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Abstract

The phase-field crystal (PFC) equation is derived by the gradient flow for the Swift–Hohenberg free energy functional; thus,
the numerical method requires the energy of the functional to decrease. Convex Splitting Runge–Kutta (CSRK) methods can
be suitably applied to achieve high-order temporal accuracy as well as unconditional energy stability and unique solvability.
For the PFC equation, we prove the unconditional energy stability and unique solvability of the CSRK methods and provide
one family of parameters of the second-order CSRK methods and possible examples of third-order CSRK methods. We present
numerical experiments to demonstrate the accuracy and energy stability of the methods. Specifically, based on the high-order
accuracy and energy stability of the CSRK method, we propose an indicator function capable of characterizing the pattern
formation of the phase-field crystal model for long-time simulation.
c⃝ 2020 Elsevier B.V. All rights reserved.

Keywords: Phase-field crystal equation; High-order temporal accuracy; Unconditional energy stability; Convex Splitting Runge–Kutta method;
Long-time simulation

1. Introduction

Phase-field models have emerged as a powerful computational approach for modeling and predicting morpholog-
ical and microstructural evolution in materials at the mesoscale [1–3]. Many of these models attempt to minimize
an energy functional E (φ) by the gradient flow for E (φ) in Ω ⊂ Rd (d = 1, 2, 3),

∂φ

∂t
= −grad E (φ) , (1)

where the symbol “grad” denotes the gradient in the sense of the Gâteaux derivative. It is worth noting that the
energy functional E (φ) is non-increasing in time because (1) is of the gradient type. The phase-field crystal (PFC)
equation has been suggested to study the microstructural evolution of two-phase systems in terms of their atomic
length and diffusive time scales [4,5]. The PFC equation,

∂φ

∂t
= ∆

(
φ3

− ϵφ + (1 + ∆)2 φ
)
, (2)
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can be represented by the gradient flow for the Swift–Hohenberg type free energy functional [3],

E(φ) =

∫
Ω

(
1
4
φ4

+
1
2
φ

(
−ϵ + (1 + ∆)2

)
φ

)
dx, (3)

where φ is the conserved density field and ϵ is a positive bifurcation constant with physical significance. Here,
we assume that φ is periodic on Ω . The main difficulty that has to be overcome when developing a numerical
method based on the PFC equation (2) is the severe stability restriction on the time step owing to the nonlinear
and sixth-order differential terms. Thus, obtaining analytic or numerical solutions by certain elementary methods is
generally challenging.

Many remarkable second-order methods for the PFC equation (2) have been proposed to overcome the time step
restriction and guarantee energy stability. In this regard, a possibility is to extend the first-order convex splitting
(CS) method [6], which is based on splitting the energy functional E(φ) into two convex functionals, E (φ) =

Ec (φ)− Ee (φ). For example, a combination of the secant-type scheme and an extrapolation was presented [7–9], a
modified Crank–Nicolson method was considered [10], and backward difference was employed [11]. On the other
hand, several methods that obviated the need for splitting have been developed. Invariant energy quadratization was
employed to develop efficient linear schemes [12]. Zhang et al. [13] developed an unconditionally energy stable
scheme by using the secant-type difference with an adaptive time stepping strategy. Gomez and Nogueira [14]
proposed a nonlinear, second-order time accurate, and unconditionally gradient stable method with the modified
Crank–Nicolson method.

Recently, we proposed the Convex Splitting Runge–Kutta (CSRK) method [8,15] which provides, in the abstract
sense, high-order temporal accuracy and unconditional energy stability with appropriate RK coefficients. In this
study, we adopt the CSRK method for the PFC equation (2) to obtain high-order accurate and energy stable
numerical solutions of (2). For the PFC equation, we prove the unconditional energy stability and unique solvability
of the CSRK methods and provide one family of parameters for the second-order CSRK methods and possible
examples of third-order CSRK methods. We present numerical examples to verify the accuracy and energy stability
of the CSRK methods. In addition, we propose an indicator function by using the high-order energy stable CSRK
method, and using the indicator function we confirm that the PFC equation generates different patterns, such as
striped or hexagonal, depending on the values of ϵ and φ̄.

