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Abstract
In this paper, we propose high order and unconditionally energy stable meth-
ods for a modified phase field crystal equation by applying the strategy of the
energy quadratization Runge–Kutta methods. We transform the original model
into an equivalent system with auxiliary variables and quadratic free energy.
The modified system preserves the laws of mass conservation and energy dissi-
pation with the associated energy functional. We present rigorous proofs of the
mass conservation and energy dissipation properties of the proposed numeri-
cal methods and present numerical experiments conducted to demonstrate their
accuracy and energy stability. Finally, we compare long-term simulations using
an indicator function to characterize the pattern formation.

Keywords: modified phase field crystal equation, energy quadratization
Runge–Kutta method, unconditional energy stability, mass conservation

(Some figures may appear in colour only in the online journal)

1. Introduction

We consider an energy quadratization Runge–Kutta (EQRK) method for constructing uncon-
ditionally energy stable schemes used in a modified phase field crystal (MPFC) equation [1, 2]
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∂2φ

∂t2
+ β

∂φ

∂t
= MΔ

(
F′ (φ) + (1 +Δ)2φ

)
, (1)

where φ is the atomic density field, β is a positive constant, and M > 0 is a mobility constant.
We consider a typical polynomial

F (φ) =
1
4
φ4 − ε

2
φ2, (2)

where ε is a positive constant with physical significance. This system can be completed by
assuming that φ is periodic on a domain Ω in R

d (d = 1, 2, 3).
In this study, we develop a numerical method such that two physical structures

(i.e. mass conservation and energy dissipation) are preserved. If the initial condition satisfies∫
Ω

∂φ
∂t (x, 0) dx = 0, then the mass is conserved over time; that is,

d
dt

∫
Ω

φ(x, t) dx = 0. (3)

In addition, the solutions to (1) dissipate the following energy.

F (φ) = 〈F (φ) , 1〉+ 1
2

〈
φ, (1 +Δ)2φ

〉
+

1
2M

∥∥∥∥∂φ∂t

∥∥∥∥
2

H−1
, (4)

where 〈 f , g〉 and 〈 f , g〉H−1 are the L2- and H−1-inner products, respectively. Possessing an
energy decreasing property at the discrete level implies that the scheme is energy stable.
In addition, an unconditionally energy stable scheme does not have any restrictions on the
time step size.

From a physical perspective, the phase field crystal (PFC) equation

∂φ

∂t
= MΔ

(
F′ (φ) + (1 +Δ)2φ

)
, (5)

has been proposed to model atomic-scale elastic interactions as well as crystal plasticity and
diffusive dynamics [3, 4]. The PFC equation (5) successfully simulates the dynamics of poly-
crystalline grain boundaries, grain-boundary energy, and dislocation. However, distinguishing
the elastic relaxation and diffusive time scales is difficult. Meanwhile, the MPFC equation (1)
was introduced to simulate rapid elastic relaxation over long length scales by introducing the
second-order time derivatives [1, 2]. From a mathematical perspective, the PFC equation is
described by a gradient flow for the Swift–Hohenberg energy functional

FPFC(φ) = 〈F (φ) , 1〉+ 1
2

〈
φ, (1 +Δ)2φ

〉
, (6)

under the H−1 inner product space. Because the PFC equation is of a gradient type, it may
be straightforwardly noted that the energy (6) does not increase over time. Meanwhile, the
MPFC model is no longer a gradient flow. However, the original energy (6) with a kinetic
energy term becomes pseudo-energy (4), which does not increase over time.

Owing to the wide coverage of a gradient flow for the phase field model, many uncondi-
tionally energy stable schemes have been developed with high accuracy. For examples, see
[5–11] and therein. Specifically, using the PFC equation, many works on convex splitting
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methods [5, 12–14], secant-type difference [15], a modified Crank–Nicolson method [16], and
energy quadratization (EQ) strategies [9, 10, 17] have been reported in the relevant literature.
Despite the difference between the damped wave equation (1) and diffusive equation (5), the
similarity of the equations and their properties have attracted many researchers to focus on
numerical methods for extending the PFC equation to the MPFC equation, including convex
splitting methods [18, 19], secant-type difference [20], a modified Crank–Nicolson method
[21], and EQ strategies [22–24].

