider an s-stage explicit scheme with coefficients Â ∈ R(s+1)×(s+1) and
b̂, ĉ ∈ Rs+1. We denote the s-stage IMEX-RK Butcher tables as

IM: f (y) EX: g(y)

c A
bT =

0 0 0 0 · · · 0
c1 0 a11 0 · · · 0
c2 0 a21 a22 · · · 0
...

...
...

...
. . .

...

cs 0 as1 as2 · · · ass
0 b1 b2 · · · bs

,
ĉ Â

b̂T =

0 0 0 0 · · · 0
ĉ1 â10 0 0 · · · 0
ĉ2 â20 â21 0 · · · 0
...

...
...

...
. . .

...

ĉs âs0 âs1 âs2 · · · 0
b̂0 b̂1 b̂2 · · · b̂s

. (12)

Note that the coefficients (ĉ, Â, b̂) are a general Butcher table for the explicit Runge–Kutta (ERK) method historically called
an (s+1)-stage ERKmethod. However, we define the initial state as a zero-stage, and will refer to the ERK as s-stage in this
paper for consistency with the implicit method.

We denote yn as the approximation of y(tn). With a time step size h, one step evolution from tn to tn+1
= tn + h of the

IMEX-RK method is given as follows: we set a zero-stage as k0 = f (y0) and k̂0 = g(y0), where y0 = yn. For each stage
i = 1, 2, . . . , s, we calculate

ki = f (yi), k̂i = g(yi), where yi = y0 + h
i

j=1

aijkj + h
i−1
j=0

âijk̂j. (13)
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Table 1
Order conditions for IMEX-RK methods up to the third-order accuracy. Here, we define the
component-wise product as x ⊙ y = (x0y0, x1y1, . . . , xsys)T for x = (x0, x1, . . . , xs)T and
y = (y0, y1, . . . , ys)T , and xm = x ⊙ xm−1 for m > 1.

Order Stand-alone conditions Coupling conditions
IM EX

1 b · 1 = 1 b̂ · 1 = 1 –

2 b · c = 1/2 b̂ · ĉ = 1/2 b · ĉ = b̂ · c = 1/2

3 b · c2 = 1/3 b̂ · ĉ2 = 1/3 b̂ · c2 = b · ĉ2 = 1/3
b · Ac = 1/6 b̂ · Âĉ = 1/6 b̂·(c⊙ĉ) = b·(c⊙ĉ) = 1/3

b · Aĉ = b̂ · Âc = 1/6
b · Âc + b̂ · Ac = 1/3
b · Âĉ + b̂ · Aĉ = 1/3

For the column vector y = (y0, y1, . . . , ys)T , we define the function evaluation as f (y) = (f (y0), f (y1), . . . , f (ys))T . Now,
we can rewrite k0, k1, . . . , ks and k̂0, k̂1, . . . , k̂s as column vectors

k = f (y01 + h(Ak + Âk̂)), (14)

k̂ = g(y01 + h(Ak + Âk̂)), (15)

where we denote by 1 = (1, 1, . . . , 1)T ∈ Rs+1. We then evaluate the next time approximation yn+1 as

yn+1
= y0 + h

s
j=0

(bjkj + b̂jk̂j), (16)

which can be written as yn+1
= y0 + h(b · k + b̂ · k̂).

Table 1 lists the order conditions for (12) to make (16) first-, second-, and third-order accurate in time. A detailed
description of the order conditions for the IMEX-RK methods is presented in Appendix A.

For the IMEX-RKmethods, awide choice of coefficients that satisfy the order conditions is available in Table 1. To simplify
the process of selection, we consider

c = ĉ, (17)
aii = γ , for i = 1, 2, . . . , s, (18)

where (17) is a canopy node condition [21] and (18) refers to the singly diagonally implicit Runge–Kutta (SDIRK) table [22].
In addition, we focus on the condition of

bi = asi and b̂i = âsi, for i = 0, 1, . . . , s, (19)

because it is known that (19) renders the A-stable RK method as L-stable [22]. In particular, the solution yn+1 is identical to
the last internal stage (yn+1

= ys) with (19).
We now introduce some families of our IMEX-RK tables up to the third-order which are used in the numerical tests to

demonstrate the accuracy and stability of the proposed methods. For more detailed understanding of the construction of
the tables, we refer to Appendix B.

