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We propose a new high-order multi-stage method to solve the linear wave equation 
in an unconditionally energy stable manner. This Successive Multi-Stage (SMS) method 
is extended from the Crank–Nicolson method and unconditional energy conservation is 
guaranteed. We develop up to the sixth-order SMS method using the order conditions 
for Runge–Kutta methods and provide mathematical arguments showing that the SMS 
method is a different branch from well-known high order energy preserving methods 
for Hamiltonian systems. We present a proof of the unique solvability and numerically 
demonstrate the accuracy and stability of the proposed methods compared with compari-
sons.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Linear wave equations appear in many fields of physics and have played a significant role in mathematical modeling for 
transient physical phenomena. For instance, they arise when considering the Maxwell equations for electromagnetism [1,2], 
the acoustic equation for sound propagation [3,4], and the elastodynamic equation for wave propagation in solids [5,6]. One 
of the most important properties of wave equations is energy conservation.

In this paper, we introduce a high-order energy conserving numerical scheme for the linear wave equation,

κutt = ∇ · (M∇u) , (1)

where M = M (x) is a symmetric positive definite matrix and κ = κ (x) is a strictly positive function. Equation (1) might 
be completed with specific boundary conditions in a bounded domain � ⊂ Rd (d = 1, 2, 3). For simplicity, we consider the 
periodic boundary condition along the edges of computational domain where κ (x) and M (x) are constants representing the 
homogeneous background medium. Homogeneous Neumann boundary condition n · (M∇u) = 0 or homogeneous Dirichlet 
boundary condition u = 0 can be easily imposed using even or odd extension of the solution, respectively. The corresponding 
energy of (1) can be written as a sum of the kinetic and the potential energies of the system,

E (t) = 1

2

∫
�

(
κu2

t +
∣∣∣M 1

2 ∇u
∣∣∣2
)

dx, (2)
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where 
∣∣∣M 1

2 ∇u
∣∣∣2 = (∇u,M∇u). It is worth noting that when considering the periodic or homogeneous boundary conditions, 

the energy (2) is conserved with respect to time, as demonstrated by integration by parts:

d

dt
E (t) =

∫
�

(κut utt − ut∇ · (M∇u)) dx = 0. (3)

Note that non-zero Dirichlet or Neumann boundary conditions can be also considered using an additive patch to the solu-
tion, however, the energy defined in (2) is no longer conserved without further modification.

There have been plenty of discussions for numerical methods to solve the wave equations. For the long-time simulation, 
consequently, energy-conserving high-order methods have been attracting much attention to determine the phase and shape 
of the waves as accurately and stably as possible. Also, there has been intensive research on the numerical treatment of 
quasi-linear wave equations or even Hamiltonian partial differential equations (PDEs) over the past decades. For example, 
the average vector field method [7] has been applied to the Hamiltonian PDEs with constant symplectic structure. And, the 
discrete variational derivative method [8] has been proposed to the family of nonlinear wave equations by constructing the 
discrete version of the energy function. There are also studies focused on finding conditions for energy conservation in RK 
methods, for example, a symplectic RK method was developed in [9–11].

Our ultimate goal is to present a new RK-based high-order energy preserving method for quasi-linear wave equations 
or wide range of Hamiltonian systems. To demonstrate that our method is in a different branch from existing methods, we 
focus on the linear wave equations for the simplicity of argument in this paper. Considering energy-conserving methods 
for linear wave equations, it is noteworthy referring to the approach, based on the leap-frog method, to be compared with 
our method. The leap-frog method is a well-known multi-step method to solve the wave equation and has been used for 
many applications and simulations [12]. It is accurate to the second-order, but stability is not guaranteed with larger time 
step sizes. Many studies have introduced energy-conserving methods, such as theta methods [13–15], by generalizing the 
leap-frog method. On the other hand, it is well known that the standard Crank–Nicolson method preserves the conservation 
laws of the linear wave equation, but it just has the second-order accuracy. So we extend the Crank–Nicolson method to 
construct the high-order method with guaranteeing energy conservation and demonstrate that the Crank–Nicolson method 
based RK method is different from the existing RK ones.

In this paper, we propose a successive multi-stage (SMS) method as a high-order energy conserving numerical scheme. 
We start by constructing a framework that guarantees energy conservation. The proposed method can be considered as 
an RK method, making it is easy to find a proper coefficient set for high-order accuracy. We note that SMS methods 
are different from the existing symplectic RK methods. Specifically, our proposed methods do not satisfy the condition 
bib j −biai j −b ja ji = 0 in [11]. That is, SMS methods constitute a new class of high-order multi-stage methods that guarantee 
energy conservation.

We first provide a proof that the Crank–Nicolson method is unconditionally energy conserving in Section 2, and we 
extend this idea to an s-stage SMS method in Section 3. In Sections 4 and 5, we numerically demonstrate the order of 
the accuracy as well as energy conservation in one and higher dimensions. Finally, conclusions are drawn in Section 6. In 
addition, we briefly introduce the derivation of order conditions for the linear Runge–Kutta method in the Appendix. It is 
worth noting that we only consider temporal accuracy in this paper, thus semi-discrete numerical schemes are presented. 
Fourier spectral methods are used for spatial derivatives, and all simulations are executed using the MATLAB program via a 
fast Fourier transform.