Among the presented studies, the convex splitting Runge–Kutta (CSRK) method [14] was
recently proposed to solve the PFC equation with high order time accuracy and uncondi-
tional energy stability. However, the applicability of the CSRK scheme to the MPFC equation
remain an open question because it is not a gradient flow. Only a second-order convex split-
ting method with a backward difference formula has been provided for the MPFC equation
[13], which guarantees only the boundedness of its energy functional, and not its dissipa-
tive property. In constrast, the EQRK method [10] is a successful framework for the devel-
opment of unconditionally energy stable schemes. Because the EQRK method is based on
the EQ strategy, the method can be applied to various systems even for a non-gradient flow.
The aim of the present work is to demonstrate the extendability of the high order EQRK method
to the MPFC equation. Because the MPFC equation often requires long-term dynamic sim-
ulations to reach a steady state, high order accurate energy stable schemes are desirable to
render large step sizes practical while preserving accuracy compared to existing second-order
methods.

The remainder of this paper is organized as follows. Section 2 describes a detailed refor-
mulation using EQ, a derivation of the EQRK method, and issues related to the numerical
implementation. Section 3 presents numerical results showing the accuracy and energy stability
of the proposed method. Finally, some concluding remarks are provided in section 4.

2. Numerical scheme

We first introduce a reformulated system with EQ by defining an auxiliary variable. Next, we
apply the EQRK concept to the reformulation. With a well-known algebraic stability condition
for the coefficients of RK methods, we provide some proofs of the energy stability and mass
conservation of the proposed approach. Finally, for the numerical test, we present a detailed
implementation by choosing the RK class, called the singly diagonally implicit Runge–Kutta
method.

2.1. EQ reformulation

We utilize the invariant energy quadratization (IEQ) approach by introducing an auxiliary
variable

q (x, t) =
√

F(φ) + C0, (7)

where C0 is a positive constant such that F(φ) + C0 > 0. For the Swift–Hohenberg models,
F (φ) often has a lower bound; thus, we can choose a proper constant for C0. In this study,
C0 = 1

2ε
2 is a suitable choice for a typical example (2). We can then rewrite the original

equation (1) as the IEQ reformulated system
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∂φ

∂t
= ψ,

∂ψ

∂t
= MΔ

(
G (φ) q + (1 +Δ)2φ

)
− βψ,

∂q
∂t

=
1
2

G (φ)ψ,

(8)

where

G (φ) =
F′ (φ)√

F (φ) + C0
. (9)

This system is completed with the proper initial conditions and periodic boundary conditions
for φ, ψ, and q. For given initial states of φ (x, 0) and ψ (x, 0) = φt (x, 0), it is consistently
defined as q (x, 0) =

√
F (φ(x, 0)) + C0. Furthermore,

∫
Ω ψ(x, 0)dx = 0 should be satisfied.

The energy functional (4) can be rewritten as a quadratic form

FEQ (φ,ψ, q) = ‖q‖2 +
1
2

〈
φ, (1 +Δ)2φ

〉
+

1
2M

‖ψ‖2
H−1 . (10)

Moreover, the reformulation conserves the properties of mass conservation and energy dissi-
pation. Integrating (8) over Ω with the periodic boundary condition and letting Ψ(t) =

∫
Ω ψdx,

we obtain

dΨ(t)
dt

+ βΨ(t) = M
∫
∂Ω

∇μ̃ · n ds − M
∫
Ω

∇μ̃ · ∇1 dx = 0, (11)

where μ̃ = G (φ) q + (1 +Δ)2φ and n is the unit normal vector to ∂Ω. Ψ(t) = Ψ(0)e−βt and
Ψ(0) = 0 are solutions to the simple ODE (11), which imply mass conservation. In addition,
through a straightforward calculation, (8) possesses the following energy dissipation.

dFEQ

dt
=

〈
q, 2

∂q
∂t

〉
+

〈
(1 +Δ)2φ,

∂φ

∂t

〉
+

1
M

〈
ψ,

∂ψ

∂t

〉
H−1

= 〈q, G (φ)ψ〉+
〈
(1 +Δ)2φ,ψ

〉
+

1
M

〈
ψ,

∂ψ

∂t

〉
H−1

=
1
M

〈
ψ,

∂ψ

∂t
− MΔ

(
G (φ) q + (1 +Δ)2φ

)〉
H−1

= − β

M
‖ψ‖2

H−1 � 0.