In Section 2, we briefly describe the CSRK method with a resemble design and provide the RK coefficients
for second- and third-order accuracy. Numerical experiments showing the accuracy and stability of the proposed
methods are presented in Section 3. In particular, we propose the indicator function to characterize the patterns of
the PFC model for the long-time simulation in Section 3.3. Finally, conclusions are drawn in Section 4.

2. Numerical method

We begin by considering the convex splitting of the energy functional (3),

Ec(φ) =

∫
Ω

(
1
4
φ4

+
1
2
φ(1 + ∆)2φ

)
dx, Ee(φ) =

∫
Ω

ϵ

2
φ2dx, (4)

which we previously used [8,15]. In general, the CSRK method allusively indicates that we can consider another
splitting, for example, CS as used in [7,16] is also highly applicable. However, in this paper, we present high-order
energy stable methods that only use the splitting in (4). To keep the explanation simple, we define functions as

Ψ (φ) =
1
4
φ4

−
ϵ

2
φ2, Ψc(φ) =

1
4
φ4, Ψe(φ) =

ϵ

2
φ2, (5)

where Ψ (φ) = Ψc (φ)− Ψe (φ). Note that both functions Ψc (φ) and Ψe (φ) are convex functions.
First, we set a zero-stage as φ0 = φn . For each stage i = 1, 2, . . . , s, we calculate

φi = φ0 + ∆t
i∑

j=1

ri j∆
(
Ψ ′

c

(
φ j

)
− Ψ ′

e

(
φ j−1

)
+ (1 + ∆)2 φ j

)
, (6)
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where the coefficients in (6) can be represented by a lower triangular matrix

R =

⎛⎜⎜⎜⎜⎜⎝
r11 0 · · · 0

r21 r22 · · · 0
...

...
. . .

...

rs1 rs2 · · · rss

⎞⎟⎟⎟⎟⎟⎠ . (7)

Finally, we evaluate the next time approximation as φn+1
= φs . Now, we refer to the proposed method (6) with the

matrix R as the CSRK-R method.
To ensure the simplicity of the proof in the following sections, we rewrite the CSRK-R method (8) with auxiliary

variables µ j as

φi − φ0 = ∆t
i∑

j=1

ri j∆µ j ,

µ j = Ψ ′

c

(
φ j

)
− Ψ ′

e

(
φ j−1

)
+ (1 + ∆)2 φ j .

(8)

2.1. Unique solvability

Lemma 1 (Mass Conservation). The CSRK-R scheme (8) is mass conserving.

Proof. The mass conservation of (8) follows from

(φi − φ0, 1)L2 = ∆t
i∑

j=1

ri j
(
∆µ j , 1

)
L2 = −∆t

i∑
j=1

ri j
(
∇µ j ,∇1

)
L2 = 0, (9)

where (φ, ψ)L2 =
∫
Ω φψ dx denotes the L2-inner product. Here, the integration by parts formula can be derived

for φ and ψ such that the periodic boundary conditions are satisfied,

(φ,∆ψ)L2 = − (∇φ,∇ψ)L2 . (10)

Thus, if (8) has a solution φi , then it must be (φi , 1)L2 = (φ0, 1)L2 for any i . □

Now, we consider the Hilbert space H0 as a zero average space. For given v1, v2 ∈ H0, we define the inner
product of the dual space by (v1, v2)H−1 =

(
∇ϕv1 ,∇ϕv2

)
L2 , where ϕv1 , ϕv2 ∈ H0 are the solutions of the periodic

boundary value problem −∆ϕv1 = v1 and −∆ϕv2 = v2 in Ω . From the above definition, if ψ ∈ H0, then we have
the identity

(−∆φ,ψ)H−1 = (φ, ψ)L2 . (11)

The identity (11) is subsequently used to prove the solvability of the proposed method.

