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Two-dimensional vortex sheet suffers an unstable deformation from the Kelvin–Helmholtz instability
and a curvature singularity which develops in a finite time. In this paper, long time computations of the
two-dimensional vortex sheet are performed by a robust and efficient numerical method with high
accuracy. To handle the rapid and non-uniform stretching of the interface, we adopt the adaptive point
insertion and redistribution procedures. Computational results show highly refined structures of a
complex and chaotic pattern for the vortex sheet up to very long time.
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1. Introduction

A periodically perturbed vortex sheet is a simple model
for the instability of a parallel shear flow to streamwise
perturbations. In this model, the transition region between
the two streams is approximated by a surface across which
the tangential velocity is discontinuous. This vortex sheet
has drawn a lot of attention ever since Birkhoff.4) Asymp-
totic analysis and numerical results show that a singularity
forms in the vortex sheet at a finite time.4,9,15) Due to the
singularity from Kelvin–Helmholtz instability, numerical
simulations for the vortex sheet have significant difficulties.
In this paper, we present long time simulations for the vortex
sheet in two dimensions by a robust point vortex method.

In the point vortex method, the vortex sheet is considered
as a set of point vortices which are computed in Lagrangian
manner. To deal with the singularity and instability of the
vortex sheet, point vortices are usually regularized by
vortices with finite cores or ‘‘blobs’’ of vorticity. This type
of desingularization method was originally introduced by
Chorin and Bernard6) and successfully applied to the vortex
sheet by Krasny.10) Recent studies on the vortex sheet can be
found in literature2,5,8,13,14,17) and traced by the references
therein.

Although the vortex sheet has been extensively studied for
last decades, long time structures of the vortex sheet are not
thoroughly investigated yet, due to complex or chaotic
pattern as well as heavy computations. The complex pattern
in long time was first predicted by Krasny.11) Recently,
Sakajo and Okamoto17) applied a fast algorithm to simulate
the long time evolution of vortex sheet. Although the
result17) gives the overall correct description for the vortex
sheet, it does not provide the fine structure for chaotic
patterns around the core part of vortex sheet. This low
resolution is possibly due to the approximations in the fast
algorithm and the unsymmetric kernel used in the vortex
method.

Main objects of this paper are to present a robust and
efficient numerical method with high accuracy and to
provide highly resolved solutions of the vortex sheet in
long time. The direct implementation for governing equa-
tions of the vortex sheet uses fixed number of vortex blobs
uniformly spaced with respect to the circulation parameter.

However, for long time simulations, computations under the
uniform discretization with fixed number of vortices can not
proceed at some finite time because distances between
neighboring point vortices become too large to resolve the
vortex sheet and eventually the curve is tangled. [See Fig.
5(a).] Numerical results show rapid stretching and non-
uniform elongation of the vortex sheet. In fact, vortex blobs
around the center of the sheet tend to cluster, and vortex
blobs near the end points of the sheet diverge as time
proceeds. (See Fig. 4.) In addition, the inherent singularity
and instability of the sheet make long time computations
seriously difficult.

Computational efficiency is another key factor in the
vortex method. The computation cost of the point vortex
method is order of N2 where N is the number of point
vortices. Therefore, if we increase the number of point
vortices to resolve the vortex sheet, the computation cost
grows drastically. The numerical method for long time
simulations of the vortex sheet should be designed to
perform computations within reasonable finite time.

Several approaches have been applied to overcome these
troubles. One of such efforts is to distribute, initially, the
vortex blobs non-uniformly. Sakajo and Okamoto17) used
fixed number of blobs which are densely placed around two
end points and coarsely around the center of the sheet by an
appropriate transformation. This method is adequate to deal
with stretching near the two ends, but it can not handle
dynamic non-uniform elongations along the vortex sheet.
Therefore, the number of blobs should be large enough to
resolve the long time vortex sheet, which leads to heavy
computations.

More efficient approach is the redistribution method in
which vortex blobs are relocated at every or certain time
steps. One of the earliest redistribution methods is proposed
by Fink and Soh,7) which uses two family of points, pivotal
points and segmental points. We applied Fink and Soh’s
method to our problem and found that it was not effective for
long time simulation for vortex sheet. See also comments in
Baker.1) Moore presented a different redistribution method
based on Legendre polynomials, interpolating neighboring
three points.16) The vortex points were evenly distributed
with respect to arc-length. Moore’s method provides a
simple algorithm for the vortex sheet, but it is not accurate
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enough for simulations of highly distorted and complex
curves of the long time vortex sheet.

