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a b s t r a c t

In this study, we present a high-order energy stable scheme for the conser-
vative Allen–Cahn equation with a nonlocal Lagrange multiplier by combining
the concept of energy quadratization and the Runge–Kutta method. Under the
stability condition for the Runge–Kutta coefficients, we analytically demonstrate
that the scheme is unconditionally stable with respect to the reformulated energy.
Additionally, we develop a Newton-type fixed point iteration method to implement
the scheme, enabling the achievement of a fast iterative convergence. Numerical
experiments are presented to demonstrate the accuracy and energy stability of the
proposed scheme.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Many phase-field equations are given by gradient flows for energy functionals [1,2]. The Allen–Cahn (AC)
equation [3] is a L2-gradient flow for the Ginzburg–Landau energy functional,

E(ϕ) =
∫
Ω

(
F (ϕ) + ϵ2

2 |∇ϕ|2
)
dx, (1)

here Ω ⊂ Rd (d = 1, 2, 3), ϕ is the order parameter, F (ϕ) = 1
4 (ϕ2 − 1)2, and ϵ > 0 is a constant related to

he interfacial thickness. For the sake of simplicity, we assume the zero Neumann boundary condition for ϕ:
ϕ · n = 0 on ∂Ω , where n is a unit normal vector to ∂Ω . Because the AC equation is of the gradient type,

t is easy to see that (1) is nonincreasing in time.
The original AC equation does not conserve the total mass. Hence, we introduce the conservative

C (CAC) equation to overcome this shortcoming by adding a nonlocal Lagrange multiplier to the AC
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equation [4], as follows.

∂ϕ

∂t
= −δE

δϕ
+ 1

|Ω |

∫
Ω

f(ϕ) dx = −
(
f(ϕ) − ϵ2∆ϕ

)
+ 1

|Ω |

∫
Ω

f(ϕ) dx, (2)

where δ
δϕ denotes the variational derivative and f(ϕ) = F ′(ϕ). The CAC Eq. (2) satisfies the mass

conservation and energy dissipation property as expressed below.

d

dt

∫
Ω

ϕ dx =
∫
Ω

∂ϕ

∂t
dx = −

∫
Ω

(
f(ϕ) − ϵ2∆ϕ

)
dx +

∫
Ω

f(ϕ) dx = 0

and
dE
dt

=
∫
Ω

δE
δϕ

∂ϕ

∂t
dx =

∫
Ω

(
−∂ϕ

∂t
+ 1

|Ω |

∫
Ω

f(ϕ) dx
)
∂ϕ

∂t
dx

= −
∫
Ω

(
∂ϕ

∂t

)2
dx + 1

|Ω |

∫
Ω

f(ϕ) dx
∫
Ω

∂ϕ

∂t
dx = −

∫
Ω

(
∂ϕ

∂t

)2
dx ≤ 0.

e note that there are many versions of the CAC equation [5–7] that conserve the mass but do not comply
ith energy properties.
While the mass is conserved precisely, the additional nonlocal Lagrangian term causes difficulties in

eveloping accurate and stable numerical methods for Eq. (2). There are various related works [8–12] but
ost of them have only first-order time accuracy or are unable to prove energy stability, with the exception

f [11,12]. The aim of the present work is to present a high-order energy stable scheme for Eq. (2) by
ombining the energy quadratization (EQ) concept, such as the invariant energy quadratization (IEQ) [13]
nd the scalar auxiliary variable (SAV) [14–16], with the Runge–Kutta (RK) method [17]. Under the stability
ondition for the RK coefficients [18], we analytically demonstrate that the scheme is unconditionally stable
ith respect to the reformulated energy. Furthermore, we develop a Newton-type fixed point iteration
ethod to implement the scheme, enabling the achievement of a fast iterative convergence.
The rest of this paper is organized as follows. In Section 2, we propose the EQ-RK scheme, prove its

nconditional energy stability, and describe its numerical implementation. In Section 3, we present numerical
xamples demonstrating the accuracy and energy stability of the proposed scheme. Finally, conclusions with
he main contribution and results are drawn in Section 4.