Theorem 2 (Unique Solvability). Suppose that φ is sufficiently regular. The proposed CSRK-R scheme (8) is
uniquely solvable for any time step size ∆t > 0, provided that ri i ≥ 0 for all i .

Proof. For each stage i = 1, 2, . . . , s, we need to solve

φi − ri i∆t∆
(
Ψ ′

c (φi )+ (1 + ∆)2 φi
)

= φ0 + ∆t Si , (12)

where

Si =

i−1∑
j=1

ri j∆
(
Ψ ′

c

(
φ j

)
+ (1 + ∆)2 φ j

)
−

i∑
j=1

ri j∆Ψ ′

e

(
φ j−1

)
. (13)

Let us consider the following functional defined on H̃ =
{
φ | (φ, 1)L2 = (φ0, 1)L2

}
:

Q (φ) =
1
2

∥φ − φ0∥
2
H−1 + ri i∆t

(
Ψc (φ)+

1
2
((1 + ∆) φ)2 , 1

)
L2

− ∆t (Si , φ)H−1 . (14)
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Suppose that ψ and ∆ψ are sufficiently regular with ψ ∈ H0. The first variation is calculated as

d Q
dη

(φ + ηψ)

⏐⏐⏐⏐
η=0

= (φ − φ0, ψ)H−1 + ri i∆t
(
Ψ ′

c (φ)+ (1 + ∆)2 φ,ψ
)

L2 − ∆t (Si , ψ)H−1 .

=
(
φ − φ0 − ri i∆t∆

(
Ψ ′

c (φ)+ (1 + ∆)2 φ
)
− ∆t Si , ψ

)
H−1 .

(15)

Next, calculation of the second variation reveals

d2 Q
dη2 (φ + ηψ)

⏐⏐⏐⏐
η=0

= ∥ψ∥
2
H−1 + ri i∆t

(
Ψ ′

c (φ)+ (1 + ∆)2 φ,ψ
)

L2 ≥ 0, (16)

which implies that Q (φ) is a convex functional. Thus, it has a unique minimizer φi ∈ H̃ . At the unique minimizer
for each stage, d Q

dη (φi + ηψ)

⏐⏐⏐
η=0

= 0; thus, (12) has a unique solution φi . Therefore, the proposed scheme (8) is
uniquely solvable for any time step size ∆t > 0. □

2.2. Unconditional energy stability

We provide two lemmas before we present a condition to render the proposed CSRK-R scheme (8) uncondition-
ally energy stable.

Lemma 3. If Ψ (φ) can be split into Ψ (φ) = Ψc (φ) − Ψe (φ), where both functions Ψc (φ) and Ψe (φ) are
convex, then

Ψ (φ)− Ψ (ψ) ≤
(
Ψ ′

c (φ)− Ψ ′

e (ψ)
)
(φ − ψ) . (17)

Proof. We refer to previous work [8,16] for the proof of this lemma. □

Lemma 4. We have the following equality:∫
Ω

(
[[φ]]n

m (1 + ∆)2 φn −
1
2

[[
((1 + ∆) φ)2

]]n
m

)
dx =

1
2

∫
Ω

(
(1 + ∆) [[φ]]n

m

)2 dx, (18)

where we define the difference operator by [[φ]]n
m = φn − φm .

Proof.∫
Ω

[[φ]]n
m (1 + ∆)2 φn dx =

∫
Ω

[[φ]]n
m (1 + ∆)2

(
φn + φm

2
+

[[φ]]n
m

2

)
dx

=
1
2

∫
Ω

(1 + ∆)2
[[
φ2]]n

m dx +
1
2

∫
Ω

[[φ]]n
m (1 + ∆)2 [[φ]]n

m dx

=
1
2

∫
Ω

[[
((1 + ∆)φ)2

]]n
m dx +

1
2

∫
Ω

(
(1 + ∆) [[φ]]n

m

)2 dx

(19)

Rearranging (19), we have the equality. □

Positive definite condition. The CSRK-R method (8) is said to satisfy the positive definite condition if a row
difference matrix R̃ is positive definite after a symmetric transformation, where R̃ = R − SR is defined as follows
with a shift matrix Si j = δi, j+1,

R̃ =

⎛⎜⎜⎜⎜⎝
r̃11 0 · · · 0
r̃21 r̃22 · · · 0
...

