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Abstract In this paper, we develop an operator splitting Fourier spectral method for models
of epitaxial thin film growth with and without slope selection. A main idea of the method
is to split the original equation into linear and nonlinear parts, and then to evolve one step
which consists of three substeps. The linear part is solved by the spectral method, which
has a closed-form solution in the Fourier space. And the nonlinear part is also solved by the
spectral method combined with the Crank–Nicolson type method. We numerically demon-
strate that our method achieves spectral accuracy in space and second-order accuracy in time
and alleviates restriction on the time step. We also perform long time simulations for the
coarsening process to show the capability of the method.

Keywords Epitaxial thin film growth ·Operator splitting method · Fourier spectral method ·
High-order accuracy

Mathematics Subject Classification 35Q99 · 65M12 · 65M70

1 Introduction

The epitaxial thin film growth model is the gradient flow of the following energy functional

E(φ) =
∫

Ω

(
F(∇φ) + δ

2
|Δφ|2

)
dx, (1)
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whereΩ is a domain inRd (d = 1, 2, 3), φ : Ω → R is a scaled height function of a thin film
in a co-moving frame, F(∇φ) is a smooth function of its argument ∇φ, and δ is a constant.
The first term, EES(φ) = ∫

Ω
F(∇φ) dx, models the Ehrlich–Schwoebel effect [1–3] where

an adatom must overcome a higher energy barrier to stick to a step from an upper terrace.
The second term, ESD(φ) = ∫

Ω
δ
2 |Δφ|2 dx, models surface diffusion. There are two choices

for F(∇φ) in EES(φ):

F1(∇φ) = 1

4

(|∇φ|2 − 1
)2

in [4] (2)

and

F2(∇φ) = −1

2
ln

(
1 + |∇φ|2) in [5]. (3)

The L2-gradient flows of (1) with F1(∇φ) and F2(∇φ) are

∂φ

∂t
= ∇ · (|∇φ|2 ∇φ

) − Δφ − δΔ2φ (4)

and

∂φ

∂t
= ∇ ·

( |∇φ|2
1 + |∇φ|2 ∇φ

)
− Δφ − δΔ2φ, (5)

respectively. F2(∇φ) is bounded above and unbounded below. Furthermore, it has no relative
minima, which implies that there are no energetically favored values for |∇φ|. Physically this
means that there is no slope selection mechanism. On the other hand, the model with F1(∇φ)

has a slope selection mechanism (|∇φ| = 1 is preferred). For this reason, we call Eq. (4) the
growth equation with slope selection and Eq. (5) the growth equation without slope selection.
Equation (4) can be viewed as an approximation of Eq. (5) under the assumption that |∇φ|
is small.

Recently, there have beenmany theoretical and numerical studies on the epitaxial thin film
growth models (4) and (5). In [6], the well-posedness and solution regularity of the initial-
boundary-value problem for Eq. (4) are proved. In [7], the well-posedness and solution
regularity for Eqs. (4) and (5) are proved. The authors also prove bounds and error esti-
mates for Galerkin spectral approximations. In [4,8,9], the difference between the interfacial
dynamics governed by Eqs. (4) and (5) is investigated. Equation (4) predicts that pyramidal
structures in the surface profile tend to have a uniform, constant mound slope [4,8]. On the
other hand, Eq. (5) predicts an unbounded mound slope [9]. In [10], the authors apply Eyre’s
convex splitting idea [11] to Eqs. (4) and (5). A scheme proposed in [10] is first-order accurate
in time and nonlinear due to the implicit treatment of the nonlinear term, and a second-order
scheme based on the nonlinear convex splitting in [10] is proposed in [12]. In [10,12], the
second-order central difference method is used for the space discretization. In [13], a linear
iteration algorithm is presented to implement the second-order scheme in [12] for Eq. (5). In
[14], the authors propose a first-order scheme for Eq. (5), which is based on a linear convex
splitting. In [13,14], the spectral method is used for the space discretization.