. Energy quadratization Runge–Kutta scheme

.1. Energy quadratization reformulations

To obtain an EQ reformulation, we utilize the invariant energy quadratization (IEQ) idea by introducing
n auxiliary variable ψ(x, t) =

√
F (ϕ) + C, where C is a constant such that F (ϕ) + C > 0. Then, one can

redefine the energy E(ϕ) as

EIEQ(ϕ, ψ) =
∫
Ω

(
ψ2 + ϵ2

2 |∇ϕ|2
)
dx − C|Ω | (3)

nd reformulate Eq. (2) as

∂ϕ

∂t
= −

(
G(ϕ)ψ − ϵ2∆ϕ

)
+ 1

|Ω |

∫
Ω

G(ϕ)ψ dx, ∂ψ

∂t
= 1

2G(ϕ)∂ϕ
∂t
, (4)

here G(ϕ) = f(ϕ)√
F (ϕ)+C

. The new system (4) still satisfies the mass conservation and energy dissipation
roperties:

d
∫

ϕ dx =
∫

∂ϕ
dx = −

∫ (
G(ϕ)ψ − ϵ2∆ϕ

)
dx +

∫
G(ϕ)ψ dx = 0
dt Ω Ω ∂t Ω Ω

2
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and
dEIEQ

dt
=

∫
Ω

(
−∂ϕ

∂t
+ 1

|Ω |

∫
Ω

G(ϕ)ψ dx
)
∂ϕ

∂t
dx = −

∫
Ω

(
∂ϕ

∂t

)2
dx ≤ 0.

Next, we utilize the SAV idea to obtain another EQ reformulation by introducing a scalar auxiliary
variable ψ(t) =

√∫
Ω
F (ϕ) dx + C, where C is a constant such that

∫
Ω
F (ϕ) dx + C > 0. Then, one can

edefine the energy E(ϕ) as

ESAV (ϕ, ψ) = ψ2 +
∫
Ω

ϵ2

2 |∇ϕ|2 dx − C (5)

and reformulate Eq. (2) as

∂ϕ

∂t
= −

(
G(ϕ)ψ − ϵ2∆ϕ

)
+ 1

|Ω |

∫
Ω

G(ϕ)ψ dx, ∂ψ

∂t
= 1

2

∫
Ω

G(ϕ)∂ϕ
∂t

dx, (6)

where G(ϕ) = f(ϕ)√∫
Ω

F (ϕ) dx+C

. The time derivatives of the mass and energy for the new system (6) can

e computed in the same way as that for (4), which proves that the SAV scheme also satisfies the mass
onservation and energy dissipation properties.

The auxiliary variable ψ(x, t) is a function of the space variable x and the time variable t in the
EQ reformulation, whereas the scalar auxiliary variable ψ(t) only depends on the time variable t in the
AV reformulation. This slight difference leads to technical deviations in the mathematical proof and the
umerical implementations; however, the two schemes share a principal similarity.

.2. Energy quadratization Runge–Kutta scheme

Applying an s-stage RK method to the EQ reformulated system (4) or (6), we have the following EQ-RK
cheme. For the RK coefficients A = (aij) ∈ Rs×s and b = (bi), c = (ci =

∑s
j=1 aij) ∈ Rs,

ϕi = ϕn + ∆t

s∑
j=1

aijpj , ψi = ψn + ∆t

s∑
j=1

aijqj , (7)

where

pi = −
(
G(ϕi)ψi − ϵ2∆ϕi

)
+ 1

|Ω |
(G(ϕi), ψi) , qi = 1

2G(ϕi)pi for IEQ,

pi = −
(
G(ϕi)ψi − ϵ2∆ϕi

)
+ 1

|Ω |
(G(ϕi), ψi) , qi = 1

2 (G(ϕi), pi) for SAV.

Here, (·, ·) denotes the L2-inner product with respect to Ω . Then, ϕn+1 and ψn+1 are updated via

ϕn+1 = ϕn + ∆t

s∑
i=1

bipi, ψn+1 = ψn + ∆t

s∑
i=1

biqi. (8)

efinition 1 (Stability Condition [18]). Define a symmetric matrix M given by

M = diag(b)A + AT diag(b) − bbT .

he stability condition is defined as

bi ≥ 0 for i = 1, . . . , s and M is positive semi-definite. (9)

The RK coefficients satisfying the stability condition (9) are listed in Table 1.