...
. . .

...

r̃s1 r̃s2 · · · r̃ss

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
r11 0 · · · 0
r21 r22 · · · 0
...

...
. . .

...

rs1 rs2 · · · rss

⎞⎟⎟⎟⎟⎠ −

⎛⎜⎜⎜⎜⎝
0 0 · · · 0

r11 0 · · · 0
...

...
. . .

...

rs−1,1 rs−1,2 · · · 0

⎞⎟⎟⎟⎟⎠ . (20)

Theorem 5 (Unconditional Energy Stability). If the CSRK-R method (8) satisfies the positive definite condition,
then it is unconditionally energy stable, meaning that E

(
φn+1

)
≤ E (φn), for any time step size ∆t > 0.
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Proof. The difference between the two adjacent stages can be calculated as

[[φ]]i
i−1 = ∆t

i∑
j=1

r̃i j∆µ j , (21)

for all i . By Lemma 3, the energy difference between two adjacent stages is

[[E (φ)]]i
i−1 ≤

∫
Ω

((
Ψ ′

c (φi )− Ψ ′

e (φi−1)
)

[[φ]]i
i−1 +

1
2

[[
((1 + ∆)φ)2

]]i
i−1

)
dx. (22)

From the definition of µ j , we have

[[E (φ)]]i
i−1 ≤

∫
Ω

((
µi − (1 + ∆)2 φi

)
[[φ]]i

i−1 +
1
2

[[
((1 + ∆) φ)2

]]i
i−1

)
dx. (23)

By Lemma 4,

[[E (φ)]]i
i−1 ≤

∫
Ω

(
µi [[φ]]i

i−1 −
1
2

(
(1 + ∆) [[φ]]i

i−1

)2
)

dx ≤

∫
Ω

µi [[φ]]i
i−1 dx. (24)

After summation, we have

[[E (φ)]]s
0 =

s∑
i=1

[[E (φ)]]i
i−1 ≤

s∑
i=1

∫
Ω

µi [[φ]]i
i−1 dx = −∆t

∫
Ω

(∇µ)T R̃ (∇µ) dx, (25)

where ∇µ = (∇µ1, . . . ,∇µs)
T . Because R̃ is positive definite, [[E (φ)]]s

0 ≤ 0. It follows that the energy dissipation
is satisfied, E

(
φn+1

)
= E (φs) ≤ E (φ0) = E (φn). □

Remark 1. With the convex splitting (4), we can consider a well-known first-order CS method

φn+1
− φn

∆t
= ∆

(
(φn+1)3

+ (1 + ∆)2φn+1)
− ϵ∆φn. (26)

The energy stability is easily explained because the CSRK-R method (8) constructs the CS method (26) with a
resemble base matrix R = (1). The corresponding row difference matrix R̃ = (1) is positive definite, such that the
CS method (26) guarantees the energy dissipation property, E

(
φn+1

)
≤ E (φn).

2.3. Resemble matrices for high-order accuracy

With the resemble base matrix (7), the CSRK-R method can be represented by the two-additive Runge–Kutta
method with Butcher tableaus:

c A

bT
=

0 0 0 0 · · · 0

c1 0 r11 0 · · · 0

c2 0 r21 r22 · · · 0
...
...
...

...
. . .

...

cs 0 rs1 rs2 · · · rss

0 rs1 rs2 · · · rss

,
ĉ Â

b̂T
=

0 0 0 0 · · · 0

c1 r11 0 0 · · · 0

c2 r21 r22 0 · · · 0
...

...
...

...
. . .