Another possible approach is a point insertion technique,
which is first presented by Krasny11,12) for the long time
simulation of vortex sheet. At every time step, if the distance
of two adjacent points is larger than a given tolerance, a new
point is inserted by a local cubic polynomial in terms of the
circulation parameter interpolating neighboring points.
Krasny’s method is appropriate for computations of stretch-
ed vortex sheet, but it can not effectively handle node
clustering around the center as the initial vortex points are
kept.

We develop a vortex method which efficiently deals with
the problems for the long time vortex sheet stated above. We
adopt the redistribution method for particle points by the
following rule: if the maximum distance of two adjacent
points is larger than a given threshold constant, vortex points
are redistributed. The key point of our method is that vortex
points are redistributed uniformly in terms of the average of
relative arc-length and circulation. This redistribution
technique provides stable computations for the highly
distorted vortex sheet and detailed discussions for the choice
of redistribution parameter will be given in §3.

Simultaneously, we apply a point insertion technique to
handle the stretching of the sheet. In our method, the point
insertion is implemented only when the redistribution is
necessary. The vortex sheet is first defined by a globally
interpolated cubic spline, and then discretized uniformly
with respect to our redistribution parameter using more
vortex points. This redistribution procedure with point
insertion suppresses the concentration or the divergence of
point vortices, and therefore are more stable and computa-
tionally efficient than Krasny’s direct point insertion
method.11,13)

The paper is organized as follows. Section 2 gives the
numerical method for governing equations. Section 3 de-
scribes the procedures of point insertion and redistribution.
The computational results are presented at §4. Section 5
gives the discussions and conclusive remarks.

2. Numerical Method for Desingularized Equations

A vortex sheet is a mathematical limit of a parallel shear
flow where the fluid is irrotational everywhere except on the
sheet.4) In two dimensions, the vortex-sheet can be described
by a curve ðxð�; tÞ; yð�; tÞÞ where � is a circulation parameter
measured from the origin and t is time, and is governed by
the Birkhoff–Rott equation:

@z�
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ð�; tÞ ¼

i

2�
p:v:

Z 1

�1

1

zð�0; tÞ � zð�; tÞ
d�0

¼
i

2
p:v:

Z 1

0

cot �ðz0 � zÞ
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in complex notation z ¼ xþ yi, i ¼
ffiffiffiffiffiffiffi
�1

p
, with periodicity

zð�þ1; tÞ ¼ zðt;�Þ þ 1 where the asterisk represents the
complex conjugate, p.v. the Cauchy principal value of
integral, and z0 ¼ zð�0; tÞ.

We consider a flat vortex sheet of constant strength given
by xð�; tÞ ¼ �, yð�; tÞ ¼ 0 and perturb this equilibrium
solution by a small sine oscillation

xð�; 0Þ ¼ �þ 0:01 sinð2��Þ;
yð�; 0Þ ¼ �0:01 sinð2��Þ:

ð2Þ

It is known that the sheet with the initial data (2) develops a
singularity in curvature at the center, � ¼ 0:5, near t 

0:375 and is not analytic thereafter.15,18) This produces a
difficulty in numerical computation. Therefore, introducing
the desingularizing parameter � > 0, we consider the ‘‘�-
equations’’
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Various forms of desingularized kernel in the integrals were
studied.3)

As suggested,17) the computation cost is greatly reduced
by a transformation of the variable. We take the trans-
formation w ¼ expð2�izÞ. Then, the functions in the integral
(3) and (4) can be written as
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where v ¼ expð2�iz0Þ. From these relations and w ¼
expð2�izÞ, we obtain
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where

K�ðw; vÞ ¼ ��iw� ðwþ vÞðw� � v�Þ
jw� vj2 þ 2�2jwjjvj

: ð6Þ

Note that the kernel (6) is different from that in Sakajo and
Okamoto.17) As derived, (6) is the exact transformation for
Krasny’s desingularized kernel (3) and (4), which corre-
sponds to a symmetric and smoothing cut-off function of the
original one.