3



H.G. Lee, J. Shin and J.-Y. Lee Applied Mathematics Letters 132 (2022) 108161

u
a

P

B

F

A

B

Table 1
Butcher tableaus of the diagonally implicit RK method [19,20].

first-order second-order third-order fourth-order

1 1
1

1
2

1
2
1

σ σ 0
1 − σ 1 − 2σ σ

1
2

1
2

σ σ 0 0
1
2

1
2 − σ σ 0

1 − σ 2σ 1 − 4σ σ

µ 1 − 2µ µ

σ = 3+
√

3
6 σ =

cos( π

18
)

√
3

+ 1
2 , µ = 1

6(2σ−1)2

Remark 2. Since the EQ-RK scheme is based on the RK method, we can achieve desired order of accuracy
in time if we choose proper RK coefficients (such as given in Table 1). And, to make order of accuracy in
space compatible with high-order in time, we employ the Fourier spectral method [21] for the numerical
differentiation in (7)–(8).

Below, we show that the EQ-RK scheme with RK coefficients satisfying the stability condition is
unconditionally energy stable.

Theorem 3. The EQ-RK scheme (7)–(8) with RK coefficients satisfying the stability condition (9) is
nconditionally stable with respect to the EQ reformulated energy EEQ(ϕ, ψ) in (3) or (5), meaning that for
ny time step ∆t > 0,

EEQ(ϕn+1, ψn+1) ≤ EEQ(ϕn, ψn), where EQ = IEQ or SAV.

roof. For IEQ, we have from Eqs. (7) and (8)

∥ψn+1∥2 − ∥ψn∥2 = 2∆t
s∑

i=1
bi (qi, ψ

n) + (∆t)2
s∑

i=1

s∑
j=1

bibj (qi, qj)

= 2∆t
s∑

i=1
bi (qi, ψi) − (∆t)2

s∑
i=1

s∑
j=1

mij (qi, qj) .

ecause M is positive semi-definite,

∥ψn+1∥2 − ∥ψn∥2 ≤ 2∆t
s∑

i=1
bi (qi, ψi) = ∆t

s∑
i=1

bi (G(ϕi)ψi, pi) . (10)

or SAV, because M is positive semi-definite and ψi only depends on t,

(ψn+1)2 − (ψn)2 ≤ 2∆t
s∑

i=1
biqiψi = ∆t

s∑
i=1

bi (G(ϕi)ψi, pi) . (11)

nd we obtain

∥∇ϕn+1∥2 − ∥∇ϕn∥2 ≤ 2∆t
s∑

i=1
bi (∇ϕi,∇pi) = −2∆t

s∑
i=1

bi (∆ϕi, pi) . (12)

Adding (10) or (11) and (12) yields

EEQ(ϕn+1, ψn+1) − EEQ(ϕn, ψn) ≤ ∆t

s∑
i=1

bi

(
G(ϕi)ψi − ϵ2∆ϕi, pi

)
= ∆t

s∑
i=1

bi

(
−pi + 1

|Ω |
(G(ϕi), ψi) , pi

)
= −∆t

s∑
i=1

bi∥pi∥2.

ecause b ≥ 0 for i = 1, . . . , s, E (ϕn+1, ψn+1) − E (ϕn, ψn) ≤ 0. This completes the proof. □
i EQ EQ

4
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2.3. Numerical implementation

Using an s-stage diagonally implicit RK method for convenience of implementation, the EQ-RK scheme
(7) can be rewritten as follows.

ϕi − aii∆t pi = S1
i , (13)

ψi − aii∆t qi = S2
i , (14)

where S1
i = ϕn + ∆t

∑i−1
j=1 aijpj and S2

i = ψn + ∆t
∑i−1

j=1 aijqj . Eq. (14) can be simplified as follows.

−1
2G(ϕi)

(
ϕi − S1

i

)
+ ψi = S2

i for IEQ,

−1
2

(
G(ϕi), ϕi − S1

i

)
+ ψi = S2

i for SAV.
(15)

To solve Eqs. (13) and (15), we develop a Newton-type fixed point iteration method for ϕm+1
i , ψm+1

i

starting with ϕ0
i = ϕi−1, ψ0

i = ψi−1 as follows.[
Am Bm

Cm I

] [
ϕm+1

i − ϕm
i

ψm+1
i − ψm

i

]
=

[
S1

i − N 1(ϕm
i , ψ

m
i )

S2
i − N 2(ϕm

i , ψ
m
i )

]
, (16)

here

Am = I + aii∆t

(
G′(ϕm

i )ψm
i − ϵ2∆ − 1

|Ω |
(G′(ϕm

i )ψm
i , ·)