...

cs rs1 rs2 · · · rss 0

rs1 rs2 · · · rss 0

, (27)

where c = A1 and ĉ = Â1. Table 1 lists the order conditions under which two-additive Runge–Kutta methods have
first-, second-, and third-order accuracy if c = ĉ. A simple description of the order conditions is presented in our
previous work [17], in which only Taylor’s expansion is used. The reader is also referred to other explanations of
the order condition [18–20] and references therein.

Note that b · 1 = 1 and b̂ · 1 = 1 are identical by the resemble design. In summary, we have 1 condition for
first-order accuracy, 3 conditions for second-order accuracy, and 9 conditions for third-order accuracy.

We now introduce a few examples of the resemble base matrix R such that R̃ is positive definite. First, R1 = (1)
is a trivial matrix with first-order accuracy. Next, we consider the three-stage method because two-stage resemble
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Table 1
Order conditions of two-additive RK methods up to third-order accuracy.

Order Stand-alone conditions Coupling conditions

1 b · 1 = 1 b̂ · 1 = 1 –
2 b · c = 1/2 b̂ · c = 1/2 –

3 b · c2
= 1/3 b̂ · c2

= 1/3 b · Âc = b̂ · Ac = 1/6
b · Ac = 1/6 b̂ · Âc = 1/6

Fig. 1. Coefficients of the resemble base matrix for second-order accuracy.

methods with second-order accuracy do not exist. To enable the convenient design of tables, we consider a type of
singly diagonal matrix,

R2 (γ ) =

⎛⎜⎜⎝
γ 0 0

r21 γ 0

r31 r32 γ

⎞⎟⎟⎠ . (28)

Using this matrix (28), we construct RK tables (A,b, c) and
(

Â, b̂, ĉ
)

and solve the nonlinear equations by using
the order conditions in Table 1 up to second-order accuracy. As a result, we have

r21 =

( 1
2 − γ 2

)
±

√
D

2γ
, r32 = p2/r21, r31 = p1 − r32, (29)

where D = 1/4 − 3γ 2
+ 8γ 3

− 3γ 4, p1 = 1 − γ , and p2 = 1/2 − 2γ + γ 2. Fig. 1 shows the coefficients in
R2 with respect to γ for second-order accuracy. The shaded region indicates the area in which

(
R̃2 + R̃T

2

)
/2 is

positive definite, which implies that the methods in this region are unconditionally energy stable. We carried out
the numerical test of the second-order method, CSRK-R2 by using the coefficients in the negative branch.

For third-order accuracy, an example of the resemble base matrix R3 (γ ) is

R3
( 1

2

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0 0 0
1
2

1
2 0 0 0 0

−
1
10

1
10

1
2 0 0 0

13252051
50981620 −

100507933
407852960

19290953
81570592

1
2 0 0

401851541
5098162000 −

20327867
637270250 −

200790581
1019632400

1
20

1
2 0

3217
14300 −

703
7150 −

6359
42900 −

4556
10725

406
429

1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(30)
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which we previously introduced [21]. Here, we provide two more examples with different parameters of γ on the
diagonal,

R3
( 1

3

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
0.3333 0 0 0 0 0
0.3964 0.3333 0 0 0 0

−0.1321 0.0986 0.3333 0 0 0
0.1087 −0.1559 0.3141 0.3333 0 0
0.3622 −0.2153 −0.0059 0.0032 0.3333 0
0.3622 −0.1853 0.0667 −0.3330 0.7561 0.3333

⎞⎟⎟⎟⎟⎟⎟⎠ , (31)

and

R3
( 2

3

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
0.6667 0 0 0 0 0
0.2792 0.6667 0 0 0 0

−0.3021 0.1016 0.6667 0 0 0
0.3502 −0.4133 0.2391 0.6667 0 0

−0.1113 0.1801 −0.3918 0.0540 0.6667 0
0.1665 −0.3754 −0.5506 −0.2258 1.3186 0.6667

⎞⎟⎟⎟⎟⎟⎟⎠ , (32)

which are rounded to four decimal places. The methods corresponding to (30)–(32) satisfy the positive definite
because the minimum eigenvalue of

(
R̃3 + R̃T

3

)
/2 is approximately 0.0063, 0.0057, and 0.0255, respectively.