The curve ðxð�; tÞ; yð�; tÞÞ is approximated by a finite
number of points, ðxjðtÞ; yjðtÞÞ � ðxð�j; tÞ; yð�j; tÞÞ, where
�j ¼ j

N
, j ¼ 0; . . . ;N. Then, we apply the trapezoidal rule to

eq. (5) using the transformed point vortices wjðtÞ ¼
expð2�izjðtÞÞ for j ¼ 0; . . . ;N and obtain a system of
ordinary differential equations for wjðtÞ

dw�
j

dt
ðtÞ ¼

1

N

XN
k¼1

K�ðwjðtÞ;wkðtÞÞ for j ¼ 1; . . . ;N: ð7Þ

The system (7) is solved by the classical fourth order
Runge–Kutta method. After each Runge–Kutta time march-
ing step for fwjðtÞg, the vortex points fzjðtÞg are obtained by
the inverse transformation from fwjðtÞg. The convergence of
point vortex methods to weak solutions of the incompres-
sible Euler equations, as N ! 1 and � ! 0, even after the
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formation of singularity, was proved by Liu and Xin.14)

To suppress the instability from the growth of round-off
errors, we apply the Fourier filtering technique, which is
introduced by Krasny.10) That is to say, after each Runge–
Kutta time marching step, we take the Fourier sine trans-
formation for fxjðtÞg and fyjðtÞg and cut off high frequency
modes whose amplitude is less than a given threshold,
denoted as �. For better resolution, the filter level � needs to
be reduced. We set the filter level to � ¼ 10�10, which gives
enough resolution for solutions in all cases of our compu-
tations.

Figure 1 shows the numerical result of vortex sheet with
� ¼ 0:3 at t ¼ 5 computed with time marching step �t ¼ 1

240

and 12288 point vortices. Two periods of the vortex sheet
are plotted in Fig. 1.

To determine the accuracy of the numerical scheme in
space and in time, we plot the root mean square errors of
numerical solution ðxjðt ¼ 5Þ; yjðt ¼ 5ÞÞ with various com-
binations of time step size �t ¼ 1

5
, 1
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, 1
15
, 1
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, 1
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, 1
40
, 1
60
, 1
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, 1
160

and number of discretization points N ¼ 1024, 2048, 4096,
8192 compared to that with �t ¼ 1

240
and N ¼ 12288 in

Fig. 2. In other words, errors in Fig. 2 are defined as

EN;�t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

zN;�t
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j� ðt ¼ 5Þ
h i2vuut

where j� is the corresponding point index for j and zN;�t
j ðt ¼

5Þ is the numerical solution zj at time t ¼ 5 using the given
parameters N and �t, and N� and �t� are fixed to 12288 and
1
240

, respectively. Figure 2 shows that, as time step decreases,

so does the error until it is reduced to the level of the spatial
discretization error limit by the trapezoidal rule used in
computing the integral for wjðtÞ. One can find from Fig. 2
that the Runge–Kutta method and the trapezoidal rule with
the Fourier filtering for the transformed �-equation (5)
provides a fourth order accuracy in time and second order in
space, respectively. Figure 2 also implies that, to enhance
the resolution, two parameters N and �t should be adjusted
simultaneously. Fixing one parameter and only increasing/
reducing the other parameter may not be effective in
reducing errors.

3. Point Insertion and Redistribution Procedure

In this section, we present the point insertion and
redistribution procedure for long time computation of the
vortex sheet. The procedure in this section is implemented
with the numerical method of §2.

We give an outline of our procedure of point insertion and
redistribution. During the computation, rapidly increasing
number of points are required to resolve the vortex sheet,
since the arc-length is exponentially increasing with time.
Therefore, at each time step we monitor the maximum
distance between neighboring vortex points, �smax, and if
this value exceeds a given threshold, �slim, then we apply
the following steps:
Step 1 Construct the periodic cubic splines for x and y.
Step 2 Calculate the arc-length, sð�; tÞ, 0 � � � 1, from the

cubic splines in Step 1.
Step 3 Introducing the new parameter p as pð�; tÞ ¼

1
2
ðsð�;tÞ
sð1;tÞ þ �Þ, construct the periodic cubic splines for p

and �.
Step 4 Increase the number of points N by a suitable

strategy.
Step 5 Evaluate the evenly spaced points zj ¼ ðxj; yjÞ, j ¼

0; . . . ;N, on the spline with respect to p and compute �j

on the new points zj.
We now present each step in detail. In Step 1, we

interpolate fxjg and fyjg defined on intervals between integer
points j ¼ 0; . . . ;N by cubic splines. We denote these
splines as

qxjð�Þ ¼ axj þ bxjð� � jÞ þ cxjð� � jÞ2 þ dxjð� � jÞ3; ð8Þ

qyjð�Þ ¼ ayj þ byjð� � jÞ þ cyjð� � jÞ2 þ dyjð� � jÞ3 ð9Þ

for � 2 ½j; j þ 1� and j ¼ 0; . . . ;N � 1. Note that axj ¼
xj � j

N
, from periodicity, and ayj ¼ yj. Second order

Legendre polynomials,16) involving a local construction,
may be applied for the interpolation but have low order of
accuracy. For long time computations, we choose the cubic
splines with periodic boundary condition for higher order of
accuracy.