)
,

Bm = aii∆t

(
G(ϕm

i ) − 1
|Ω |

(G(ϕm
i ), ·)

)
,

(G′(ϕm
i )ψm

i , ·)ϕ := (G′(ϕm
i )ψm

i , ϕ) , (G(ϕm
i ), ·)ψ := (G(ϕm

i ), ψ) ,

N 1(ϕ, ψ) = ϕ+ aii∆t

(
G(ϕ)ψ − ϵ2∆ϕ− 1

|Ω |
(G(ϕ), ψ)

)
,

nd

Cm = −1
2

(
G(ϕm

i ) +G′(ϕm
i )

(
ϕm

i − S1
i

))
, N 2(ϕ, ψ) = −1

2G(ϕ)
(
ϕ− S1

i

)
+ ψ,

G′(ϕ) = 2f ′(ϕ)(F (ϕ) + C) − (f(ϕ))2

2(F (ϕ) + C) 3
2

for IEQ,

Cm = −1
2

(
G(ϕm

i ) +G′(ϕm
i )

(
ϕm

i − S1
i

)
, ·

)
, N 2(ϕ, ψ) = −1

2
(
G(ϕ), ϕ− S1

i

)
+ ψ,

G′(ϕ) = 2f ′(ϕ)((F (ϕ),1) + C) − f(ϕ)(f(ϕ),1)
2((F (ϕ),1) + C) 3

2
for SAV.

The system (16) can be further simplified as follows.

(Am − BmCm) (ϕm+1
i − ϕm

i ) = S1
i − N 1(ϕm

i , ψ
m
i ) − Bm(S2

i − N 2(ϕm
i , ψ

m
i )), (17)

ψm+1
i = ψm

i + S2
i − N 2(ϕm

i , ψ
m
i ) − Cm(ϕm+1

i − ϕm
i ). (18)

e solve ϕm+1
i using Eq. (17) and then update ψm+1

i by Eq. (18), and set

ϕi = ϕm+1
i and ψi = ψm+1

i

f a relative l2-norm of the consecutive error ∥ϕm+1
i

−ϕm
i ∥

∥ϕm
i ∥ is less than a tolerance toln. In this study, the

iconjugate gradient (BICG) method is used to solve Eq. (17), and we use the following preconditioner P
o accelerate the convergence speed of the BICG algorithm: P = I + aii∆t

(
−ϵ2∆

)
. The stopping criterion

or the BICG iteration is that the relative residual norm is less than tol .
bicg

5
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E

3

Fig. 1. (a) Evolution of E(t) for the reference solution with ϵ = 0.01 and h = 1
128 . (b)–(c) Convergence of ϕ(x, y, t = 6) by the

Q-RK schemes.

. Numerical experiments

Unless otherwise stated, we set ϵ = 0.01, C = 1, h = 1
128 , toln = 10−6∆t, and tolbicg = 10−8∆t for the

simulations in this section.

3.1. Numerical convergence with a smooth test function in 2D

We demonstrate the convergence of proposed scheme with an initial condition

ϕ(x, y, 0) = 0.02 cos(4πx) cos(3πy) + 0.1 cos(3πx) cos(2πy) − 0.5

on Ω = [0, 1] × [0, 1]. To estimate the convergence rate with respect to ∆t, simulations are performed by
varying ∆t = 2−9, 2−8, . . . , 2−1. We take the quadruply over-resolved numerical solution using the fourth-
order scheme as the reference solution. Fig. 1(a) shows the evolution of E(t) for the reference solution. For
IEQ and SAV, the relative l2-errors of ϕ(x, y, 6) for various time steps are shown in Figs. 1(b) and (c),
respectively. Here, the errors are computed by comparison with the reference solution. We note that the
proposed scheme provides the desired order of accuracy in time.

For IEQ, to demonstrate the robustness of the nonlinear solver, we count the number of nonlinear and
BICG iterations (see Fig. 2). Here, we regard the number of BICG iterations at each time level as the
average number of BICG iterations for the nonlinear iterations at each time level. For the first- and second-
order schemes, 2–3 nonlinear iterations were involved in proceeding to the next time level, and we believe
that such a fast iterative convergence can be achieved since the successive iteration (17) is a Newton-type
fixed point iteration method. Additionally, the numbers of nonlinear iterations of the (two-stage) third- and
(three-stage) fourth-order schemes are approximately two and three times more than that of the (one-stage)
first-order scheme, respectively. These results indicate that the number of nonlinear iterations is almost
linear with respect to the number of stages. Furthermore, the BICG algorithm converges in a small number
of iterations by using the preconditioner. We have not included figures for SAV but obtained results similar
to those in Fig. 2.