First-order table for IMEX-RK(1)

0 0 0
1 0 1

0 1

0 0 0
1 1 0

1 0

(20)

Second-order table for IMEX-RK(2, γ)

0 0 0 0
γ 0 γ 0
1 0 1 − γ γ

0 1 − γ γ

0 0 0 0
γ γ 0 0
1 1 −

1
2γ

1
2γ 0

1 −
1
2γ

1
2γ 0

(21)

where γ = γ± = (2 ±
√
2)/2.
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Special case of the third-order table for IMEX-RK(3, γ)

0 0 0 0 0 0
γ 0 γ 0 0 0
c2 0 a21 γ 0 0
c3 0 a31 a32 γ 0
1 0 b1 b2 b3 γ

0 b1 b2 b3 γ

0 0 0 0 0 0
γ γ 0 0 0 0
c2 â20 â21 0 0 0
c3 â30 â31 â32 0 0
1 b̂0 b̂1 b̂2 b̂3 0

b̂0 b̂1 b̂2 b̂3 0

(22)

We consider a special case of the third-order methods with one parameter family for γ . Using the algorithms in
Appendix B, we can construct SDIRK and then find ERK from SDIRK. Note that, in the case of γ = 1/2, the IMEX-
RK(3, γ ) is the same as the four-stage, third-order combination (4, 4, 3) table in [23,24].

4. Convex splitting Runge–Kutta methods

In order to develop high-order methods for phase-field models, we propose the Convex Splitting Runge–Kutta (CSRK)
scheme which couples a convex splitting with the IMEX-RK methods. In other words, f and g of the IMEX-RK methods (11)
correspond to Ec and Ee of convex splitting (2), respectively. A similar attempt was made in [23]; however, we extend it
to the general framework for the phase-field models. Expecting that the convex splitting positively affects the stability, we
numerically investigate the stability region of CSRK up to the third-order accuracy. Note that the CSRK only considers the
multi-stage evaluation without the additional stabilization and multi-step discretization [7,10].

We can define a CSRKmethod by choosing a convex splitting and an IMEX-RK table. We refer to CSRK(n) for an nth order
CSRK method. Note that the convex splitting method [5,6] can be considered as CSRK(1). We describe here CSRK(2, γ±)
using table (21) for the CH equation (3) with f (φ) = ∆


Ψ ′

c (φ) − ϵ2∆φ

and g(φ) = −∆Ψ ′

e (φ):

φ1 = φn
+ ∆ta11f (φ1) + ∆tâ10g(φn), (23)

φ2 = φn
+ ∆t [a21f (φ1) + a22f (φ2)] + ∆t


â20g(φn) + â21g(φ1)


, (24)

where a11 = â10 = a22 = γ±, a21 = 1 − a22, â21 = 1/(2γ±), â20 = 1 − â21, and γ± = (2 ±
√
2)/2. Because

b1 = a21, b2 = a22, b̂0 = â20, and b̂1 = â21, the next approximation φn+1 can be directly obtained as φ2 by

φn+1
= φn

+ ∆t [b1f (φ1) + b2f (φ2)] + ∆t

b̂0g(φn) + b̂1g(φ1)


. (25)

In a similar manner, CSRK(3, γ ) can be constructed using (22).
To demonstrate the accuracy and stability of the CSRK methods, in the following section we simulate one-dimensional

(1D) test problems with the zero Neumann boundary condition. The first numerical test compares the numerical stability of
the linear convex splittingwith that of themodified linear convex splitting. The second and third tests show the convergence
result and energy stability for CSRK(2, γ±) and CSRK(3, γ ), respectively.

4.1. CSRK(2, γ−) with modified linear convex splitting for the CH equation

In convex splitting methods, we can choose nonlinear (5), linear (9), and various forms of energy splitting. In [23], the
IMEX-RK methods of up to a third-order time accuracy using the linear convex splitting (LCS) (9) for the CH equation was
presented. However, (9) does not preserve the convexity of Ψc(φ) and Ψe(φ) for φ < −1 or φ > 1. In order to emphasize
an importance of convexity in the splitting, we consider a modified linear convex splitting (MLCS) [10] which preserves the
convexity of Ψc(φ) and Ψe(φ) regardless of the value of φ,

Ψ (φ) = Ψc(φ) − Ψe(φ) =




φ2

+
1
4


−


−2φ −

3
4


φ < −1,

φ2
+

1
4


−


3
2
φ2

−
1
4
φ4


φ ∈ [−1, 1],

φ2
+

1
4


−


2φ −

3
4


φ > 1.