2. Classical Crank–Nicolson method

By defining an auxiliary variable v = ut , we can represent the linear wave equation (1) in canonical form as

ut = v,

vt = 1

κ
∇ · (M∇u)

(4)

and the energy (2) in Hamiltonian form as

H (u, v) = 1

2

∫
�

(
κv2 +

∣∣∣M 1
2 ∇u

∣∣∣2
)

dx. (5)

For the semi-discrete formulation, we denote un and vn as approximations of u 
(·, tn

)
and v 

(·, tn
)
, where tn = nΔt and Δt

is a time step size. We first consider the well-known Crank–Nicolson method

un+1 − un

Δt
= vn+1 + vn

2
,

vn+1 − vn

= 1 ∇ ·
(

M∇ un+1 + un)
.

(6)
Δt κ 2

2



J. Shin and J.-Y. Lee Journal of Computational Physics 458 (2022) 111098
Lemma 1. The Crank–Nicolson method (6) is unconditionally energy conserving, meaning that for any time step size Δt,

H
(
un+1, vn+1)= H

(
un, vn) . (7)

Proof. We first calculate the difference in energy functionals,

H
(
un+1, vn+1)−H

(
un, vn)

= 1

2

∫
�

κ
(

vn+1)2 − κ
(

vn)2 + ∣∣M∇un+1
∣∣2 − ∣∣M∇un

∣∣2 dx.
(8)

For the first two terms of (8), we can rearrange them as

1

2

∫
�

κ
(

vn+1)2 − κ
(

vn)2 dx = 1

2

∫
�

κ
(

vn+1 − vn) (vn+1 + vn) dx

= Δt

4

∫
�

(
vn+1 + vn)∇ · (M∇ (un+1 + un)) dx

= −Δt

4

∫
�

∇ (vn+1 + vn) · (M∇ (un+1 + un)) dx.

(9)

For the last two terms of (8), we can expand as

1

2

∫
�

∣∣∣M 1
2 ∇un+1

∣∣∣2 −
∣∣∣M 1

2 ∇un
∣∣∣2 dx

= 1

2

∫
�

∇ (un+1 − un) · (M∇ (un+1 + un)) dx

= Δt

4

∫
�

∇ (vn+1 + vn) · (M∇ (un+1 + un)) dx.

(10)

Adding (9) and (10), we obviously have H
(
un+1, vn+1

)−H
(
un, vn

)= 0. �
Remark 1. Lemma 1 implies that the energy corresponding to the numerical solution 

(
un, vn

)
of the Crank–Nicolson method 

is a physical constant E (t),

H
(
un, vn)= H

(
u0, v0

)
= E

(
t0
)

. (11)

3. Successive multi-stage methods

We now propose a successive multi-stage (SMS) method as an extension of the Crank–Nicolson method to an s-stage 
method, referred to as SMS(Rs), with a given coefficient vector

Rs = [r1, r2, · · · , rs] . (12)

The SMS(Rs) is a one-step s-stage method that computes the next approximation 
(
un+1, vn+1

)
from 

(
un, vn

)
. We set u0 = un

and v0 = vn for the initial-stage, and then calculate the intermediate value (ui, vi) by solving

ui − ui−1

Δt
= ri (vi + vi−1) ,

vi − vi−1

Δt
= ri

κ
∇ · (M∇ (ui + ui−1)) ,

(13)

for i = 1, 2, · · · , s. Finally, we have un+1 = us and vn+1 = vs . We note that SMS(R1) with a coefficient vector

R1 = [ 1
2

]
(14)

is identical to the Crank–Nicolson method (6), which provides second-order accuracy. For higher order accuracy, we will 
describe the order conditions for the coefficient vector Rs in Section 3.3. Before introducing a specific example, we provide 
proofs of the unique solvability and energy conservation in Sections 3.1 and 3.2, respectively.
3
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3.1. Unique solvability

Theorem 2. The SMS(Rs) method (13) is uniquely solvable for any time step size Δt.

Proof. For each stage i = 1, 2, · · · , s, we need to solve

ui − riΔt vi = ϕi,

vi − ri

κ
Δt ∇ · (M∇ui) = ψi,

(15)

where ϕi = ui−1 + riΔt vi−1 and ψi = vi−1 + riΔt ∇ · (M∇ui−1). The system (15) can be represented as

ui − r2
i Δt2

κ
∇ · (M∇ui) = ϕi + riΔt ψi, (16)

which has a unique solution ui for any time step size Δt , since

I − r2
i Δt2

κ
∇ · (M∇) (17)

is an invertible operator with all eigenvalues bigger than 1 for given positive function κ and negative definite operator 
∇ · (M∇). Using the solution ui from (16), we can easily obtain a unique solution of vi by (15). �
3.2. Energy conservation

Theorem 3. For each intermediate stage of the SMS(Rs) method (13), the energy is conserved for any time step size riΔt,

H (ui, vi) = H (ui−1, vi−1) . (18)

Moreover, the proposed method (13) is unconditionally energy conserving, meaning that H
(
un+1, vn+1

) = H
(
un, vn

)
for any time 

step size Δt.