3.2. Energy stability with a nonsmooth test function in 2D

To investigate the energy stability of proposed scheme, we take an initial condition as
ϕ(x, y, 0) = −0.5 + rand(x, y)
6
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Fig. 2. Number of nonlinear and BICG iterations for the first-, second-, third-, and fourth-order IEQ schemes with different time
teps.

Fig. 3. Evolution of
∫
Ω

(ϕ(x, y, t) − ϕ(x, y, 0)) dxdy and EIEQ(t) using the first- and fourth-order IEQ schemes with different time
teps.

n Ω = [0, 1] × [0, 1], where rand(x, y) is a random number between −0.1 and 0.1 at the grid points.
or IEQ, Fig. 3 shows the evolution of

∫
Ω

(ϕ(x, y, t) − ϕ(x, y, 0)) dxdy and EIEQ(t) using the first- and
ourth-order schemes with different time steps. Here,

∫
Ω

(ϕ(x, y, t) − ϕ(x, y, 0)) dxdy is approximated by∑
(ϕn −ϕ0)∆x∆y. We note that the mass fluctuation is roughly equal to the machine precision, which is

onsiderably smaller than the numerical solution accuracy, and all the energy curves are nonincreasing over
ime (again in machine precision) owing to the mass conservation. For second-, third-order IEQ and SAV,
e obtain results similar to those in Fig. 3.
7
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Fig. 4. Evolution of the reference solution ϕ(x, y, t) by the SAV scheme with ϵ = 0.01 and h = 1
128 and its original energy E(t).

Fig. 5. Convergence of E∆t
SAV (t) and differences between the original E∆t(t) and the discrete E∆t

SAV (t) energies by the SAV scheme
at t = 192 for ∆t = 2−9, 2−8, . . . , 2−1.

3.3. Energy convergence with a smooth test function in 2D

The original energy E(t) in (1) and the EQ reformulated energy EEQ(t) in (3) or (5) are equivalent in the
continuous-time case but not in the discrete-time case. To numerically quantify the difference between the
discrete energies, we take an initial condition as

ϕ(x, y, 0) = cos
(

8πmin
{

4
√

(x− 1)4 + (|2y − 1| − 1)4, 1
})

n Ω = [0, 1] × [0, 1]. The evolution of the reference solution ϕ(x, y, t) using the fourth-order SAV scheme
ith ∆t = 2−11 and its original energy E(t) using the reference solution is shown in Fig. 4. The coarsening

dynamics and energy dissipation may be observed.
To clarify the difference between the continuous energy E(t) and EQ reformulated energy EEQ(t), we

efine the continuous energy E(t) := E(ϕ(t)) using the reference solution, the numerically computed original
nergy E∆t(tn) := E(ϕ(tn)), and the SAV reformulated energy E∆t

SAV (tn) := ESAV (ϕ(tn), ψ(tn)) with a time
tep ∆t. In Fig. 5(a), |E(t) − E∆t

SAV (t)| clearly shows that the numerically computed SAV energy converges
o the original energy in the desired order of accuracy, as expected. More interesting is the difference
E∆t(t) − E∆t

SAV (t)| between the original and SAV energies using the computed solution at t = 192. Here,
e note that the SAV energy differs from the original energy but is consistent with the order of numerical

cheme accuracy. For IEQ, we obtain results similar to those in Figs. 4 and 5.

8
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Fig. 6. Evolution of ϕ(x, y, z, t) and EIEQ(t) using the fourth-order IEQ scheme with ϵ = 0.02 and h = 1
64 .

.4. Evolution of spheres perturbed by spherical harmonics in 3D

We perform the evolution of spheres perturbed by spherical harmonics on Ω = [0, 1] × [0, 1] × [0, 1] with
ϵ = 0.02, h = 1

64 and ∆t = 1
8 . An initial condition is as follows.