The operator splitting method [15–20] can be applied to the epitaxial thin film growth
models (4) and (5), which is to split the original equation into linear and nonlinear parts. It
is theoretically proven [21–25] that one step evolution consisting of three substeps achieves
second-order accuracy in time,

φ(t + Δt) = (LΔt/2 ◦ NΔt ◦ LΔt/2) φ(t) + O(Δt3), (6)
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whenL andN are the exact solution operators for the linear and nonlinear parts of the original
equation, respectively. In order to implement the operator splitting method, the exact solution
operatorsL andN have to be replaced by their numerical approximations. The linear part can
be easily solved by the spectralmethodwhich yields an exponentially accurate approximation
to the solution operator L. But there is a challenging problem how to numerically solve the
nonlinear part with at least second-order accuracy in time in order to guarantee second-order
accuracy of the operator splitting method (6). In [26], Cheng et al. solve the nonlinear part
by the fourth-order central difference method combined with the third-order explicit Runge–
Kutta method proposed in [27] and numerical experiments show that the proper constant
time step should be of the order of δ/100.

In this paper, we develop an operator splitting Fourier method for the epitaxial thin film
growthmodels (4) and (5). The nonlinear part is also solved by the spectral method combined
with the Crank–Nicolson type method which is known to be a stable second-order method
in time. Thus our method alleviates restriction on the time step while maintaining spectral
accuracy in space, which is a main contribution of our work. The convergence rate of our
method is not proved theoretically but we numerically demonstrate that our method achieves
spectral accuracy in space and second-order accuracy in time.

The aim of this paper is to provide a simple and efficient numericalmethod for the epitaxial
thin film growthmodels (4) and (5). This paper is organized as follows. In Sect. 2, we propose
a second-order operator splitting Fourier spectral method for the epitaxial thin film growth
models (4) and (5). Numerical experiments are presented in Sect. 3. Finally, conclusions are
drawn in Sect. 4.

2 Second-Order Operator Splitting Fourier Spectral Method

Equations (4) and (5) can be rewritten in the form

∂φ

∂t
= ∇ · ( G(|∇φ|) ∇φ ) − Δφ − δΔ2φ, (7)

where G(s) = s2 for Eq. (4) and G(s) = s2/(1 + s2) for Eq. (5). We consider Eq. (7) in
two-dimensional periodic space Ω = [0, L1] × [0, L2] for simplicity of description. Let N1

and N2 be positive integers, Δx = L1/N1 and Δy = L2/N2 be the space step sizes, and Δt
be the time step size. Let φn

l1l2
be an approximation of φ(xl1 , yl2 , t

n), where xl1 = l1Δx for
l1 = 0, 1, . . . , N1−1, yl2 = l2Δy for l2 = 0, 1, . . . , N2−1, and tn = nΔt .

For simplicity of notation, we define the “linear operator” LΔt as follows:

LΔt (φ(tn)) := φ(tn + Δt),

where φ(tn + Δt) is a solution of the linear equation

∂φ

∂t
= −Δφ − δΔ2φ

with an initial condition φ(tn). In order to solve Eq. (7) with the periodic boundary condition,
we employ the discrete Fourier transform: for k1 = 0, 1, . . . , N1−1, k2 = 0, 1, . . . , N2−1,
φ̂k1k2 = ∑N1−1

l1=0

∑N2−1
l2=0 φl1l2e

−i
(
xl1 ξk1+yl2 ξk2

)
, where ξk1 = 2πk1/L1 and ξk2 = 2πk2/L2.