Proof. Similarly to the proof of Lemma 1, we first consider the difference of adjacent discrete energy functionals,

H (ui, vi) −H (ui−1, vi−1)

= 1

2

∫
�

κv2
i − κv2

i−1 +
∣∣∣M 1

2 ∇ui

∣∣∣2 −
∣∣∣M 1

2 ∇ui−1

∣∣∣2 dx. (19)

The two parts of (19) can be expanded as

1

2

∫
�

κv2
i − κv2

i−1 dx = − riΔt

2

∫
�

∇ (vi + vi−1) · (M∇ (ui + ui−1)) dx, (20)

1

2

∫
�

∣∣∣M 1
2 ∇ui

∣∣∣2 −
∣∣∣M 1

2 ∇ui−1

∣∣∣2 dx = riΔt

2

∫
�

∇ (vi + vi−1) · (M∇ (ui + ui−1)) dx. (21)

Then we have H (ui, vi) =H (ui−1, vi−1) for any riΔt , i = 1, · · · , s. Therefore,

H
(
un+1, vn+1)= H (us, vs) = H (u0, v0) = H

(
un, vn) (22)

which proves conservation of the discrete energy functional H
(
un, vn

)
. �

3.3. Temporal accuracy

We can consider a framework of the Runge–Kutta (RK) method to show the time accuracy for the SMS method. Summing 
(13) up to the i-th stage, the difference between i-th stage (ui, vi) and initial-stage (u0, v0) values can be written as a linear 
combination of the previous stage values:

ui − u0

Δt
=

i∑
j=1

r j
(

v j + v j−1
)
,

vi − v0

Δt
=

i∑
j=1

r j

κ
∇ · (M∇ (u j + u j−1

))
.

(23)
4
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Next, (23) can be further simplified as the RK method,

ui − u0

Δt
=

i∑
j=0

aij v j,

vi − v0

Δt
=

i∑
j=0

aij

κ
∇ · (M∇ui) ,

(24)

where ai0 = r1, aii = ri , and aij = r j + r j+1 for j = 1, 2, · · · , i − 1. Furthermore, the SMS(Rs) method (13) can be described 
by the Butcher table for the RK method,

c A

bT
=

0 0 0 0 · · · 0

c1 r1 r1 0 · · · 0

c2 r1 r1 + r2 r2 · · · 0
...

...
...

...
. . .

...

cs r1 r1 + r2 r2 + r3 · · · rs

r1 r1 + r2 r2 + r3 · · · rs

, (25)

where A ∈R(s+1)×(s+1) , b ∈Rs+1, and c = A1 with 1 = (1,1, . . . ,1)T ∈Rs+1.
Because of the linearity and autonomy of the given wave equation (1), we consider the linear RK method, which is briefly 

explained in Appendix. The order condition for the p-th order accuracy is bT Aq−11 = 1/q! for 1 ≤ q ≤ p.
For numerical simulations, we need a specific table for the desired accuracy. We now construct the coefficient vector 

Rs from the relationship between the SMS and linear RK methods. We first consider a single coefficient vector R1 = [r1]. 
Considering the structure of the SMS method, we have the corresponding matrix A and vector b as

A =
[

0 0
r1 r1

]
, b =

[
r1
r1

]
. (26)

To satisfy the first-order condition bT 1 = 1, we need r1 = 1/2, which also satisfies the second-order condition bT A1 = 1/2. 
Thus, the SMS method begins with second-order accuracy and R1 = [ 1

2

]
is only one case of the second-order SMS method.

We note that there is no solution for the two-stage coefficient vector R2 = [r1, r2] that satisfies the order conditions up to 
third-order accuracy. We now choose a possible choice of the coefficient vector R3 = [r1, r2, r3], which implies a three-stage 
SMS method, and consider corresponding matrix A and vector b as

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

r1 r1 0 0

r1 r1 + r2 r2 0

r1 r1 + r2 r2 + r3 r3

⎤
⎥⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎢⎣

r1

r1 + r2

r2 + r3

r3

⎤
⎥⎥⎥⎥⎥⎦ . (27)

To satisfy the first-order condition bT 1 = 1, the coefficients should satisfy

r1 + r2 + r3 = 1

2
, (28)

which also satisfies the second-order condition bT A1 = 1/2, just as in the case of the one-stage SMS method (26). With the 
identity (28) and the third-order condition bT A21 = 1/6, we have the following identity:

1

2
bT A21 = r3

1 + r3
2 + r2

3 + 2
(

r2
1r2 + r2

1r3 + r2
2r1 + r2

2r3 + r2
3r1 + r2

3r2

)
+ 4r1r2r3

= (r1 + r2 + r3)
3 − (r1 + r2)(r2 + r3)(r3 + r1)

= r1 + r2 + r3

4
−
(

1

2
− r3

)(
1

2
− r1

)(
1

2
− r2

)
= 1

12
.

(29)

Thus,

r1r2 + r1r3 + r2r3 − 2r1r2r3 = 1
. (30)
12

5
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Fig. 1. Coefficients of R3 for fourth-order accuracy.