(12)

2.2. EQRK method

For the RK coefficients A ∈ R
s×s, b ∈ R

s, and c = A1, we can construct the following RK
method. For given (φn,ψn, qn), the ith stage intermediate values are calculated by
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φi = φn +Δt
s∑

j=1

ai jh j,

ψi = ψn +Δt
s∑

j=1

ai jk j,

qi = qn +Δt
s∑

j=1

ai jl j,

(13)

where hi = ψi, ki = MΔ
(
G (φi) qi + (1 +Δ)2φi

)
− βψi, and li = 1

2 G (φi)ψi. Then, we eval-
uate the approximation of the subsequent time step

(
φn+1,ψn+1, qn+1

)
as

φn+1 = φn +Δt
s∑

i=1

bihi,

ψn+1 = ψn +Δt
s∑

i=1

biki,

qn+1 = qn +Δt
s∑

i=1

bili.

(14)

We now refer to (14) as IEQ-RK. Before introducing the conditions and proofs, we note
that the scalar auxiliary variable (SAV) approach of choosing an auxiliary variable as
q =

√
〈F(φ), 1〉+ C0 is another method of EQ reformulation. We can then consider the com-

bination of SAV and EQRK, which is a straightforward construction. In this paper, we present
the EQRK method using only the IEQ formulation.

For an RK table (A, b, c) and the corresponding symmetric matrix

M = BA + ATB − bbT, (15)

where B = diag (b), we state that an RK method satisfies the algebraic stability condition if
the matrix M is positive semi-definite and all components of b are non-negative.

For a simple description, we define the discrete energy at time tn as

Fn
EQ = FEQ (φn,ψn, qn) . (16)

Theorem 1. The IEQ-RK scheme (14) satisfying the algebraic stability condition is uncon-
ditionally energy stable; that is, Fn+1

EQ � Fn
EQ.

Proof. Using the equalities for qn+1 and qi, we obtain

∥∥qn+1
∥∥2 − ‖qn‖2 = 2Δt

s∑
i=1

bi 〈li, qn〉+Δt2
s∑

i=1

s∑
j=1

bib j 〈li, l j〉

= 2Δt
s∑

i=1

bi 〈li, qi〉 −Δt2
s∑

i=1

s∑
j=1

mi j 〈li, l j〉 .
(17)
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Because of the positive semi-definiteness of M, we obtain

∥∥qn+1
∥∥2 − ‖qn‖2 � 2Δt

s∑
i=1

bi 〈li, qi〉 . (18)

Similarly, we have

1
2

〈
φn+1, (1 +Δ)2φn+1

〉
− 1

2

〈
φn, (1 +Δ)2φn

〉
� Δt

s∑
i=1

bi

〈
hi, (1 +Δ)2φi

〉
,

(19)

and

1
2M

∥∥ψn+1
∥∥2

H−1 −
1

2M
‖ψn‖2

H−1 � Δt
M

s∑
i=1

bi〈ki,ψi〉H−1 . (20)

Adding (18), (19), and (20) leads to

Fn+1
EQ −Fn

EQ � Δt
s∑

i=1

bi

[
2 〈li, qi〉+

〈
hi, (1 +Δ)2φi

〉
+

1
M
〈ki,ψi〉H−1

]
. (21)

The summand can be extended as

2 〈li, qi〉+
〈
hi, (1 +Δ)2φi

〉
+

1
M
〈ki,ψi〉H−1

= 〈G (φi)ψi, qi〉+
〈
ψi, (1 +Δ)2φi

〉
+

1
M
〈ψi, ki〉H−1

=
1
M

〈
ψi, ki − MΔ

(
G (φi) qi + (1 +Δ)2φi

)〉
H−1 = − β

M
‖ψi‖2

H−1 .