Furthermore, it is easy to verify that the coefficients induced by R3 satisfy the order conditions in Table 1 up
to third-order accuracy. These examples imply that many other cases satisfy the high-order accuracy and energy
stability. We note that the existence of a third-order table with fewer than six stages is yet to be reported and the
choice of the best coefficient matrices depends on the specific problem.

3. Numerical experiments

In this section, we present numerical results to validate the efficiency and accuracy of the proposed schemes. We
choose the periodic boundary conditions and use the Fourier spectral method to discretize the variables in space.
We note that the periodic boundary conditions are relevant in the study of PFC.

Because (8) is a nonlinear system, we need a nonlinear iterative solver. For the i th stage, we can rewrite the
equation as (12),

φi − ri i∆t∆
(
Ψ ′

c (φi )+ (1 + ∆)2 φi
)

= Si . (33)

By applying a linearization Ψ ′
c (φi ) ≈ Ψ ′

c

(
φi,m

)
+ Ψ ′′

c

(
φi,m

) (
φi,m+1 − φi,m

)
, we have a Newton-type nonlinear

iterative method as

L
(
φi,m+1

)
= Si + ri i∆t∆

(
Ψ ′′

c

(
φi,m

)
φi,m − Ψ ′

c

(
φi,m

))
, (34)

where L (φ) =
(
I − ri i∆t∆

(
Ψ ′′

c

(
φi,m

)
+ (1 + ∆)2

))
φ. The nonlinear iterations (34) can also be used until the

relative l2-norm of the consecutive error of φi,m+1 is less than tol. Then let φi be the limiting value of φi,m+1.
Owing to the Newton-type nonlinear iterative method, the maximum number of iterative cycles was less than or
equal to 6 in the entire numerical simulations with tol = 10−6.

3.1. Numerical convergence tests with smooth initial data in 2D

We demonstrate the numerical convergence of the CSRK methods when solving the PFC equation with the
periodic boundary condition on the domain Ω = [0, 32] × [0, 32]. For the convergence test of the time accuracy,
we consider the initial condition

φ (x, y, 0) = 0.03 + 0.005
6∑

l=0

6∑
m=0

Re
[
alme

2π i
32 (lx)

]
· Re

[
blme

2π i
32 (my)

]
, (35)

where alm and blm are random complex numbers with ∥alm∥∞ ≤ 1 and ∥blm∥∞ ≤ 1. For each frequency l and m,
there are four different modes cos(lξx ) cos(mξy), cos(lξx ) sin(mξy), sin(lξx ) cos(mξy), and sin(lξx ) sin(mξy) where
(ξx , ξy)∈ [0, 2π ] ×[0, 2π ]. We can have all of these four modes by choosing random complex coefficients, alm and
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Fig. 2. Solution evolutions with smooth initial condition in 2D. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. Relative l2-error of CSRK-R2 (γ ).

blm . All of these modes are relatively smooth function and numerically well-resolved on the computational grid
with ∆x = ∆y = 1/2 or ∆ξx = ∆ξy = π/32, therefore we can consider (35) as the smooth initial condition with
all possible 49 (= 7 × 7) low frequency modes. For the numerical simulations, ϵ = 0.2 is used and the numerical
solution evolves to time T f = 128.

Fig. 2 shows the time evolution of the solution with a sufficiently small time step ∆t = T f /214 using the
third-order method, CSRK-R3(1/3). In each figure, the red, green, and blue regions indicate φ = 1, 0, and −1,
respectively.

Fig. 3 shows the relative l2-norm errors when varying parameter γ with different time steps ∆t = T f /29, T f /28,
T f /27, and T f /26. For the numerical simulation, we used the second-order methods in the negative branch and
executed the computation by increasing γ in increments of 0.05. The numerical solutions with γ ≲ 0.15 blow up
and are not marked in this figure; otherwise, the displayed results are numerically energy-stable. Furthermore, the
shaded region demarcates the area in which the unconditional energy stability is guaranteed as in Fig. 1. Fig. 3
indicates that the accuracy can depend on various situations; hence, we selected γ = 4/5 for our numerical tests.