(26)

Fig. 2 shows the evolution of solution φ(x, t) obtained from (9) and (26) using CSRK(2, γ−) with two initial conditions
φ(x, 0) = rand(x) and 3 · rand(x) on a domain Ω = [0, 1]. Here, ϵ = 0.01, ∆x = 1/128, Tf = 2−6, and ∆t = Tf /24.
Although the magnitude of 3 is physically less meaningful for the initial condition, we choose it to consider a hypothetic
situation of an unstable or blowup numerical solution at some computational steps. For the case of ∥φ(x, 0)∥∞ = 1, both
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Fig. 2. Evolution of φ(x, t) at t = n∆t = n · 2−10 obtained by CSRK(2, γ−) with the linear (9) and the modified linear (26) convex splittings using two
initial conditions φ(x, 0) = rand(x) and 3 · rand(x).

solutions by (9) and (26) are bounded. However, for the case of ∥φ(x, 0)∥∞ = 3, the solution by (9) becomes unstable,
whereas the solution by (26) becomes stable. This simple example shows that convexity of the splitting is crucial to ensure
the stability of the CSRK methods.

4.2. Second-order convergence and energy stability of CSRK(2, γ±)

To examine the stability of CSRK(2, γ±), we calculate the relative l2-error and evolution of the free energy functional
by solving the AC and CH equations in a domain Ω = [0, 1]. Here, for the numerical simulation, we set ϵ = 0.01 and
∆x = 1/128 and use the randomly perturbed initial condition φ(x, 0) = 0.001 · rand(x). The numerical solution is evolved
up to time Tf = 1000 and Tf = 1000 · ϵ2 for the AC and CH equations, respectively.

Fig. 3 shows the numerical second-order convergence results at t = Tf with the various time steps ∆t =

Tf /218, Tf /217, . . . , Tf /23. Here, the error is computed by comparing with a quadruply over-resolved numerical solution
obtained using CSRK(2, γ−). It is clearly observed that the results of CSRK(2, γ±) give the second-order of accuracy in time.

Fig. 4 illustrates the energy evolutions obtained by CSRK(2, γ−) and CSRK(2, γ+), with relatively large time steps
∆t = Tf /29, Tf /27, Tf /25, Tf /23. Although the energy stability of CSRK(2, γ±) has not yet been proven, the numerical results
show that the energy is non-increasing for a large time step.

4.3. Gamma γ -dependency for convergence and energy stability of CSRK(3, γ )

We demonstrate the numerical convergence of CSRK(3, γ ) for solving the AC and CH equations with ϵ = 0.01, ∆x =

1/128 which provides sufficient spatial accuracy, and an initial condition φ(x, 0) = 0.001 · rand(x) on a domainΩ = [0, 1].
The numerical solution is evolved to time Tf = 100 and Tf = 100 · ϵ2 for the AC and CH equations, respectively.
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Fig. 3. Relative l2-errors using CSRK(2, γ−) and CSRK(2, γ+) for the AC and CH equations. The scaled time step ∆τ is defined as ∆τ = ∆t/ϵ2 for the CH
equation.

Fig. 4. Energy evolutions using CSRK(2, γ−) and CSRK(2, γ+) for the AC and CH equations. The scaled time τ is defined as τ = t/ϵ2 for the CH equation.

Fig. 5 shows the relative l2-errors with various time steps ∆t = Tf /214, Tf /213, . . . , Tf and parameters γ = 0.1,
0.3, 0.5, 0.7 for the AC and CH equations. Here, the errors are computed by comparison with a quadruply over-resolved
reference numerical solution of CSRK(3, γ = 0.1). We also show the error only when energy is non-increasing for the
entire computational time. It is clearly observed that all cases give the third-order accuracy in time when the time step size
is small enough.