In Step 2, we measure the arc-length of the vortex sheet
from

sjþ1ðtÞ ¼ sjðtÞ þ
Z jþ1

j

dz

d�


d� ð10Þ

with s0 ¼ 0. An accurate evaluation for the arc-length are
critical in the long computation of the vortex sheet.
Substituting (8) and (9) and applying Taylor series and
composite Simpson’s rule of quadrature, the integral in (10)
is approximated by
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Fig. 1. Vortex sheet at t ¼ 5 with � ¼ 0:3. The number of discretization

points are fixed to N ¼ 12288.
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where ~bbxj ¼ bxj þ 1=N.
In Step 3, new parameter p is introduced and defined at

each point as

pjðtÞ ¼
1

2

sjðtÞ
sNðtÞ

þ �j

� �
for j ¼ 0; . . . ;N: ð12Þ

The cubic splines for p and � can be constructed in the same
way as in Step 1. In Step 5, points fðxj; yjÞg redistributed
with respect to the parameter p, not the arc-length s. The
reason for this is given shortly.

Step 4 is the procedure of point insertion. One may apply
various strategies for the point insertion. We increase the
number of points by factors of 5

4
, 5

4
, and 32

25
in turn as this

method produces twice number of points after a 3-cycle
insertion. The reasons we adopt this insertion procedure are
as follows. Point insertion and redistribution generates
numerical viscosity effect. Thus we apply redistribution
and point insertion only when it is necessary, rather than at
every time step. Next, the method generates less redistrib-
ution errors than that of double insertion, which makes twice
number of points at a time. In addition, new points are
needed to be a fractional-multiple of the previous points to
evaluate Fourier coefficients in Fast Fourier Transforma-
tions.

In Step 5, we redistribute the points fðxj; yjÞg uniformly
with respect to the parameter p. If the pivotal points are
redistributed evenly with respect to the arc-length, a jump in
� gradually appears at the center of the sheet as time
proceeds. In fact, the circulation parameter �ðsÞ becomes
very steep around the center, because the vortex strength is
so large there (see Fig. 12). Therefore, � may have jumps
around the center even for very small change of arc-length,
which produces a loss of precision in the trapezoidal
approximation of the integral (5). To escape from this
difficulty, we adopt the different discretization of the vortex
sheet by the new artificial variable p defined as above. From
(12), the differences between two neighboring normalized
arc-lengths and circulation parameters are bounded by

jSjþ1 � Sjj �
2

N
and j�jþ1 � �jj �

2

N
ð13Þ

where Sj ¼ sj=sN . Therefore, we do not see any abrupt
jumps in sðpÞ and �ðpÞ along the sheet at any time. xðpÞ,
yðpÞ, and �ðpÞ are all smooth functions with respect to the
new parameterization variable p, regardless of the fact that

y ¼ yðxÞ may no be smooth.
The resulting algorithm from Step 1 to Step 6 guarantees

fourth order accuracy in time and its spatial error is bounded
by the second order discretization error of the trapezoidal
quadrature.

Applying the adaptive numerical method described above
to the vortex sheet with � ¼ 0:3, �slim ¼ 1

20
and �t ¼ 1

20
, we

plot the total arc-length sð1; tÞ and the number of points
multiplied by �slim in Fig. 3. Figure 3 shows that the total
arc-length indeed grows exponentially, and therefore, so
does the number of discretization points to resolve the vortex
sheet. The total arc-length at t ¼ 2 is about 3 and is 128 at
t ¼ 12, so that the growth rate is about 100 times per 10 s.
The number of points N is 256 up to t ¼ 2:8 and reaches
12800 at t ¼ 12, which shows almost the same growth rate
with the total arc-length.

The non-uniform elongation of the vortex sheet is shown
in Fig. 4. The numerical parameters used in Fig. 4 are same
as in Fig. 3. We define the normalized arc-length as
Sð�Þ ¼ sð�; tÞ=sð1; tÞ. The leftmost graph of Fig. 4 is the
normalized arc-length as a function of point marker � at
time t ¼ 2; 4; 6; . . . 12. We observe that the sheet stretches
most near both ends of the sheet and contracts near the
center. The upper and the lower plots in the rightmost side
display the rate of stretching at the ends and the rate of
contraction at the center, respectively.