Fig. 4 shows the relative l2-errors for the numerical solution of the methods corresponding to (30)–(32) with
various ∆t = T f /211, T f /210, . . . , T f /23. Here, the errors are computed in comparison with a quadruply over-
resolved reference numerical solution obtained using CSRK-R3(1/3). We observe that all the methods show
third-order convergence.

Fig. 5 shows the relative l2-errors for the numerical solution with various ∆t = T f /211, T f /210, . . . , T f /23. Here,
the errors are computed in comparison with a quadruply over-resolved reference numerical solution obtained using
CSRK-R3(1/3). The results show that the CSRK methods yield the desired order accuracy in time.

3.2. Energy dissipation test with randomly initial data in 2D

We demonstrate the numerical convergence of the CSRK methods for solving the PFC equation with the periodic
boundary condition with the following initial condition

φ (x, y, 0) = 0.1 + 0.05 · rand (x, y) (36)
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Fig. 4. Relative l2-error of CSRK-R3 (γ ) for various γ .

Fig. 5. Relative l2-error for various CSRK-R methods.

Fig. 6. Solution evolutions with random initial condition in 2D. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

on the domain Ω = [0, 32] × [0, 32]. Here, rand (x, y) is a uniformly random number between −1 and 1. For the
numerical simulations, ϵ = 0.1 is used and the grid size is fixed to ∆x = ∆y = 1/2, which provides sufficient
spatial accuracy. The numerical solution evolves to time T f = 128.

Fig. 6 shows the time evolution of the solution with a sufficiently small time step ∆t = T f /214 using the
third-order method, CSRK-R3(1/3). In each figure, the red, green, and blue regions indicate φ = 1, 0, and −1,
respectively.

Fig. 7 shows the evolution of the energy functional for the numerical solution with various time steps ∆t =

T f /26, T f /25, T f /24, T f /23. The solid line indicates the energy evolution of the reference solution. All curves are
non-increasing in time and the higher method is close to the reference line.
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Fig. 7. Evolution of energy functional E (φ).

Fig. 8. Solution evolutions with the first-order method for various time steps.

Fig. 8 shows the time evolutions of the density field φ using time steps of various sizes ∆t computed by the
first-order method. As shown previously [7], for the first-order method, evolutions with relatively large time steps
cannot reach the reference solutions in the same numerical times.

Fig. 9 shows the time evolutions with the second- and third-order methods for a large time step ∆t = T f /23.
Compared to Fig. 8, the higher order methods yield appropriate numerical evolutions even though a large time step
is used.

3.3. Dependence of pattern formation on various φ̄ and ϵ

In this section, we introduce an indicator function of the solution φ as

Λ (φ) =

∫
Ω

⏐⏐φ − φ̄
⏐⏐ dx∫

Ω

⏐⏐∇ (
φ − φ̄

)⏐⏐ dx
(37)
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Fig. 9. Solution evolutions with the second- and third-order methods, shown in the upper and lower rows, respectively.

Fig. 10. Evolution of energy functional E (φ) and indicator function Λ (φ).

to characterize the pattern formation of the solutions as striped, hexagonal, or homogeneous. For the numerical
simulation, we set the randomly perturbed initial condition

φ (x, y, 0) = φ̄ + 0.03 · rand (x, y) (38)

on the domain Ω = [0, 128] × [0, 128] with the periodic boundary condition. The numerical solution was evolved
to time T f = 8192 with a uniform grid ∆x = ∆y = 1/2. For moderate accuracy, we employed the second-order
method, CSRK-R2(4/5). We improved the efficiency of the numerical computations by initially using a small time
step ∆t = 1/4 in the earlier stage (t ≤ 1024), after which we converted this to a larger time step ∆t = 4. We
remark that time step size could be further adjusted. A simple and efficient strategy for a pth order adaptive scheme
might be choosing ∆tadap for the next time step close to(