However, the energy stability regions differ depending on γ . The first row of Fig. 6 shows the energy stability limit
∆tstab or ∆τstab which is defined as the smallest time step size at which energy can increase at a certain time step. (We
stop checking energy stability limit ∆tstab or ∆τstab up to 100 and we just mark the limit at ∆tstab = 200 or ∆τstab = 200
when the method appears to be unconditionally stable.) The second row of Fig. 6 shows the relative l2-errors when varying
parameter γ with different time steps ∆t = Tf /214, Tf /211, Tf /25. From the results shown in Figs. 5 and 6, we can conclude
that third-order convergence of CSRK(3, γ ) is always guaranteed for a small time step size. However, the energy stability
region of CSRK(3, γ ) strongly depends on the parameter γ and we need to select an appropriate value of γ for a given
equation and parameter set.
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Fig. 5. Relative l2-errors for various time steps and parameters γ using CSRK(3, γ ) for the AC and CH equations.

Fig. 6. Energy stability limits of time step with respect to γ (first row). Relative l2-errors for γ with time steps ∆t = Tf /214, Tf /211, Tf /25 (second row).

5. Numerical experiments

In this section, we present examples to numerically demonstrate the accuracy and efficiency of the proposed CSRK
methods. The first numerical example shows the convergence result for a 1D test problem. The second and third examples
show the spinodal decomposition with a randomly perturbed initial condition in 2D and 3D, respectively. We then apply
CSRK(3, γ = 1/3) to the phase-field crystal equation and compute the growth of a polycrystal in a supercooled liquid in 3D
in order to demonstrate the feasibility of the CSRK in computing the evolution of large systems.

5.1. Numerical convergence test with smooth initial data in 1D

We demonstrate the numerical convergence of the CSRK methods for solving the AC and CH equations with the zero
Neumann boundary condition with the following initial condition on a domain Ω = [0, 1]:

φ(x, 0) = 0.01 cos(πx) + 0.25 cos(4πx) + 0.2 cos(11πx). (27)

For the numerical simulations, ϵ = 0.01 is used and the grid size is fixed to ∆x = 1/128 which provides sufficient spatial
accuracy. The numerical solution is evolved to time Tf = 5 and Tf = 5 · ϵ2 for the AC and CH equations, respectively.
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Fig. 7. Relative l2-errors at t = Tf for various time steps ∆t in 1D. The scaled time step ∆τ is defined as ∆τ = ∆t/ϵ2 .

Fig. 8. Scalability and efficiency of the methods for various time steps ∆τ in 1D.

Fig. 7 shows the relative l2-errors with various time steps ∆t = Tf /212, Tf /211, . . . , Tf for the AC and CH equations.
Here, the errors are computed by comparison with a quadruply over-resolved reference numerical solution obtained using
CSRK(3, γ = 1/3). It is observed that the CSRK methods give the desired order accuracy in time.

Fig. 8 shows the elapsed time by MATLAB Ver 8.3 on a Linux machine with a couple of 2.4 GHz Xeon E5-2620 CPUs and
64GB memory for various time steps and corresponding relative l2-errors to demonstrate the scalability and efficiency of
the methods. Here, we only describe the case of the CH equation, since the AC equation shows a similar result. Compared
to CSRK(1), we need almost 2-fold and 4-fold computational time for CSRK(2) and CSRK(3), respectively. Because the
computational cost is linearly proportional to the number of stages, we expect the more efficient results of the higher order
methods for a desired error. For a single digit error, CSRK(2) and CSRK(3) are already more efficient than CSRK(1). For more
than two digits, CSRK(3) is the most efficient method.

5.2. Spinodal decomposition in 2D

We simulate the spinodal decomposition in a domain Ω = [0, 1] × [0, 1] with the zero Neumann boundary condition,
which is a typical example of the AC and CH equations. For the numerical simulations, we set the space steps ∆x = ∆y =

1/128 and ϵ = 0.01. The initial state is a random perturbation where the average is zero and the amplitude is 0.001:
φ(x, y, 0) = 0.001 · rand(x, y). The final time is Tf = 100 and Tf = 100 · ϵ2 for the AC and CH equations, respectively.