Then, we have an analytical formula for LΔt in the discrete Fourier space

LΔt (φ) = F−1
[
eAk1k2ΔtF [φ]

]
,
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where Ak1k2 =
(
ξ2k1 + ξ2k2

)
− δ

(
ξ2k1 + ξ2k2

)2
and F denotes the discrete Fourier transform

and F−1 its inverse transform. We also define the “nonlinear operator” NΔt as follows:

NΔt (φ(tn)) := φ(tn + Δt),

where φ(tn + Δt) is a solution of the nonlinear equation

∂φ

∂t
= ∇ · (G(|∇φ|)∇φ) (8)

with an initial condition φ(tn).
A second-order operator splitting method for Eq. (7) can be represented as

φn+1 = (LΔt/2 ◦ NΔt
2 ◦ LΔt/2) φn, (9)

where φn and φn+1 are approximations of φ(tn) and φ(tn + Δt), respectively. In order to
solve NΔt

2 with second-order accuracy, we apply the Crank–Nicolson type method to Eq.
(8)

φn+1 − φn

Δt
= ∇ ·

(
G

(∣∣∣∇φn+ 1
2

∣∣∣
)

∇ φn+1 + φn

2

)
, (10)

where φn+ 1
2 is obtained by solving

φn+ 1
2 − φn

0.5Δt
= ∇ ·

(
G

(|∇φn |)∇φn+ 1
2

)
.

Equation (10) can be rewritten in the form

Aφn+1 = φn + Δt

2
∇ ·

(
G

(∣∣∣∇φn+ 1
2

∣∣∣
)

∇φn
)

, (11)

where

A = 1 + Δt

2
F−1

[
ξk1FG

(∣∣∣∇φn+ 1
2

∣∣∣
)
F−1ξk1 + ξk2FG

(∣∣∣∇φn+ 1
2

∣∣∣
)
F−1ξk2

]
F .

The operatorA is symmetric and positive definite, thus a fast solver such as the preconditioned
conjugate gradient (PCG) method is used to solve the system (11).

The stopping criterion for the PCG iteration is that a relative residual is less than a tolerance
(10−11 in this paper).

3 Numerical Experiments

In this section, we present examples (growth dynamics in 1D and 2D, and coarsening dynam-
ics in 2D) for the epitaxial thin film growth models (4) and (5) to numerically demonstrate
the accuracy and robustness of the proposed method. Here, we will see the evolution of the
height function φ(x, t), energy E(t), and roughness w(t) which is defined by

w(t) =
√

1

|Ω|
∫

Ω

(
φ(x, t) − φ̄(t)

)2
dx,

where φ̄(t) = 1
|Ω|

∫
Ω

φ(x, t) dx.
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3.1 Growth Dynamics in 1D

We first demonstrate the convergence of the proposed method numerically. For the case with
slope selection (4), we take an initial condition as

φ(x, 0) = 0.1

(
sin

πx

2
+ sin

2πx

3
+ sin πx

)

on a domain Ω = [0, 12]. We set δ = 1 and compute φ(x, t) for 0 < t ≤ T f = 120.
This example was studied in [7] to observe the morphological instability due to the nonlinear
interaction. In order to estimate the convergence rate with respect to Δt , simulations are
performed by varying Δt = 0.1 · 2−10, 0.1 · 2−9, . . . , 0.1 · 2. We take the quadruply over-
resolved numerical solution as the reference solution.

Figure1 shows the evolution of the reference solution φ(x, t) with Δx = 12/256 for the
case with slope selection (4). The initial oscillation is damped at t = 1. After a relatively
long time, a new oscillation is generated, and then grows exponentially. The high-order
perturbation analysis in [7] claims that high frequency modes with wavenumbers k j larger
than a critical wavenumber kc = √

1/δ in an initial condition decay exponentially fast and a
new low frequency mode can be generated, whose wavenumber is a combination of k j and is
smaller than kc. In this simulation, the critical wavenumber is kc = 1 and the wavenumbers
in the initial condition are 3, 4, and 6, thus the new oscillation in the steady state reached at
t = 60 consists of only one sinusoidal profile.

The evolution of the energy E(t) and roughness w(t) for the reference solution φ(x, t) is
shown inFig. 2. Initially both the energy and roughness decay rapidly.However, the roughness
continues to grow for a relatively long time. Note that the flat end in Fig. 2 indicates that a
steady state is reached. The results in Figs. 1 and 2 are in good agreement with those in [7].