(22)

Finally, (21) can be rewritten as

Fn+1
EQ −Fn

EQ � −Δt
β

M

s∑
i=1

bi‖ψi‖2
H−1 . (23)

Because bi is non-negative for all i, Fn+1
EQ � Fn

EQ for any time step Δt > 0. Therefore, the
scheme inherits the numerical energy dissipation. �

Theorem 2. The IEQ-RK scheme (14) with 〈ψn, 1〉 = 0 satisfies
〈
ψn+1, 1

〉
= 0 and〈

φn+1, 1
〉
= 〈φn, 1〉 if b ∈ Null⊥(I + βΔtA), that is, the matrix I + βΔtA is invertible or b

is perpendicular to the null space of I + βΔtA.

Proof. Suppose that the method (14) has a solution. From the periodic boundary condition,
for any i, we have

〈ki, 1〉 =
〈
MΔ

(
G (φi) qi + (1 +Δ)2φi

)
− βψi, 1

〉
= −β 〈ψi, 1〉 . (24)

For each stage, taking an inner product with 1, we have

6
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〈ψi, 1〉 = 〈ψn, 1〉+Δt
s∑

j=1

ai j 〈k j, 1〉 = −βΔt
s∑

j=1

ai j 〈ψ j, 1〉 . (25)

If I + βΔtA is invertible, then 〈ψi, 1〉 = 0 for all i. Otherwise, b is perpendicular to any solution
of the homogeneous matrix equation

∑s
i=1bi 〈ψi, 1〉 = 0. Then, we have

〈
ψn+1, 1

〉
= 〈ψn, 1〉+Δt

s∑
i=1

bi 〈ki, 1〉 = 0, (26)

and

〈
φn+1, 1

〉
= 〈φn, 1〉+Δt

s∑
i=1

bi 〈hi, 1〉 = 〈φn, 1〉 . (27)

�

Corollary 3. Suppose that
〈
ψ0, 1

〉
= 0. Then, the IEQ-RK scheme (14) satisfying the alge-

braic stability condition is mass-conserving; that is, 〈φn, 1〉 =
〈
φ0, 1

〉
.

Proof. With the initial state of
〈
ψ0, 1

〉
= 0, we can easily show that 〈ψn, 1〉 = 0 and 〈φn, 1〉 =〈

φ0, 1
〉

for all n � 1, based on mathematical induction. We need only prove the condition b ∈
Null⊥(I + βΔtA) using the algebraic stability condition; that is, M is positive semi-definite
and B = diag (b) is non-negative. If the matrix of I + βΔtA is invertible, then the condition
holds. Suppose the matrix is not invertible; then, there exists a nonzero vector χ such that
χ+ βΔtAχ = 0 or Aχ = −1

βΔtχ. Based on the definition of M in (15),

(χ, Mχ) = (χ, BAχ) + (χ, ATBχ) − (χ, bbTχ)

= 2(Bχ, Aχ) − (bTχ)2 =
−2
βΔt

(Bχ,χ) − (bTχ)2 � 0.
(28)

Using the positive semi-definiteness of M and positivity of B, we conclude that (χ, Mχ) = 0
and bTχ = 0, which implies b ∈ Null⊥(I + βΔtA). �

2.3. Diagonally implicit Runge–Kutta methods

Diagonally implicit Runge–Kutta methods can be a reasonable choice to circumvent the
difficulty of solving the full system. The Butcher notation indicates that A is a lower
triangular matrix. For self-consistency, we present examples of the singly diagonally
implicit Runge–Kutta (SDIRK) tables [10] in table 1 satisfying the algebraic stability con-
dition (positive semi-definite M in (15) and non-negative b). Please refer to [25, 26] for further
discussion. For the numerical test, we refer to as EQRK(p) for the desired pth order of accuracy.

In this section, we present the detailed implementation of (13) with the SDIRK methods in
table 1. For each ith stage, we need to solve the nonlinear system

7
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Table 1. Butcher tableaus of SDIRK, where λ=
(
3 +

√
3
)
/6, σ=cos

(
π
18

)
/
√

3 + 1/2,
and μ = 1/

(
6(2σ − 1)2

)
.