4. Numerical Computation

In this section we apply the presented numerical method
and perform numerical experiments to investigate dynamics

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

Time

A
rc

le
ng

th

Fig. 3. Growth of the total arc-length and the number of point used for

� ¼ 0:3. The thick line shows the number of points multiplied by �slim ¼
1=20.
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of long time evolution of vortex sheet.
We first compare numerical results of the vortex sheet

without and with point insertion and redistribution proce-
dures up to time t ¼ 6 in Fig. 5. For both cases, the
numerical parameters are � ¼ 0:2 and �t ¼ 1

20
. The value of

�slim used in Fig. 5(b) for the point insertion is 1=40. In Fig.
5(a), the number of points are fixed to 4096 while the
number of points in Fig. 5(b) is increased to 256, 512, 2048
and 3200 for t ¼ 0, 3, 5, and 6, respectively, by the point
insertion process. Numerical results show that the compu-
tations without and with the point insertion and redistrib-
ution procedures have no difference up to time t ¼ 5.

However, in spite of more points used for computation, the
curve at t ¼ 6 in Fig. 5(a) is tangled by large stretching at the
two end points. Therefore, we conclude that the point
insertion and redistribution procedures are correctly applied,
not altering the dynamics of the vortex sheet.

Figure 6 illustrates the long time evolution of the vortex
sheet by the point insertion and redistribution procedures up
to time t ¼ 10. The numerical parameters used are � ¼ 0:1,
�t ¼ 1=100, and �slim ¼ 1=100. The number of discretiza-
tion points is N ¼ 256, 2048, 12800, 25600, 40960 and
65536 for t ¼ 0, 3, 6, 8, 9 and 10, respectively. The
computation up to time t ¼ 10 takes about two days using a
Ultra Sparc-60 machine with a 450MHz CPU.

Throughout the computational experiments, we find that
�t ¼ 1=20 is sufficient for computations up to t ¼ 6 as in
Fig. 3 and �t ¼ 1=100 is suitable for t ¼ 10 when the total
arclength becomes about 5 times longer than that of t ¼ 6.
(See Fig. 10.) In fact, it would be computationally more
efficient and accurate to adapt the time step proportional to
the speed of vortex sheet, in order to bound movements of
point vortices within fixed spatial resolution. However, the
adaptive time advancing requires exponentially small time
step for long time computations, since the speed of vortex
sheet, as well as the arclength, increases exponentially as
time goes. In our computations, we simply fix the time step
�t to 1=100, which is small enough to resolve the vortex
sheet up to t ¼ 10.

In Fig. 6, around t ¼ 6, two arms are emerging at each
spiral and they start to approach to neighboring spirals. At
t ¼ 8, the arms wind the spiral and the tips of arms creep
into the neighboring spirals. The uniform rolling up begins
to break around the outside of spirals. The curve abruptly
projects up and down, which forms the shape like a bubble.
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Fig. 5. Comparison for computations of the vortex sheet without/with point insertion and redistribution procedures.
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Fig. 4. Non-uniform elongation of the vortex sheet. Numerical parameters
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The tips of arms are located inside this bubble shaped
region. At t ¼ 9, the secondary arms are formed at the first
period of spirals. While these secondary arms move to the
furthermost stretched arms, the furthermost arms are split in
two branches. The tip of arms keeps migrating to the next
period and the trailing part of arms is stretched to the third
neighboring spirals. At t ¼ 10, one branch of the trailing
arms covers almost half of the third neighboring spirals and
each spiral is winded by two different arms. Moreover, the
roll-up of spirals is no more uniform, which leads to a very
complex structure.

For a clear view, Fig. 7 magnifies the center of spiral
region in Fig. 6 for t ¼ 3, 6, 8 and 9, plotting the solution on
the domain ½�0:53;�0:47� � ½�0:03; 0:03�. The curve for
t ¼ 10 in Fig. 6 is magnified in Fig. 8. Figure 8(a) plots the
solution on the domain ½�1; 0� � ½�0:3; 0:3�, Fig. 8(b) on
the domain ½�0:3;�0:1� � ½0; 0:2�, zooming on the right
upper region of spirals, and Fig. 8(c) on the domain
½�0:6;�0:4� � ½�0:1; 0:1�, zooming on the center of spirals.
The center of spirals is again magnified in Fig. 8(d),
zooming the same domain as Fig. 7. We see in Fig. 8 that the
roll-up at the center keeps going on indefinitely. Figures 7
and 8 clearly shows that our numerical method of point
insertion and redistribution has been successfully applied for
long time computations of the vortex sheet. We obtained
much more complicated fine structures of the sheet than
previously published results.