We note that the coefficients satisfying up to third-order conditions also satisfy the fourth-order condition. In fact, the 
identity (28) and the condition bT A31 = 1/24 induce the same result as in (30) since

1

2
bT A31 = (r1 + r2 + r3)

4 − 2(r1 + r2 + r3)(r1 + r2)(r2 + r3)(r3 + r1)

= r1 + r2 + r3

4
− 1

16
−
(

1

2
− r3

)(
1

2
− r1

)(
1

2
− r2

)
= 1

48
.

(31)

In conclusion, we need only two relations (28) and (30) to achieve the fourth-order accuracy.
Now, for finding R3 to construct three-stage fourth-order SMS methods, we set a free parameter r1 = γ . Then the 

parameters r2 and r3 satisfy

r2 + r3 = 1 − 2γ

2
, r2r3 = 1 − 6γ + 12γ 2

12 (1 − 2γ )
. (32)

Fig. 1 shows the coefficients of R3 with respect to the parameter γ > 1/2, which is the solvable region. This figure implies 
that there are infinitely many three-stage fourth-order SMS methods. Choosing γ = 0.8 for the numerical simulation, we 
have

R3 (γ ) ≈ [0.8, 0.599258893,−0.899258893]. (33)

As we observe in the identity (28) and (30), any permutation of the solution r1, r2, and r3 in R3 satisfies the same order 
conditions up to four. In fact, the following theorem proves that this permutation invariant property is generally true for all 
s-stage SMS methods.

Theorem 4. For an s-stage SMS method with a coefficient vector Rs, the value of bT Ap1 for p ≥ 0 is invariant under the permutation 
of Rs = [r1, r2, · · · , rs].

Proof. Without loss of generality, we consider a swapped coefficient vector R̂s :=
[

r1, · · · , rk−1,
︷ ︸︸ ︷
rk+1, rk, rk+2, · · · , rs

]
for 

0 < k < s and prove that

bT Ap1 = b̂T Âp1 (34)

where Â, b̂, and ĉ are the matrix and the vectors in the Butcher table corresponding to the swapped coefficient vector R̂s . 
We observe that entries aij of A and âi j of Â are differed by d = rk+1 − rk only at a few points, so we denote Â = A + dD

where D ∈ R(s+1)×(s+1) have zero entries except Di,k−1 = 1, i ≥ k, Dk,k = 1, and Di,k+1 = −1, i > k. Also entries of b̂, ĉ are 
same with b, c except

b̂k−1 = bk−1 + d, b̂k+1 = bk+1 − d, and ĉk = ck + 2d. (35)

In the case of p = 0, (34) is obvious bT 1 = b̂T 1. Let c(p) := Ap1 and ĉ(p) := Âp1, then we claim that the following identity 
holds for p ≥ 1,

ĉ(p) = c(p) + βpe, βp = d (
c(p)

k+1 − c(p)

k−1

)
, (36)
rk + rk+1

6
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where e ∈Rs+1 is the standard unit vector with ek = 1. For p = 1, it is a trivial statement since ĉk = ck + 2d, ĉi = ci, i 	= k, 
and β1 = d

rk+rk+1
2 
(
rk + rk+1

)= 2d. We prove this assertion (36) for p > 1 by mathematical induction.

ĉ(p+1) = (A + dD)
(

c(p) + βpe
)

= c(p+1) + dDc(p) + βpAe + dβpDe. (37)

For i < k, ĉ(p+1)

i − c(p+1)

i = 0 since Di, j = ai,k = 0. In case of i > k, ĉ(p+1)

i − c(p+1)

i = d 
(

c(p)

k−1 − c(p)

k+1

)
+ βpai,k = 0 due to the 

mathematical induction assumption for βp . For i = k, using ak,k + dDk,k = rk+1, we get

ĉ(p+1)

k − c(p+1)

k = d
(

c(p)

k−1 + c(p)

k

)
+ βprk+1

= d

rk + rk+1

(
rkc(p)

k−1 + (rk + rk+1)c(p)

k + rk+1c(p)

k+1

)
.

(38)

On the other hand, by the definition of c(p+1) = Ac(p) , we have

c(p+1)

k+1 − c(p+1)

k−1 =
s∑

j=0

(
ak+1, j − ak−1, j

)
c(p)

j = rkc(p)

k−1 + (rk + rk+1)c(p)

k + rk+1c(p)

k+1. (39)

By combining (38) and (39), we conclude the mathematical induction (36) for p + 1

βp+1 := ĉ(p+1)

k − c(p+1)

k = d

rk + rk+1

(
c(p+1)

k+1 − c(p+1)

k−1

)
. (40)

Finally, (35) and (36) implies the invariant,

b̂T Âp1 − bT Ap1 =
s∑

i=0

(
b̂i ĉ

(p)

i − bic
(p)

i

)

= (b̂k−1 − bk−1)c(p)

k−1 + bk(ĉ(p)

k − c(p)

k ) + (b̂k+1 − bk+1)c(p)

k+1

= d
(

c(p)

k−1 − c(p)

k+1

)
+ (rk + rk+1)βp = 0. �

(41)

The p-th order SMS(Rs) involves the system of polynomial equations bT Aq−11 = 1
q! of degree q = 1, · · · , p with respect 

to r1, r2, · · · , rs , thus finding Rs by directly solving the system of p-th order polynomial equations is not a trivial task for 
p > 2. We now briefly explain how to find a s-stage SMS coefficients vector Rs = [r1, r2, · · · , rs] for sixth-order accuracy.