Fig. 9 shows the time evolution of the reference solutions for the AC and CH equations by CSRK(3, γ = 1/3) with
∆t = Tf /216. In the case of the evolution of the CH equation, after the phase separation, the coarsening evolution follows,
which shows a highly inter-connected pattern. In each snapshot, the red, green, and blue regions indicate φ = 1, 0, and −1,
respectively, and the numerical times are shown on the bottom of the subplots.
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Fig. 9. Evolution of the order parameter φ for the (a) AC and (b) CH equations. The scaled time τ is defined as τ = t/ϵ2 .

Fig. 10. Relative l2-errors at t = Tf for various time steps ∆t in 2D.

Fig. 10 shows the numerical convergence of the CSRK methods at the final time Tf with the various time steps
∆t = Tf /214, Tf /213, . . . , Tf /23. Here, the errors are computed by comparison with the quadruply over-resolved reference
numerical solution shown in Fig. 9. It is observed that the CSRK methods give desired order accuracy in time for the 2D
problem.

5.3. Long-time simulation of the spinodal decomposition in 3D

We simulate the spinodal decomposition for the CH equation in a domain Ω = [0, 1]3 with the periodic boundary
condition. For the numerical simulation, we set the space steps ∆x = ∆y = ∆z = 1/64 and ϵ = 0.02. The initial state
is φ(x, y, z, 0) = 0.5 + 0.001 · rand(x, y, z), a small random perturbation from the 75% average concentration between
[−1, 1].

In Fig. 11,we present snapshots of the isosurfaces ofφ solved by CSRK(3, γ = 1/3)with∆t = ϵ2/8. In each snapshot, the
red, green, and blue regions indicate φ = 0.3, 0, and −0.3, respectively. The randomly perturbed initial state is nucleated in
the early stage. As the remaining regions grow, the evolution finally leads to a single spherewhich is a numerical equilibrium
state of this example problem.

Fig. 12 shows the energy dissipation property of the CHequationwith the various time steps∆t = 2·ϵ2, 23
·ϵ2, . . . , 29

·ϵ2.
Even when large time steps are used, the energy evolution shows the energy dissipation. This simulation provides the
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Fig. 11. Evolution of φ for the CH equation. The times are shown below each figure.

Fig. 12. Energy evolution for the CH equation solved by CSRK(3, γ = 1/3) with the various time steps ∆t = 2 · ϵ2, 23
· ϵ2, . . . , 29

· ϵ2 .

numerical evidence that CSRK methods have good energy stability, even though the strong energy stability has not yet
been established.

5.4. Application to the phase-field crystal equation in 3D

The phase-field crystal (PFC) equation is amodel for themicrostructural evolution of two-phase systems on atomic length
and diffusive time scales [25]. The Swift–Hohenberg free energy functional [26] is

EPFC(φ) :=


Ω


1
4
φ4

+
1 − ϵ

2
φ2

− |∇φ|
2
+

1
2
(∆φ)2


dx, (28)

where φ : Ω ⊂ Rd
→ R (d = 1, 2, 3) is the density field and ϵ is a positive constant with physical significance. The PFC

equation is derived from the gradient flow for (28) under the H−1 inner product

∂φ

∂t
= ∆(φ3

+ (1 − ϵ)φ + 2∆φ + ∆2φ), (29)

where we assume that φ is periodic on Ω . Because the equation is the gradient type, it can readily be seen that the energy
functional EPFC(φ) is non-increasing in time.

The PFC equation is a sixth-order nonlinear partial differential equation and thus it is generally not easy to obtain an
analytic solution. In order to solve the PFC equation accurately and efficiently, we first split EPFC(φ) as follows:

EPFC(φ) =


Ω


β

2
φ2

+
1
2
(∆φ)2


dx −


Ω


−

1
4
φ4

+
β − 1 + ϵ

2
φ2

+ |∇φ|
2

dx,

= E c
PFC(φ) − E e

PFC(φ),

where E c
PFC and E e

PFC are convex for |φ| <
√

(β − 1 + ϵ)/3. Note that, while the larger β renders CSRK more stable, CSRK
may lose computational precision. We then apply CSRK(3, γ = 1/3) to the PFC equation with β = 4,

∂φ

∂t
=


β∆φ + ∆3φ


+


∆(φ3

− (β − 1 + ϵ)φ) + 2∆2φ

,

= f (φ) + g(φ). (30)

Fig. 13 shows the numerical simulation of crystal growth in three dimensions. We simulate the growth and interaction
of two crystallites that originate from two nucleation sites. The computational domain is Ω = [0, 128]3, and we assume
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Fig. 13. Crystal growth in a supercooled liquid in 3D. The first row shows isosurfaces of the solution, while the second row presents a slice of the solution
across a plane. The times are shown below each figure. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.) .