φi − aiiΔtψi = Sh
i ,

(1 + βaiiΔt)ψi − MaiiΔtΔ
(
G (φi) qi + (1 +Δ)2φi

)
= Sk

i ,

qi −
1
2

aiiΔtG (φi)ψi = Sl
i,

(29)

where Sh
i = φn +Δt

∑i−1
j=1ai jh j, Sk

i = ψn +Δt
∑i−1

j=1ai jk j, and Sl
i = qn +Δt

∑i−1
j=1ai jl j. We can

simply represent this nonlinear system (29) as

N (φi,ψi, qi) =
(
Sh

i , Sk
i , Sl

i

)
. (30)

To construct the nonlinear iterative method for (29), we apply Newton’s method and recursively
solve the following linear system.

∇Nm

⎡
⎣φm+1

i − φm
i

ψm+1
i − ψm

i

qm+1
i − qm

i

⎤
⎦ =

⎡
⎣Sh,m

i

Sk,m
i

Sl,m
i

⎤
⎦ , (31)

where

∇Nm =

⎡
⎢⎣

I −aiiΔt 0
−MaiiΔtΔ

(
G′ (φm

i

)
qm

i + (I +Δ)2
)

I + βaiiΔt −MaiiΔtΔG
(
φm

i

)
−1

2
aiiΔtG′ (φm

i

)
ψm

i −1
2

aiiΔtG
(
φm

i

)
I

⎤
⎥⎦ ,

(32)

(
Sh,m

i , Sk,m
i , Sl,m

i

)
=

(
Sh

i , Sk
i , Sl

i

)
−N

(
φm

i ,ψm
i , qm

i

)
. (33)

Here, G′ (φ) can be written as

G′ (φ) =
2F′′ (φ) F (φ) −

(
F′ (φ)

)2
+ 2C0F′′ (φ)

2(F (φ) + C0)
3
2

. (34)

To execute the iteration, we set the initial state as φ0
i = φi−1 and obtain the solution to (29) at

the ith stage by φi = φm+1
i if the relative l2-norm of the consecutive error ‖φm+1

i −φm
i ‖

‖φm
i ‖

is less

than the tolerance tol.
To reduce the computational cost by constructing an inversion algorithm for∇Nm, we intro-

duce a reduction strategy. Through an algebraic manipulation, (31) can be reduced only for

8
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ψm+1
i as

Lm
(
ψm+1

i − ψm
i

)
= Sm, (35)

where

Lm = I + βaiiΔt − (aiiΔt)2MΔ
(
ηm + (I +Δ)2

)
, (36)

ηm = G′ (φm
i

)
qm

i +
1
2

aiiΔtG
(
φm

i

)
G′ (φm

i

)
ψm

i +
1
2

G2
(
φm

i

)
, (37)

and

Sm = Sk,m
i + aiiΔt MΔ

(
G′ (φm

i

)
qm

i Sh,m
i +

1
2

aiiΔt G
(
φm

i

)
G′ (φm

i

)
ψm

i Sh,m
i

+ G
(
φm

i

)
Sl,m

i + (1 +Δ)2Sh,m
i

)
.

(38)

Next, we calculate φm+1
i and qm+1

i by

φm+1
i = φm

i + Sh,m
i + aiiΔt

(
ψm+1

i − ψm
i

)
,

qm+1
i = qm

i + Sl,m
i +

1
2

aiiΔt G
(
φm

i

) (
ψm+1

i − ψm
i

)
+

1
2

aiiΔt G′ (φm
i

)
ψm

i

(
φm+1

i − φm
i

)
.