The first-order condition is rather trivial. For s ≥ 1, given r1, · · · , rs−1, we choose rs = rs(r1, · · · , rs−1) = 1/2 −∑s−1
i=1 ri , 

satisfying the first-order condition bT 1 = 1. This is just a simple extension of (28). Then it is also easy to show that SMS(Rs) 
with Rs = [r1, · · · , rs−1, rs(r1, · · · , rs−1)] satisfies the second-order conditions, bT A1 = 1/2.

Next step is to find last two coefficients rs−1 and rs for given r1, · · · , rs−2 satisfying both of the first- and third-order 
conditions corresponding to bT 1 = 1 and bT A21 = 1/6, respectively. If we choose rs to satisfy the first-order condition then 
the third-order condition is just a polynomial equation for rs−1, which is again an extension of (30). Here we do not show 
the details but we have an explicit formula for rs−1 and rs as a function of r1, · · · , rs−2 for s ≥ 3 and the solution pair is 
unique up to permutation if it exists. This is similar to (32) which is the case of s = 3. A rather lengthy algebraic calculation 
proves that a third-order SMS(Rs) where rs−1 = rs−1 (r1, · · · , rs−2) and rs = rs (r1, · · · , rs−2) also satisfies the fourth-order 
condition, bT A31 = 1/24.

Finally we try to seek an s-stage SMS(Rs) satisfying the first-, third-, and fifth-order conditions. For given r1, · · · , rs−3

with s ≥ 3, we form a fifth polynomial equation as a function of γ = rs−2 to solve bT A41 = 1/120 with

Rs = [r1, · · · , rs−3, γ , rs−1, rs] (42)

where rs−1 = rs−1 (r1, · · · , rs−3, γ ) and rs = rs (r1, · · · , rs−3, γ ) are given by the explicit formula for the first- and third-
conditions. Though there is no simple algebraic formula on γ , we numerically implement this solver for double precision 
accuracy and figure out that there is no solution with s ≤ 4. Fig. 2 shows the dotted plot of (r1, r2) where

R5(r1, r2) = [r1, r2, r3(r1, r2), r4(r1, r2, r3), r5(r1, r2, r3)] (43)

is a solution for the fifth-order condition. For the numerical observation, we consider a domain for the coefficients as 
(r1, r2) ∈ [−1.5,2.5]2 and uniform spacing with 0.05. For examples, numerical values up to single precision accuracy

R5(1,1.5) ≈ [1, 1.5,−1.474930077,−1.109591016, 0.584521093] , (44)

R5(2,1) ≈ [2, 1,−1.074758082,−1.995305362, 0.570063445] , (45)
7
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Fig. 2. Pairs of r1 and r2 where R5 has a solution of the fifth-order accuracy.

and their permutations are the solutions satisfying all order conditions up to 5. We also numerically observe that a fifth-
order method of SMS(R5) always satisfies the sixth-order condition, bT A51 = 1/720.

Remark 2. We have presented the numerical search algorithm for R3(γ ) and R5(r1, r2) satisfying bT Aq−11 = 1/q!, q =
1, · · · , s for s = 3, 5. Similarly, one can try to search R7 = (r1, r2, r3, r4, r5(r1, · · · , r4), r6(r1, · · · , r5), r7(r1, · · · , r5)) for given 
(r1, r2, r3, r4) satisfying bT Aq−11 = 1/q!, q = 5, 6, 7 while r5, r6, r7 are chosen to fix bT Aq−11 = 1/q!, q = 1, 2, 3, 4. Instead of 
trying a brute force search for the numerical solutions of the system of 3 polynomial equations up to seventh order which 
may not exist, we will present more identities useful to simplify the system of polynomial equations related to the SMS 
method in future works.

Before we finish this section, we would like to introduce some properties, which are comparable with existing numerical 
methods. First, implicit RK methods usually consider the singly diagonally implicit type for the efficient computations, 
however, this strategy for the SMS methods is not available.

Lemma 5. There is no a singly diagonal coefficient vector Rs = [γ ,γ , · · · , γ ] for higher than second-order SMS methods.

Proof. Suppose that we have a singly diagonal coefficient vector Rs = [γ ,γ , · · · , γ ] and we try to find a specific value of 
γ to satisfy the order conditions. We denote as r1 = r2 = · · · = rs = γ and we have corresponding coefficients A and b as 
in (25). For the first-order accuracy, we have

bT 1 = 2
s∑

i=1

ri = 2sγ = 1, (46)

and thus γ = 1/(2s). For the third-order accuracy, we have

bT A (A1) = 2γ

s−1∑
i=1

⎛
⎝ i−1∑

j=1

4γ 2 j + 2γ 2i

⎞
⎠+ γ

⎛
⎝s−1∑

j=1

4γ 2 j + 2γ 2s

⎞
⎠

= 4γ 3
s−1∑
i=1

i2 + 2γ 3s2 = 2

3
γ 3s

(
2s2 + 1

)
= 2s2 + 1

12s2
	= 1

6
.