Fig. 14. Energy evolution for the PFC equation.

periodic boundary conditions in all directions. For this calculation, we employ ϵ = 0.25, a uniformmesh ∆x = ∆y = ∆z =

1, and ∆t = 1.
The initial configuration is generated as follows. We let a randomly perturbed constant (liquid) state evolve to a periodic

lattice (solid) state, φ(x, y, z, 0) = 0.285 + 0.1 · rand(x, y, z). We extract two subregions of the numerical solutions at
t = 1000 with a hexahedric shape, and superpose them to a constant density field φ = 0.285. The first row in Fig. 13
shows the isosurfaces of the density field, while the second row presents a slice of the solution across the indicated plane. In
each slice, the red, green, and blue regions indicate φ = 0.6835, −0.0342, and −0.7519, respectively. Similar computation
results can be found in [16,9,18].

Fig. 14 shows the time evolution of the energy functional EPFC(φ). It is clearly shown that the energy is non-increasing
with time, whereby the numerical result is energy stable.

6. Conclusions

The first-order convex splitting schemehas beenwell known in the field of numericalmethods for the phase-fieldmodels.
Even though the convex splitting concept seems to be compatible with the framework of implicit–explicit Runge–Kutta
(IMEX-RK) methods, the combining of the two concepts is not popular in the phase-field research community.

In this paper, we presented the first, second, and some special cases of the third-order Convex Splitting Runge–Kutta
(CSRK) methods for solving phase-field models such as the Allen–Cahn, Cahn–Hilliard, and phase-field crystal equations.
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Practically, convex splitting hasmany possibilities andwe specifically investigated the efficiency and feasibility of nonlinear,
modified linear, and classical linear convex splitting methods. We also numerically tested the CSRK methods with linear
convex splitting using some of typical examples.

Because the CSRK schemes are based on the RK scheme, the time accuracy is clearly verified and can be easily extended to
the high-order accuracy. Expecting that the convex splitting positively affects the stability, we numerically investigated the
energy stability of CSRK methods. We observed that some CSRK methods preserve the energy stability for practically large
time steps, even though the convex splitting itself is not sufficient. Unlike time accuracy, the unconditional energy stability
has not yet been theoretically guaranteed, except for the CSRK(1) method. However, the significant improvement of the
energy stability was observed for some of themethods. Therefore, investigating away to improve andmathematically prove
the energy stability will be valuable. We have a plan to present the proof of energy stability for high order CSRK methods in
near future.
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Appendix A. Order conditions for implicit–explicit Runge–Kutta method

We now describe the derivation and order conditions up to the third-order accuracy for implicit–explicit Runge–Kutta
(IMEX-RK) methods. Various explanations for the order conditions of Runge–Kutta (RK) methods can be found in [22,27],
which present the derivations of the solutions and relations between the tree and elementary differentials to understand
the order conditions. In this work, we seek to understand the order conditions by only using the matrix multiplication and
the Taylor expansion.

We assume that the coefficients (c,A, b) and (ĉ, Â, b̂) satisfy the conditions c = A1, b·1 = 1, ĉ = Â1, and b̂·1 = 1. Note
that, from these assumptions, analyzing the order conditions for an autonomous system is sufficient for non-autonomous
systems yt(t) = f (t, y) + g(t, y) [28].

The Taylor expansion of the exact solution of system (11) can be written in terms of the elementary differentials as

y(h) = y0 + h(f + g) +
h2

2
(f ′

+ g ′)(f + g) +
h3

6
(f ′′

+ g ′′)(f + g)2 +
h3

6
(f ′

+ g ′)2(f + g) + O(h4), (31)

where all function values of f , g , and their derivatives are evaluated at y0. From (16), the Taylor expansion of the RK solution
after one step can now be given by

y(h) = y0 + h(b · k + b̂ · k̂), (32)

where

k = f 1 + hcff ′
+ hĉgf ′

+
1
2
h2(cf + ĉg)2f ′′

+ h2A(cf + ĉg)f ′f ′
+ h2Â(cf + ĉg)g ′f ′

+ O(h3), (33)

k̂ = g1 + hcfg ′
+ hĉgg ′

+
1
2
h2(cf + ĉg)2g ′′

+ h2A(cf + ĉg)f ′g ′
+ h2Â(cf + ĉg)g ′g ′

+ O(h3). (34)