(39)

To solve (35) numerically, we employ the bi-conjugate gradient (BICG) method. In addition,
to accelerate the convergence rate of the linear solver for (35), we consider a preconditioner as

P = I + βaiiΔt − (aiiΔt)2MΔ(I +Δ2). (40)

3. Numerical experiments

3.1. Numerical convergence with a smooth initial condition in 1D

We numerically demonstrate the convergence and the unconditional energy stability of the pro-
posed method (14) as well as the numerical solvability of the nonlinear system of equation (29)
using the following smooth initial condition,

φ (x, 0) = 0.07 − 0.02 cos

(
2π(x − 12)

32

)
+ 0.02 cos2

(
π(x + 10)

32

)
− 0.01 sin2

(
4πx
32

)
,

ψ (x, 0) = 0.1 sin
(πx

16

)
− 0.1 cos

(πx
16

)
,

q (x, 0) =
√

F (φ (x, 0)) + C0,

(41)

on the one-dimensional domain Ω = [0, 32]. For the other parameters, we set M = 1, β = 1,
ε = 0.25, and T = 128, and the grid size is fixed to Δx = 1/2, which provides sufficient

9
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Figure 1. Evolution of the reference solution φ(x, t).

Figure 2. Energy evolution and relative l2-error with respect to time step sizes Δt.

spatial accuracy. Figure 1 shows the time evolution of the reference solution using the fourth-
order method with a sufficiently small time step, Δt = T/214. The solution changes to a wave
profile at an earlier stage, and the magnitude dramatically increases up to the equilibrium
solution.

To verify the energy stability of the proposed approach and estimate its order of conver-
gence with respect to Δt, simulations are conducted by varyingΔt = T/212, T/210, . . . , T/26.
Figure 2 shows the energy evolutions of the first-order method and the relative l2-errors for the
numerical solution with various time steps Δt. We observe the energy dissipation and find that
all methods show the desired order of convergence.

The proposed method guarantees the mass conservation regardless of the time step size.
Figure 3 shows that the masses computed using the proposed methods maintain the initial
constant up to the maximum precision of the machine and inherent rounding errors.

10
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Figure 3. Mass evolution with respect to time step sizes Δt.

Figure 4. Averaged number of m-iterations and BICG iterations using Newton’s method
and relative l2-error with respect to computational time.

We now demonstrate the numerical solvability of the system of nonlinear equation (29) and
the computational efficiency of solving (31) and (35). We count the numbers of the nonlinear
iteration for (31) and the BICG iteration for (35) by varyingΔt = T/212, T/211, . . . , T/26. The
stopping criterion for the nonlinear iteration is a relative l2-norm of the consecutive error of
less than tol = 10−6 and that for the BICG iteration is the relative residual norm of less than
tol = 10−6Δt. The leftmost and the middle plots in figure 4 show the average number of
nonlinear and BICG iterations for each stage up to T = 128. Two or three iterations of the
nonlinear solver are involved in proceeding to the next stage. We believe that such a rapid
iterative convergence may be possible by using a Newton-type iteration method, and the result-
ing linear subsystems are numerically well-conditioned even for relatively large time steps.
Here, the number of BICG iterations depends on the condition number of the linear oper-
ator Lm = I + βaiiΔt + O(Δt2) defined in (35). For relatively large Δt, the EQRK(2) with
aii = 1/2 is the fastest method, and EQRK(3) with aii = λ ≈ 0.7887 is slightly faster than
EQRK(1) with aii = 1 or EQRK(4) with aii = σ ≈ 1.0686.

The rightmost plot in figure 4 shows the relative l2-errors of the numerical solution
φ(·, t = 128) with respect to the elapsed time. The computational time is measured using MAT-
LAB(Ver 2020b) on a machine running the Linux operating system with dual Xeon 4216
CPUs and 128 GB of RAM. The computational cost is proportional to the multiplication of m-
iteration, BICG iteration, and the stage numbers (1, 1, 2, 3 for EQRK(p = 1, 2, 3, 4)). We note
that the computational cost EQRK(3 or 4) is about two or three times more expensive than
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Figure 5. Energy evolution and relative l2-error for the case of β = 0.1.

Figure 6. Energy evolution and relative l2-error for the case of β = 10.

EQRK(1 or 2) for fixed Δt, but EQRK(3 or 4) exhibites far better performance when relatively
high accuracy is preferred.