(47)

Therefore, even the singly diagonal strategy for the SMS method can not surpass the third-order conditions. �
Remark 3. In fact, a SMS method with a singly diagonal coefficient vector Rs = [γ ,γ , · · · , γ ] where γ = 1/(2s) also is the 
second-order accurate method, because it always satisfies the second-order condition bT A1 = 1/2.

Next, we need to remark that the proposed SMS methods differ from symplectic RK methods in [16,17]. It is well 
known that the algebraic stability condition bib j − biai j − b jai j = 0 is a sufficient condition for the symplectic RK methods. 
However, the SMS methods do not satisfy this condition. For the simplicity, we define the algebraic stability matrix as 
G = bbT − BA − AT B, referred to as AG-matrix.

Theorem 6. A SMS method does not satisfy the algebraic stability condition.
8
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Fig. 3. Time evolution of the solution for the 1D wave equation.

Proof. We consider a coefficient vector Rs = [r1, r2, · · · , rs] for a SMS method. Without loss of generality, we can suppose 
that ri 	= 0 for all i = 1, 2, . . . , s. Because ass = rs and bs = rs , we have

Gss = b2
s − 2bsass = −r2

s 	= 0. (48)

Therefore, the SMS method has at least one nonzero entry in AG-matrix G, and it means that the algebraic stability condition 
is not satisfied. �
Remark 4. In fact, the AG-matrix G of a SMS method is a diagonal matrix, Gij = 0 for i 	= j and Gii 	= 0 unless ri = ri+1 for 
0 < i < s.

4. Numerical results in one-dimensional homogeneous medium

In this section, we apply the proposed SMS methods to the one-dimensional scalar wave equation in a homogeneous 
medium,

utt = uxx (49)

to numerically demonstrate the high-order accuracy and energy conservation. We begin by showing the solution of the 
wave equation (49) with a periodic boundary condition and the following initial conditions:

u (x,0) = e−(x+3)2 + 0.5e−(x−3)2
, (50)

ut (x,0) = 2 (x + 3) e−(x+3)2 − (x − 3) e−(x−3)2
(51)

on a domain � = [−8, 8]. The Fourier spectral method is used for spatial derivatives in the numerical computations.
Fig. 3 shows the time evolution of the solution using the fourth-order method, SMS(R3(0.8)), with sufficiently small step 

sizes Δt = T f /212 and Δx = 1/4. At the earlier stages, two solitary waves move toward each other and merge into one 
wave. Because the linear waveforms do not interfere, they eventually separate in their original shapes. After finishing this 
separation, the two solitary solutions move toward both ends at a constant wave speed.

To highlight the energy conservation of the proposed methods, we present numerical results for the second- and fourth-
order methods in Sections 4.1 and 4.2, respectively.

4.1. Comparison with classical second-order methods

The leap-frog method un+1 − 2un + un−1 = Δt2	un is a well-known multi-step method that can be applied to the scalar 
wave equation (49). This method achieves second-order accuracy in time, however, there is a time step restriction. The theta 
method [14] is defined as
9
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Fig. 4. Relative l2-norm errors of solutions with second-order methods.

Fig. 5. Absolute difference of the discrete energy with second-order methods.

un+1 − 2un + un−1

Δt2
= 	

(
θun+1 + (1 − 2θ) un + θun−1) , (52)

and is a generalization of the leap-frog method (with θ = 0). The theta method (52) achieves second-order accuracy. Note 
that for θ ≥ 1/4, energy conservation is guaranteed for the discrete energy defined for the theta method. Specially,

Eθ

(
un+1, un)= 1

2

(
Mh

θ

un+1 − un

Δt
,

un+1 − un

Δt

)
+ 1

2

(
−	

un+1 + un

2
,

un+1 + un

2

)
, (53)

where Mh
θ = I − (θ − 1

4

)
Δt2	.

We demonstrate the numerical convergence of the theta method and the proposed second-order SMS(R1) method us-
ing the same conditions and parameters as in the beginning of this section. For the convergence result, simulations are 
performed by varying grid points and time steps. We choose θ = 1/4 for the numerical simulation of the theta method.

Fig. 4 shows the numerical results for spatial and temporal convergence. Fig. 4(a) shows the relative l2-error of u (x, t = 8)

computed by the proposed SMS(R1) method with respect to various grid points. The Fourier spectral method is used for 
spatial discretization, meaning that the spectral convergence is well demonstrated and 64 grid points are enough to resolve 
the numerical solution. Fig. 4(b) shows the relative l2-error of the solution via the theta and SMS(R1) methods with respect 
to various time step sizes Δt = T f /212, T f /211, . . . , T f /23. It is observed that the methods provide the desired second-order 
accuracy in time. Here, the error is computed by comparison with a reference solution, which is a numerical solution of the 
SMS(R1) method with Δt = T f /214 and Δx = 1/8.