ϕ(x, y, z, 0) = 1 +
2∑

i=1
tanh

(
0.25 + siY

8
10(θ, φ) − ri

2ϵ

)
,

here (s1, s2) = (0.05, 0.01), Y 8
10(θ, φ) is a spherical harmonic with the polar θ and azimuthal φ angles, and

i =
√

(x− 0.5)2/ai + (y − 0.5)2/bi + (z − zi)2/ci is the scaled radius with (a1, b1, c1, z1) = (1, 1, 0.8, 0.35)
nd (a2, b2, c2, z2) = (0.5, 0.5, 0.4, 0.8). For IEQ, Fig. 6 shows the evolution of ϕ(x, y, z, t) and E(t). As the

energy is dissipated in time, each perturbed sphere evolves to a sphere in moving convex and concave parts
inward and outward, respectively, and then two spheres merge into one. For SAV, we obtain results similar
to those in Fig. 6.

4. Conclusions

We developed a high-order (up to fourth-order) energy stable EQ-RK scheme for the CAC equation with a
nonlocal Lagrange multiplier. Additionally, we implemented the EQ-RK scheme by using the Newton-type
fixed point iteration method. Under the stability condition for the RK coefficients, unconditional energy
stability of the EQ-RK scheme was proven theoretically. We numerically confirmed that the EQ-RK scheme
yields the desired order of accuracy in time and is unconditionally stable with respect to the EQ reformulated
energy, and that the discrete version of the EQ reformulated energy is a high-order approximation of the
original energy.
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[10] M. Beneš, S. Yazaki, M. Kimura, Computational studies of non-local anisotropic Allen–Cahn equation, Math. Bohem.

136 (2011) 429–437.
[11] M. Okumura, A stable and structure-preserving scheme for a non-local Allen–Cahn equation, Japan J. Indust. Appl.

Math. 35 (2018) 1245–1281.
[12] J. Shen, X. Yang, A novel fully decoupled scheme with second-order time accuracy and unconditional energy stability

for the Navier–Stokes equations coupled with mass-conserved Allen–Cahn phase-field model of two-phase incompressible
flow, Internat. J. Numer. Methods Engrg. (2020) 1–24.

[13] X. Yang, Linear, first, second order, Unconditionally energy stable numerical schemes for the phase field model of
homopolymer blends, J. Comput. Phys. 327 (2016) 294–316.

[14] J. Shen, J. Xu, J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys. 353 (2018)
407–416.

[15] C. Yao, H. Fan, Y. Zhao, Y. Shi, F. Wang, Fast algorithm for nonlocal Allen–Cahn equation with scalar auxiliary
variable approach, Appl. Math. Lett. 126 (2022) 107805.

[16] N. Zheng, X. Li, New efficient and unconditionally energy stable schemes for the Cahn–Hilliard–Brinkman system, Appl.
Math. Lett. 128 (2022) 107918.

[17] Y. Gong, J. Zhao, Energy-stable Runge–Kutta schemes for gradient flow models using the energy quadratization
approach, Appl. Math. Lett. 94 (2019) 224–231.

[18] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, 2016.
[19] E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer, 1993.
[20] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer,

1996.
[21] J. Shin, H.G. Lee, J.-Y. Lee, Long-time simulation of the phase-field crystal equation using high-order energy-stable

CSRK methods, Comput. Methods Appl. Mech. Engrg. 364 (2020) 112981.
10

http://refhub.elsevier.com/S0893-9659(22)00144-6/sb1
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb2
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb2
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb2
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb3
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb3
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb3
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb4
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb5
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb5
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb5
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb6
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb6
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb6
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb7
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb7
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb7
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb8
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb8
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb8
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb9
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb9
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb9
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb10
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb10
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb10
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb11
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb11
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb11
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb12
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb12
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb12
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb12
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb12
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb13
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb13
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb13
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb14
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb14
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb14
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb15
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb15
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb15
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb16
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb16
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb16
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb17
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb17
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb17
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb18
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb19
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb20
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb20
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb20
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb21
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb21
http://refhub.elsevier.com/S0893-9659(22)00144-6/sb21

	Energy quadratization Runge–Kutta scheme for the conservative Allen–Cahn equation with a nonlocal Lagrange multiplier
	Introduction
	Energy quadratization Runge–Kutta scheme
	Energy quadratization reformulations
	Energy quadratization Runge–Kutta scheme
	Numerical implementation

	Numerical experiments
	Numerical convergence with a smooth test function in 2D
	Energy stability with a nonsmooth test function in 2D
	Energy convergence with a smooth test function in 2D
	Evolution of spheres perturbed by spherical harmonics in 3D

	Conclusions
	Acknowledgment
	References