Next, we present the numerical results for different values of β. Figures 5 and 6 show the
energy evolution and the relative l2-errors of the numerical solutions for β = 0.1 and β = 10
given the same initial condition and parameters as those in figure 2. Figure 5 shows the desired
order of convergence for β = 0.1 with Δt = T/215, T/214, . . . , T/28 and T = 128. For a
larger beta with a larger initial momentum, the physical behavior of the system is slightly more

complicated because the energy decays initially rapidly owing to the gradient term 1
2M

∥∥ ∂φ
∂t

∥∥2

H−1

and then slowly varies when the solution forms a pattern. Two clearly different time scales
are shown in figure 6. Therefore, we choose Δt = T/26, T/25, . . . , T/22 for T = 1 to cap-
ture fast-decaying modes. We then set Δt = T/29, T/28, . . . , T/25 for T = 1024, and the first
bootstrap step is adaptively refined by Δt/64. We numerically confirm that the desired order
of convergence is observed regardless of the value of parameter β.

We remark that the corresponding energy evolutions for the higher-order methods are closer
to the reference solution obtained by the fourth-order method with a quadrupled over-resolved
numerical solution. In addition, we only provide results for the energy evolution and numerical
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Figure 7. Initial condition profile.

convergence test because the solution profile, mass conservation, and iterative performance are
not significantly differ from those for the case of β = 1.

3.2. Numerical evolution with a randomly perturbed initial condition in 2D

In this section, we employ the fourth-order method to obtain sufficiently accurate results
and evolve the MPFC equation with the periodic boundary condition on the two-dimensional
domain Ω = [0, 128]× [0, 128]. For the numerical simulation, we set the randomly perturbed
initial condition

φ (x, y, 0) = 0.06 + 0.005
8∑

l=0

8∑
m=0

Re
[
alme

2πilx
128

]
· Re

[
blme

2πimy
128

]
,

ψ (x, y, 0) = 0,

q (x, y, 0) =
√

F (φ (x, y, 0)) + C0,

(42)

where complex numbers ‖alm‖∞ � 1 and ‖blm‖∞ � 1 are chosen randomly. However, these
values are fixed for the simulations described in this subsection. The smooth initial condition
with all 81 possible low-frequency modes is shown in figure 7, where the red, green, and blue
regions indicate φ = 0.12, 0.06, and 0.01, respectively.

To show the convergence of the energy evolution for β = 0.1, 1, and 10, we conduct sim-
ulations with various time step sizes Δt. For the computations, we fix the other parameters
to M = 1, ε = 0.13, and Δx = Δy = 1/2. Figure 8 shows the energy evolutions and the
relative absolute error over time. We take the quadratically over-resolved numerical solution
for each β as the reference solutions. The evolutional time scale slows when the value of β
increases; thus, we set the larger final time and temporal step sizes for the larger β. In general,
the energy also converges the reference solution when the time step decreases. The height of
the cursor shape in the plots represents 16 times in relative errors. For the subsequent 2D sim-
ulations, to guarantee three digits of accuracy, we set Δt = 2−1, 2, and 24 for β = 0.1, 1, and
10, respectively.
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Figure 8. Evolution and relative error of the energy functional.

Figure 9. Solution evolutions for each β with the corresponding final time T .

Figure 9 shows the time evolution of the solution where the red, green, and blue regions
indicate φ = 1, 0, and −1, respectively. For each simulation, we set the same initial condi-
tions, as shown in figure 7, and evolve this model with a sufficiently well-resolved time step,
Δt = 2−1, 2, and 24 for β = 0.1, 1, and 10, respectively. The solutions at the scaled times in
figure 9 are quite similar despite the differences in the energy evolution patterns in figure 8.
We numerically conclude that the steady-state solution under the same initial conditions is
independent from parameter β.
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Figure 10. (a) Phase diagram (reprinted with permission from [3]) and (b) values of
the indicator function Λ (φ (·, T)) for the PFC equation (reprinted with permission from
[14]). Here, ψ̄ is the average value, which is identical to φ̄.