Fig. 5 shows the difference in energy for the theta method (circled line) and the SMS(R1) method (star line). Fig. 5(a) 
is the time evolution of energy difference and Fig. 5(b) is the difference of energy at t = 2 with respect to the various 
time steps Δt . Conservation of the discrete energy (53) for the theta method is demonstrated, however the energy varies 
according to the time step Δt . Since Eθ

(
u1, u0

)= E
(
t0
)+ O  

(
Δt2
)

and Eθ

(
un+1, un

)= Eθ

(
un, un−1

)
for all n > 1, we have
10
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Fig. 6. Relative l2-norm errors of solutions with fourth-order methods.

Eθ

(
un+1, un)= E

(
t0
)

+ O
(
Δt2
)

. (54)

This is why a second-order convergence rate is shown for the theta method in Fig. 5(b). Meanwhile, the proposed SMS(R1) 
method exhibits the energy conservation regardless of the time step size except the machine precision and the round-off 
calculation errors.

4.2. Comparison with classical fourth-order methods

The theta-phi method [13] for the scalar wave equation (49),

un+1 − 2un + un−1

Δt2
=	

(
θun+1 + (1 − 2θ) un + θun−1)

−
(

θ − 1

12

)
Δt2	2 (ϕun+1 + (1 − 2ϕ) un + ϕun−1) (55)

achieves fourth-order accuracy and exhibits discrete energy conservation in appropriate parameters θ and ϕ . The corre-
sponding discrete energy for the theta-phi method is

Eθ,ϕ

(
un+1, un)=1

2

(
Mh

θ,ϕ

un+1 − un

Δt
,

un+1 − un

Δt

)

+ 1

2

(
K h

θ,ϕ

un+1 + un

2
,

un+1 + un

2

)
,

(56)

where

Mh
θ,ϕ = I −

(
θ − 1

4

)
Δt2	 +

(
θ − 1

12

)(
ϕ − 1

4

)
Δt4	2, (57)

K h
θ,ϕ = −	 +

(
θ − 1

12
Δt2	2

)
. (58)

We demonstrate numerical convergence using the same conditions and parameters as those used in the beginning of 
this section. To show the convergence result, simulations are performed by varying grid points and time steps. We choose 
θ = 1/4 and ϕ = 1/4 for numerical simulation of the theta-phi method.

Fig. 6 shows the numerical convergence results for spatial and temporal accuracy. Fig. 6(a) shows the relative l2-error 
of u (x, t = 8) with respect to various grid points for the proposed fourth-order SMS(R3) method and Fig. 6(b) shows the 
relative l2-error with respect to various time steps Δt . The error is computed by comparing with a reference solution that 
is a numerical solution of the SMS(R3) method with Δt = T f /214 and Δx = 1/8. As in Fig. 4 the spectral convergence is 
well demonstrated and 64 grid points (Δx = 1/4) are enough to resolve the numerical solution. It is observed that these 
methods provide the desired fourth-order accuracy.

Fig. 7 shows the difference in energy for the theta-phi method (circled line) and the SMS(R3) method (star line). Fig. 7
(a) shows the time evolution of this difference and Fig. 7 (b) shows the difference in energy with respect to the various 
time steps Δt . We can observe that the theta-phi method has a second-order convergence rate regarding the difference in 
11
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Fig. 7. Absolute errors of the discrete energy with fourth-order methods.

Fig. 8. Time evolution of the solution for the 2D wave equation.

energy. This can be explained by noting the discrete energy (56) is just second-order accurate integration, i.e., Eθ,ϕ

(
u1, u0

)=
E
(
t0
)+ O  

(
Δt2

)
. Therefore, in spite of energy conservation, Eθ,ϕ

(
un+1, un

)= Eθ,ϕ

(
un, un−1

)
for all n > 1, we have

Eθ,ϕ

(
un+1, un)= E

(
t0
)

+ O
(
Δt2
)

. (59)

Meanwhile, the proposed SMS(R3) method shows the energy conservation under machine precision and round-off errors.

5. Numerical results in higher space dimensions

To demonstrate the applicability, we use the proposed SMS methods to solve the two-dimensional inhomogeneous wave 
equation and the three-dimensional scalar wave equation.

5.1. Time evolution in a two-dimensional inhomogeneous media

We now consider the two-dimensional wave equation in an inhomogeneous medium,

utt = ∇ · (a (x, y)∇u) , (60)

with a zero Neumann boundary condition. Here, the variable coefficient is

a (x, y) = 3

4
− 1

4
tanh

⎛
⎜⎝3 −

√
(x − 8)2 + (y − 16)2

0.2

⎞
⎟⎠ , (61)

which represents an experimental obstacle for the numerical simulations. The initial states are

u (x, y,0) = e−4(x+4)2
, (62)

ut (x, y,0) = 8 (x + 4) e−4(x+4)2
(63)

in the domain � = [0, 32] × [0, 32]. For the numerical simulations, the solution is evolved to time T f = 24.
Fig. 8 shows the time evolution of the solution with sufficiently small step sizes Δt = T f /211 and Δx = 1/8 using the 

sixth-order method, SMS(R5) with R5 = R5 (1,1.5). The black circle indicates the contour line of the variable coefficient 
a (x, y) at the level of z = 0.75. In each snapshot, the red and the blue regions indicate 0 < u ≤ 1.5 and −0.5 ≤ u < 0, 
12
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Fig. 9. Relative l2-errors of the numerical solutions and energy difference in 2D.