For the case without slope selection (5), we take an initial condition as

φ(x, 0) = 0.1

(
sin

2πx

3
+ sin πx + sin

4πx

3

)

Fig. 1 Evolution of the reference solution φ(x, t) for the case with slope selection (4) for δ = 1 with
Δx = 12/256
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Fig. 2 Evolution of the energy (left) and roughness (right) for the reference solution φ(x, t) for the case with
slope selection (4) for δ = 1

Fig. 3 Evolution of the reference solution φ(x, t) for the case without slope selection (5) for δ = 1/4 with
Δx = 12/256

on a domainΩ = [0, 12]. We choose δ = 1/4 to have slightly bigger kc and compute φ(x, t)
for 0 < t ≤ T f = 30. Figures3 and 4 show the evolution of the reference solution φ(x, t)
with Δx = 12/256 and of E(t) and w(t), respectively. Note that all the wavenumbers in the
initial condition used in this simulation are 4, 6, and 8, and the critical wavenumber is 2.
Thus the initial modes decay but a new mode with wavenumber 2 is generated.

For Δx = 12/64, 12/256, 12/1024, Fig. 5a, b show the relative l2-errors of φ(x, t) for
the cases with slope selection for δ = 1 and without slope selection for δ = 1/4 at different
times for various time steps, respectively. For each grid size, the errors are computed by
comparison with the reference solution. It is observed that the proposed method gives full
spatial accuracy even with Δx = 12/64 and second-order time accuracy regardless of grid
size.

3.2 Numerical Stability with Random Perturbation in 1D

In order to investigate the effect of δ on the growth dynamics, we consider the case with
slope selection (4) withΔt = 0.001 andΔx = 12/256 on a domainΩ = [0, 12] and take an
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Fig. 4 Evolution of the energy (left) and roughness (right) for the reference solution φ(x, t) for the case
without slope selection (5) for δ = 1/4

(a) (b)

Fig. 5 Relative l2-errors of φ(x, t) for the cases awith slope selection for δ = 1 and bwithout slope selection
for δ = 1/4 at different times for various grid sizes and time steps

initial condition as φ(x, 0) = rand(x), where rand(x) is a random number between−0.2 and
0.2. Figure6 shows the evolution of φ(x, t) and its energy E(t) for various δ. In each figure,
the energy E(t) is omitted at t = 0 and plotted from t = 0.001. We observe that the high
frequency modes in the initial condition decay exponentially fast and the remaining modes
in the transient state evolve to relatively low frequency modes with wavenumber less than
and equal to

√
1/δ. This numerical test strongly suggests that spatial discretization size for

a resolved computation must be chose depending on the smoothness of the initial data and
kc = √

1/δ.
Next, to demonstrate numerical stability of the proposedmethod,we consider the casewith

slope selection (4) with δ = 1, Δt = 0.001, and Δx = 12/256 on a domain Ω = [0, 12].
Two tests have been done: one with random perturbation of size η only at the initial step,
and the other with random perturbation of size μ at every computational steps. First we add
a random noise to a smooth test function φ0(x, 0) = 0.1

(
sin πx

2 + sin 2πx
3 + sin πx

)
for an

initial condition,

φη(x, 0) = φ0(x, 0) + η · rand(x)‖φ0(x, 0)‖2, (12)
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(a)

(b)

(c)

Fig. 6 Effect of δ on the growth dynamics φ(x, t) for the case with slope selection (4). In each figure, the
energy E(t) is omitted at t = 0 and plotted from t = 0.001
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(a) (b)

Fig. 7 Relative l2-errors of a φη(x, 120) and b φμ(x, 120) for the case with slope selection (4) for δ = 1

where η is a magnitude of random noise and rand(x) is a random number with ‖rand(x)‖2 =
1. Figure7a shows the relative l2-errors of the computed solution,