By equating the coefficients of the elementary differential (31) with the Taylor expansion (32), we can obtain the order
conditions (Table 1). Conditions of the second and third columns of Table 1 are the standard order conditions for each table
to satisfy the accuracy. Conditions of the fourth column of Table 1 arise because of the coupling of the two schemes. Note
that the conditions b · Âc = b̂ · Ac = 1/6 and b · Âĉ = b̂ · Aĉ = 1/6 can be used instead of the compact conditions
b · Âc + b̂ · Ac = 1/3 and b · Âĉ + b̂ · Aĉ = 1/3, because a solution might be easier to find from the system of algebraic
equations.

Appendix B. Some specific examples for implicit–explicit Runge–Kutta method

In this appendix, we describe the Butcher tables for IMEX-RK schemes up to the third-order. We can find other tables
that are not introduced in this appendix, since we do not deal with all cases for IMEX-RK tables. As mentioned in Section 3,
we consider the three additional conditions as follows:

c = ĉ, (35)
aii = γ , for i = 1, 2, . . . , s, (36)

bi = asi and b̂i = âsi, for i = 0, 1, . . . , s. (37)
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Table 2
Order conditions for IMEX-RK methods up to the third order accuracy.

Order Stand-alone conditions Coupling conditions
IM EX

1 b · 1 = 1 b̂ · 1 = 1 –

2 b · c = 1/2 b̂ · c = 1/2 –

3 b · c2 = 1/3 b̂ · c2 = 1/3 b · Âc + b̂ · Ac = 1/3
b · Ac = 1/6 b̂ · Âc = 1/6

Because the condition (35) is added, we could reduce the massive order conditions (see Table 2).
First, we can represent the well-known semi-implicit schemes in the 1-stage IMEX-RK table. Note that this is a unique

1-stage IMEX-RK table satisfying the three additional conditions.

0 0 0
1 0 1

0 1

0 0 0
1 1 0

1 0

(38)

Next, we consider the 2-stage IMEX-RK to obtain the second-order accuracy.

0 0 0 0
γ 0 γ 0
1 0 b1 γ

0 b1 γ

0 0 0 0
γ γ 0 0
1 b̂0 b̂1 0

b̂0 b̂1 0

(39)

where the coefficients γ , b1, b̂0, and b̂1 satisfy the first- and second-order conditions

b1 + γ = 1, γ b1 + γ = 1/2, b̂0 + b̂1 = 1, γ b̂1 = 1/2. (40)

From the quadratic equation, γ (1 − γ ) + γ = 1/2, we have γ = (2 ±
√
2)/2. We then obtain b1 = 1 − γ , b̂1 = 1/(2γ ),

and b̂0 = 1 − b̂1. Note that the Butcher table (39) and these solutions are identical to those shown in the table in [24].
To develop the third-order accuratemethods, we could consider the 3-stage IMEX-RK table. However, we could not find a

pair consisting of a 3-stage SDIRK and ERK that satisfies the third-order accurate and additional conditions.We now consider
a combination of 4-stage SDIRK and ERK methods.

0 0 0 0 0 0
γ 0 γ 0 0 0
c2 0 a21 γ 0 0
c3 0 a31 a32 γ 0
1 0 b1 b2 b3 γ

0 b1 b2 b3 γ

0 0 0 0 0 0
γ γ 0 0 0 0
c2 â20 â21 0 0 0
c3 â30 â31 â32 0 0
1 b̂0 b̂1 b̂2 b̂3 0

b̂0 b̂1 b̂2 b̂3 0

(41)