Figure 9 shows the locations for vortex points on the

sheet. Figures 9(a) and 9(b) correspond to Fig. 8(b) and 8(d),
respectively. We see that the resolution in our computation
is good enough to describe the complex structure of the
vortex sheet.

Figure 10 plots the exponential growth of total arc-length
for various �. The values of �slim used in the computations
are 1=100, 1=40 and 1=20 for � ¼ 0:1, 0.2 and 0.3,
respectively. The result shows qualitatively similar growth
rates for total arc-length.

Figure 11 displays the number of Fourier modes versus �
at time t ¼ 5 for several values of cutoff �. Here, the number
of Fourier modes are determined by the following way. The
absolute values of Fourier coefficients are fitted, in the least
squares sense, by an exponential function, i.e. j
ðnÞj 
 ae�bn

where n represents the wavenumber of Fourier modes. Then,
the number of Fourier modes n are obtained by solving the
equation ae�bn ¼ �. From Fig. 11, it is found that, fixing the
cutoff, the number of Fourier modes increases, as �
decreases, so that the amplitudes of Fourier coefficients
decay slowly. We also see that, for smaller values of cutoff,
the decaying rate of Fourier modes becomes slower. This
behavior is prominent especially for smaller value of �.
Therefore, the number of points required for computations
drastically increases for small values of � and cutoff �.

Figure 12 shows the distribution of vortex strength, d�=ds
along the vortex sheet in Fig. 6 for several chosen times. The
x-axis represents the normalized arc-length Sð�; tÞ. We
observe that the vorticity is concentrated only at the center
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of spirals at early times, but a number of strong vorticities
are found at time t ¼ 10 and values of some vorticities are
even larger than that of vorticity at the center at time t ¼ 8.
Figure 13 is the logarithmic plot for the growth of vortex
strength at the center of the vortex sheet. Similar to the case
of total arc-length, the vortex strength at the center grows
exponentially. The 3D surface plot of the vortex strength at
t ¼ 10 is given in Fig. 14.

5. Discussions

We have presented a robust and efficient point vortex
method, adopting point insertion and redistribution proce-

dure, to compute the long time evolution of a two-dimen-
sional vortex sheet. The computational results show that the
present method has been successfully applied to describe the
dynamics of long time vortex sheet. We have checked that
our method gives exactly same solutions with Krasny’s
results for a large value of smoothing parameter �.12)

Compared to previously published results, the solutions
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with fine structures of various scales are obtained.
We observe that the rolling up of vortex sheet after a very

long time displays a chaotic pattern. The spiral is deformed
into a non-uniform one, while it keeps rolling up. This long
time behavior may suggest an emergence of chaos in the
evolution of the sheet, as it is similar to the results by Krasny
and Nitsche13) for the vortex pair or vortex ring occurring in
potential flow past a flat plate or a circular disk. Krasny and
Nitsche simulated a long time evolution of the vortices by a
similar vortex blob method to ours and found irregular
pattern of the roll-up of the vortex sheet which is related to
the characteristic of chaos.

The long time behavior of the vortex sheet also indicates
the applicability of the Poincare recurrence theorem. Krasny
remarked the applicability of the theorem for the vortex
sheet, assuming that the interface is bounded in the vertical
direction.10) Our computational results show that the height
of the vortex sheet remains bounded in long time. Therefore,
the Poincare recurrence theorem’s conclusion may be drawn
to characterize the feature of the vortex sheet: any point on
the sheet might return close to its initial position in phase

space either by rotating inside the spiral or by migrating into
another period and approaching its initial coordinates shifted
by an integral multiple of period in horizontal direction.

Our results also give affirmative clues to the conjecture of
D. Pullin of the shape of sheet after the critical time of
curvature singularity. We demonstrated that the roll-up
continues as time goes on and the center of spiral is
producing smaller and smaller scale turns. This result is
consistent with the conjecture that the sheet is a double
branched spiral with an infinite number of turns.10)

We believe that the numerical solution at t ¼ 10 already
shows fully developed structures, and the computation for
much longer time requires too many number of discretiza-
tion points due to the exponential and non-uniform stretch-
ing of the interface. Developing a faster and robust
numerical method with high accuracy will be the next step
of the research.
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