3.3. Pattern formation depending on various φ̄ and ε

To characterize the formation of the solutions as striped, hexagonal, or homogeneous patterns,
we use the indicator function of the solution φ in [14]

Λ (φ) =

∫
Ω

∣∣φ− φ̄
∣∣ dx∫

Ω

∣∣∇ (
φ− φ̄

)∣∣ dx
. (43)

Figure 10(a) shows a phase diagram described in [3] based on the linearized theory, and
figure 10(b) shows the checkerboard plot for Λ (φ) described in [14] by solving the PFC
equation. The value of the indicator function (43) can distinguish the different regions of the
phase diagram.

To compare the values of the indicator function with the different parameters of β, we also
employ the fourth-order method and evolve the MPFC equation for Ω = [0, 128] × [0, 128].
For the numerical simulation, we set the randomly perturbed initial condition

φ (x, y, 0) = φ̄+ 0.005
8∑

l=0

8∑
m=0

Re
[
alme

2πilx
128

]
· Re

[
blme

2πimy
128

]
,

ψ (x, y, 0) = 0,

q (x, y, 0) =
√

F (φ (x, y, 0)) + C0,

(44)

where alm and blm are random complex numbers with ‖alm‖∞ � 1 and ‖blm‖∞ � 1. We employ
(44) for the initial conditions, Δx = Δy = 1/2 for the grid sizes, and Δt = 2−1, 2, and 24 for
β = 0.1, 1, and 10, respectively.

Figure 11 shows the value of the indicator functionΛ(φ) for selected parameters of ε = 0.05,
0.13, and 0.25 with respect to the varying φ̄ with increments of 0.01 (we add a small constant
10−10 to the denominator of the indicator function to avoid dividing by zero when the pattern
indicates a near constant). We observe that the indicator function value for the steady-state
solution is independent of the value of β for the given parameters φ̄ and ε. To confirm the
observation, we set ε = 0.13 and present the numerical solutions at the corresponding final
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Figure 11. Values of indicator function Λ(φ) for several values of epsilon, i.e. ε =
0.05, 0.13, 0.25.

Figure 12. Solutions φ (x, y, T) of the MPFC equation with various parameters φ̄ and β
in the case of ε = 0.13. The last row is for the PFC equation (reprinted with permission
from [14]).

times for several β = 0.1, 1, 10 in figure 12. The specific parameters φ̄ are for the case of
Bi, as indicated in figure 10(b). For comparison, we add the results for the PFC equation in the
fourth row. For each column, we can observe the stripe, coexistence, hexagon, and constant
patterns regardless of the value of β.
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Figure 13. Long-term solutions with various φ̄ and ε in the case of β = 1.

The pattern formation of the MPFC equation seems not to depend on the β parameter,
particularly close to a steady state. For a comparison with the results of the PFC equation,
we choose β = 1 and evolve the solution up to T = 213 with various parameters of φ̄ and
ε. Figure 13 shows the numerical solutions at the final time. The specific parameters φ̄ and
ε are written above each figure and are indicated in figure 10(b). To compare the magnitude of
the solutions, we assign colors as indicator levels, making regions in red, green, and blue to
denote φ = 1, 0, and −1, respectively. In general, as the parameter ε increases, the magnitude
of the solutions increases from the bottom to the top row. By contrast, the formation of patterns
consisting of stripes, which evolve into hexagons, and finally into a constant pattern, is clearly
demonstrated when observing the columns from left to right. Furthermore, the snapshots in
the second column show the coexistence of striped and hexagonal patterns. We numerically
confirm that the pattern formation of the MPFC equation for the given φ̄ and ε is independent
of β and is quite similar to the result of the PFC equation in [14].

4. Conclusions

In this paper, we proposed high order methods that guarantee the energy dissipation property to
solve the MPFC equation by considering the EQRK method. Hence, we have provided detailed
proofs of the mass conservation and the unconditional energy stability of the proposed method.
The results of various numerical experiments have demonstrated that energy stability is attained
with the desired time accuracy. Employing an indicator function to characterize the pattern
formation, we compared long-term simulations with respect to the β parameter. As a result,
we can infer that the patterns in the long-term evolution do not depend on β and are comparable
with the results for the PFC equation.
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