‖φn
η (x)−φn

0 (x)‖2
‖φn

0 (x)‖2 for various

η at tn = 120.
And we also test a case with random perturbation at every computational steps using an

initial condition φμ(x, 0) chosen as in (12) and a random noise added to a computed solution
at each time step,

φn+1
μ (x) = (LΔt/2 ◦ NΔt

2 ◦ LΔt/2) (
φn

μ(x) + μ · rand(x)‖φn
μ(x)‖2

)
. (13)

The relative l2-errors of the computed solution,
‖φn

μ(x)−φn
0 (x)‖2

‖φn
0 (x)‖2 for various μ at tn = 120 are

shown in Fig. 7b. The results in Fig. 7 indicate that the proposed method is linearly stable for
a random noise.

We make a short remark on the numerical convergence of the proposed method before
closing this subsection. In the previous subsection, we numerically show that the method is
spectrally accurate in space and second-order consistent in time with smooth initial data. In
this subsection, we also numerically demonstrate that the method is numerically stable for a
random (high frequency) noise and the spatial discretization size for a resolved computation
depends on kc = √

1/δ. From the consistency and the stability, we believe that the method
is convergent with spectral accuracy in space and second-order accuracy in time.

3.3 Growth Dynamics in 2D

Next, we consider the growth equations (4) and (5) in two-dimensional space. An initial
condition is

φ(x, y, 0) = 0.1 (sin 3x sin 2y + sin 5x sin 5y)

on a domain Ω = [0, 2π ] × [0, 2π ]. We set δ = 0.1 and compute φ(x, y, t) for 0 < t ≤
T f = 30. The grid size is fixed to Δx = 2π/64 which provides enough spatial accuracy.
In order to estimate the convergence rate with respect to Δt , simulations are performed by
varyingΔt = 0.01·2−8, 0.01·2−7, . . . , 0.01.We take the quadruply over-resolved numerical
solution as the reference solution.

Figures8 and 9 show the evolution of the reference solution φ(x, y, t) and of E(t) and
w(t) for the case with slope selection (4), respectively. The initial condition consists of two

123

Author's personal copy



1312 J Sci Comput (2017) 71:1303–1318

Fig. 8 Evolution of the reference solution φ(x, y, t) for the case with slope selection (4) for δ = 0.1

Fig. 9 Evolution of the energy (left) and roughness (right) for the reference solution φ(x, y, t) for the case
with slope selection (4) for δ = 0.1

modes mod3,2 and mod5,5. One of these modes, mod5,5, disappears at t = 0.05. At t = 2.5,
both of these modes disappear but a new mode is generated. Another new mode appears at
t = 5.5 but this mode almost disappears at t = 8. At t = 30, we can see a steady state which
consists of only one mode mod1,1.

Similar growth dynamics is observed in the case without slope selection (5) (see Figs. 10
and 11). In particular, the initial rough-smooth-rough pattern is the same. However, the height
φ for the case without slop selection is larger in magnitude than that for the case with slope
selection, and the energy becomes negative. The results in Figs. 8, 9, 10 and 11 are in good
agreement with those in [7].

Figure12a, b show the relative l2-errors of φ(x, y, t) for the cases with and without
slope selection at t = 0.05, 8, 30 for various time steps, respectively. Here, the errors are
computed by comparison with the reference solution. It is observed that the proposed method
gives second-order accuracy in time.

The number of the PCG iterations with Δt = 0.005 and 0.01 for the case with slope
selection (4) is shown in Fig. 13. For large time step, the number of the PCG iterations is
within 10, and thus the CPU times consumed in our algorithm are cheap (68.5 and 47.2 (Sec)
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Fig. 10 Evolution of the reference solution φ(x, y, t) for the case without slope selection (5) for δ = 0.1

Fig. 11 Evolution of the energy (left) and roughness (right) for the reference solution φ(x, y, t) for the case
without slope selection (5) for δ = 0.1

(a) (b)

Fig. 12 Relative l2-errors of φ(x, y, t) for the cases a with and b without slope selection for δ = 0.1 at
t = 0.05, 8, 30 for various time steps
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Fig. 13 Number of the PCG iterations for the case with slope selection (4) for δ = 0.1

Fig. 14 The solution φ ranging [−45, 45] (top) and contour plots of the free energy Ffree (bottom) for the
case with slope selection (4) for δ = 1

for Δt = 0.005 and 0.01, respectively, using MATLAB 7.14 on a machine with 3.2 GHz
Intel i5 CPU and 4 GB memory).