Table 3 lists the order conditions up to the third order accuracy for the IMEX-RK table (41). The algebraic equations
(Ta.3;1)–(Ta.3;4) and (Ta.3;5)–(Ta.3;8) are the standard order conditions for each table to satisfy the third-order accuracy.
Also, (Ta.3;9) and (Ta.3;10) are the coupling conditions for constructing the IMEX-RK tables where we choose b · Âc = 1/6
and b̂ · Ac = 1/6 instead of b · Âc + b̂ · Ac = 1/3. For example, we explain the derivation of (Ta.3;3). From the condition
b · c2 = 1/3, we have

b1γ 2
+ b2c22 + b3c23 + γ = 1/3. (42)

Using c ′

2 and c ′

3, we can rewrite (42) as

(b1 + b2 + b3)γ 2
+ 2γ (b2c ′

2 + b3c ′

3) + γ + (b2c ′2
2 + b3c ′2

3 ) = 1/3. (43)

By using (Ta.3;1) and (Ta.3;2), we finally have b2c ′2
2 + b3c ′2

3 = 1/3 − 2γ + 3γ 2
− γ 3

= p3.
An easy way to find four-stage IMEX-RK schemes is to construct a SDIRK first using (Ta.3;1)–(Ta.3;4). We then find b̂

using (Ta.3;5)–(Ta.3;7) and (Ta.3;10). Finally â21, â31, and â32 are obtained using (Ta.3;8) and (Ta.3;9), and â20, â30 are then
obtained.
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Table 3
Algebraic equations to satisfy the third-order condition for (41).

Matrix form Algebraic form

b · 1 = 1 b1 + b2 + b3 = p1 (Ta.3;1)
b · c = 1/2 b2c ′

2 + b3c ′

3 = p2 (Ta.3;2)
b · c2 = 1/3 b2c ′2

2 + b3c ′2
3 = p3 (Ta.3;3)

b · Ac = 1/6 b3a32c ′

2 = p4 (Ta.3;4)
b̂ · 1 = 1 b̂0 + b̂1 + b̂2 + b̂3 = 1 (Ta.3;5)
b̂ · c = 1/2 b̂1γ + b̂2c2 + b̂3c3 = 1/2 (Ta.3;6)
b̂ · c2 = 1/3 b̂1γ 2

+ b̂2c22 + b̂3c23 = 1/3 (Ta.3;7)
b̂ · Âc = 1/6 b̂2â21γ + b̂3(â31γ + â32c2) = 1/6 (Ta.3;8)
b · Âc = 1/6 b2â21γ + b3(â31γ + â32c2) = q1 (Ta.3;9)
b̂ · Ac = 1/6 b̂2a21γ + b̂3(a31γ + a32c2) = q1 (Ta.3;10)

p1 = 1 − γ q1 = 1/6−γ /2
p2 = 1/2 − 2γ + γ 2 c ′

2 = c2 − γ

p3 = 1/3 − 2γ + 3γ 2
− γ 3 c ′

3 = c3 − γ

p4 = 1/6 − 3γ /2 + 3γ 2
− γ 3

We introduce an algorithm for constructing the four-stage third-order SDIRK methods, choosing c1 and b3 as free
parameters with c1 = c3. We should note that there are other algorithms using a different set of free parameters.
Algorithm for SDIRK

(a) Choose c1 = c3 = γ ≠ 0 and b3 ≠ 0 with c2 ≠ c1 and b2 ≠ 0.
(b) c ′

2 = p3/p2, b2 = p2/c ′

2, b1 = p1 − b2 − b3, a32 = p4/(b3c ′

2), a31 = c ′

3 − a32, and a21 = c ′

2.
After constructing the SDIRK table for an implicit term, we construct the table for the explicit term considering the

standard and coupling order conditions.
Algorithm for ERK using a given SDIRK

(a) b̂1, b̂2, b̂3 from the linear system (Ta.3;6), (Ta.3;7), and (Ta.3;10).
(b) b̂0 = 1 − b̂1 − b̂2 − b̂3.
(c) If b3b̂2 − b2b̂3 ≠ 0, â21 =

b3+(3γ−1)b̂3
6γ (b3 b̂2−b2 b̂3)

and â20 = c2 − â21.

(d) Choosing â32 as a free parameter, â31 =
1/6−b̂2 â21γ−b̂3 â32c2

b̂3γ
and â30 = c3 − â31 − â32.

The table constructed by using the algorithms for SDIRK and ERK choosing c1 = c3 = b3 = γ is the one parameter
family, IMEX-RK(3, γ ), introduced in Section 3.
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