∆tadap

tn+1 − tn

)p−1

≈
T olerance Limit

T f

tn+1
− tn

∥φn+1 − φn∥
,

which could be easily coupled with the RK method.
Fig. 10 shows the evolution of the energy functional E (φ) and indicator function Λ (φ) for various average

densities φ̄ = 0.03, 0.06, 0.18 for a constant value of epsilon ϵ = 0.13. All the results seem to evolve to the
specific values for each parameter set and the solutions stabilize at t = T f .
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Fig. 11. Distribution of energy functional E (φ) and indicator function Λ (φ) for the solution of φ
(
·, T f

)
with various parameters of φ̄ and

ϵ.

Fig. 12. (a) Phase diagram (Reprinted with permission from [4]). Here, ψ̄ is the average value which is identical to φ̄. (b) Values
of Λ

(
φ

(
·, T f

))
for 30 × 30 parameter sets of φ̄ and ϵ. The black, gray, and white regions indicate Λ (φ) = 1, 0.75, and 0, respectively.

(c) Sorted values of the indicator function Λ
(
φ

(
·, T f

))
in (b).

Fig. 11 shows the mesh plots for the value of E (φ) and Λ (φ) with respect to φ̄ and ϵ at the final time t = T f .
We consider a domain for the parameters as

(
φ̄, ϵ

)
∈ (0, 0.3]×(0, 0.3] and uniform spacing with ∆φ̄ = ∆ϵ = 0.01.

Unlike the smooth distribution of the energy, the result for the indicator shows a step-like profile.
Fig. 12(a) shows a phase diagram that is described in [4] by the linearized theory and (b) shows the checkerboard

plot for the same result of Λ (φ) in Fig. 11. The different regions of the phase diagram can be compared by using the
value of the indicator function (37) to characterize the pattern formation. Fig. 12(c) displays the 30 × 30 indicator
values in ascending order and it indicates that each pattern intends to be in a certain range of values. The range of
the values for the stripe cases (A1, B1,C1) is in 0.98816 to 1.00493, the hexagonal cases (A3, B3,C3) in 0.92386
to 0.93975, and the constant case (A4, B4,C4) in 0.14261 to 0.18622. The square dots in Fig. 12(b) and (c) are the
parameter set for the solutions in Fig. 13.

Fig. 13 shows the numerical solutions at the final time t = T f . The specific parameters φ̄ and ϵ are written
above each figure and they are indicated in Fig. 12(b) by solid squares. To enable the magnitude of the solutions to
be compared, we assign the color levels for the red, green, and blue regions as φ = 1, 0, and −1, respectively. In
general, as the parameter ϵ increases, from the bottom row to the top row, the magnitude of the solutions increases.
On the other hand, the formation of patterns consisting of stripes, which evolve into hexagons, and finally into a
constant pattern is clearly demonstrated when observing the columns from left to right. Furthermore, the snapshots
in the second column show the coexistence of striped and hexagonal patterns.

4. Conclusions

We proposed high-order methods that guarantee the decreasing property of the energy functional by employing
the Convex Splitting Runge–Kutta method and provided detailed proof of mass conservation, unconditional



J. Shin, H.G. Lee and J.-Y. Lee / Computer Methods in Applied Mechanics and Engineering 364 (2020) 112981 13

Fig. 13. Solutions φ
(
x, y, T f

)
with various parameters φ̄ and ϵ. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

energy stability, and unique solvability for the phase-field crystal equation. We presented one complete family
of parameters of the second-order methods and selected examples of third-order methods. Various numerical
experiments demonstrated that energy stability could be attained with the desired time accuracy and we proposed an
indicator function to characterize the pattern formation for long-time simulation. For a long time simulation, time
step size can be chosen adaptively which could be easily coupled with the RK method. We showed the effectiveness
of the second and third Convex Splitting Runge–Kutta methods for the phase-field crystal equation; however, a best
choice selection of Runge–Kutta coefficients for the numerical simulation of a particular equation would require
further investigation.
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