3.4 Coarsening Dynamics in 2D

With slope selection, the growth equation (4) predicts E(t) ∼ O(t−1/3) and w(t) ∼ O(t1/3)
as t → ∞. Likewise, without slope selection, the growth equation (5) predicts E(t) ∼
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Fig. 15 t−1/3 energy decay rate for the case with slope selection (4) for δ = 1. The dots represent the plots
obtained by the numerical simulation

Fig. 16 t1/3 roughness growth rate for the case with slope selection (4) for δ = 1. The dots represent the
plots obtained by the numerical simulation

O(− ln(t)) and w(t) ∼ O(t1/2) as t → ∞. (See [7,8,28] and reference therein). In order
to compare our numerical solutions with the predicted energy decay and roughness growth
rates, we take an initial condition as φ(x, y, 0) = rand(x, y) on a domain Ω = [0, 1000] ×
[0, 1000]. Here, rand(x, y) is a random number between −0.001 and 0.001, and we use
δ = 1, Δx = 1000/256, and Δt = 1.

For the case with slope selection (4), Fig. 14 shows the solution φ and the contour lines
of the free energy Ffree(x, t) at t = 30, 000 and 80, 000, where Ffree is defined by

Ffree = 1

4

(|∇φ|2 − 1
)2 + δ

2
|Δφ|2.

The free energy is concentrated on the edges of the pyramidal structures and the pyramids
grow in time via a coarsening process. These results are in good agreement with those in
[8,26,29]. Figures15 and 16 show the evolution of the energy E(t) and roughness w(t),
respectively. The energy decays like t−1/3 and the roughness grows like t1/3, which match
the results in [7,8,28].

For the case without slope selection (5), Figs. 17, 18 and 19 show the solution φ and the
contour lines of Ffree(x, t), the decay of E(t), and the growth of w(t), respectively, where
Ffree is defined by

123

Author's personal copy



1316 J Sci Comput (2017) 71:1303–1318

Fig. 17 The solution φ ranging [−350, 350] (top) and contour plots of Ffree (bottom) for the case without
slope selection (5) for δ = 1

Fig. 18 − ln(t) energy decay rate for the case without slope selection (5) for δ = 1. The dots represent the
plots obtained by the numerical simulation

Ffree = −1

2
ln

(
1 + |∇φ|2) + δ

2
|Δφ|2.

The energy decays like − ln(t) and the roughness grows like t1/2, which match the results in
[7,8,28].
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Fig. 19 t1/2 roughness growth rate for the case without slope selection (5) for δ = 1. The dots represent the
plots obtained by the numerical simulation

4 Conclusions

We developed the operator splitting Fourier spectral method for models of epitaxial thin film
growth with andwithout slope selection. Themain idea of themethodwas to split the original
equation into linear and nonlinear parts, and then to evolve one step which consists of three
substeps: φn+1 = (LΔt/2 ◦ NΔt

2 ◦ LΔt/2
)
φn . Both linear and nonlinear parts were solved by

the spectral method.We numerically demonstrated that themethod gives full spatial accuracy
and second-order time accuracy. We also performed long time simulations for the coarsening
process, where the energy decay and roughness growth rates (t−1/3 and t1/3 for the case with
slope selection, and − ln(t) and t1/2 for the case without slope selection) can be observed
clearly.

In the present work, the convergence rate of the method was only shown numerically.
Thus, in future work, we plan to analyze the convergence rate of the method theoretically.
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