Fig. 10. Relative l2-norm errors of solutions with fourth- and sixth-order methods.

respectively. To highlight the magnitude, we added red contour lines in 0.2 increments and blue contour lines in 0.05
increments.

Fig. 9 shows the relative l2-error and energy difference of u (x, y, t = 24) with various space steps Δx = 64, 96, 128, . . . ,
386 and various time steps Δt = T f /210, T f /29, . . . , T f /24. Here, the errors are computed by comparison with the reference 
solution, which is a numerical solution with small step sizes Δt = T f /212 and Δx = 1/16. It is observed that the spectral 
accuracy is well demonstrated and the methods give the desired order accuracy both in space and time and inherit the 
energy conservation.

For the comparison to the existing Symplectic RK methods, we employ the coefficients of the Symplectic Diagonally 
Implicit RK schemes of q-stages and p-order in [11], referred as in SDIRK(q, p). Note that our proposed SMS methods for 
fourth- and sixth-order accuracy can be represented as the three- and five-stage methods, respectively.

Fig. 10 shows the numerical results for the temporal convergence of the fourth- and sixth-order methods with a well-
resolved step size Δx = 1/8. It shows the relative l2-error of the solution with respect to various time step sizes Δt =
T f /210, T f /29, . . . , T f /24. Here, the error is computed through comparison with the reference numerical solution obtained 
the sixth-order method with Δt = T f /212. We need to remark that, in the case of the linear problem, SDIRK(3, 3) becomes 
the fourth-order accuracy and SDIRK(6, 5) the sixth-order accuracy. It is observed that the methods provide the desired 
order of accuracy in time.

5.2. Time evolution in a three-dimensional homogeneous medium

We consider a three-dimensional scalar wave equation

utt = uxx + u yy + uzz (64)

in a domain � = [−8, 8] × [−8, 8] × [−8, 8] with a periodic boundary condition. The initial states are

u (x, y, z,0) = e−r2
and ut (x, y, z,0) = 0, (65)

where r =√x2 + y2 + z2. The numerical solution is evolved to time T f = 4.
13
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Fig. 11. Time evolution of the solution for the 3D wave equation.

Fig. 12. Relative l2-errors and energy difference of the numerical 3D solutions.

Fig. 11 shows the time evolution of the solution with sufficiently small step sizes Δt = T f /210 and Δx = 1/4 using the 
sixth-order SMS(R5) method with R5 (1,1.5). In each snapshot, the red, white, and blue regions indicate u = 1, 0, and −1, 
respectively. To highlight the magnitude, we added red and blue contour lines in 0.05 increments.

Fig. 12 shows the relative l2-error and the energy difference of u (x, y, z, t = 4) with various space and time steps. Here, 
the errors are computed by comparison with the reference solution which is a numerical solution with small step sizes 
Δt = T f /211 and Δx = 1/8. The spectral accuracy is well demonstrated and 64 grid points (Δx = 1/4) are enough to resolve 
the numerical solution. It is observed that these methods provide the desired order accuracy and the energy conservation.

6. Conclusions

We proposed the successive multi-stage (SMS) method for the linear wave equation with the energy conservation and 
high-order accuracy in time. The SMS methods are generalized from the Crank–Nicolson method, which exhibits energy 
conservation. For high-order accuracy, we implement the SMS method into the framework of the Runge–Kutta method, in 
particular, the linear Runge–Kutta method. Note that the proposed SMS methods are different from the symplectic Runge–
Kutta method, which is a well-known energy conserving method for wave equations. We provided mathematical proofs of 
unconditional energy conservation and unique solvability of a semi-discrete scheme. We also numerically demonstrated the 
accuracy and the energy conservation for various dimensions, including the case of an inhomogeneous medium.

In this paper, we focus on the linear wave equations to emphasize the proposed method is different from well-known 
existing RK methods but our goal is solving more general class of problems such as quasi-linear or Hamiltonian PDEs. 
The SMS method could be easily extended to solve the wave equation with forcing terms or quasi-linear wave equations 
in the form of utt = ∇ · (M∇u) + f (u, x, t), utt = ∇ · (M∇u) + g(∇u, ut, u, x, t). Such extensions will be reported in other 
manuscripts [J. Shin, J.-Y. Lee, Energy conserving successive multi-stage method for the linear wave equation with forcing 
terms, in preparation].
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Appendix A. Linear Runge–Kutta method

For self-consistency, we briefly introduce the linear Runge–Kutta method for a linear system. Compared to the general 
version of the RK method, we only need compact order conditions because of linearity and autonomy. Let us consider the 
following initial value problems for the autonomous differential equation with a linear operator L:

∂φ

∂t
= L (φ) and φ (0) = φ0. (A.1)

Let Lm+1 (φ) = L 
(
Lm (φ)

)
for m ≥ 1, then the Taylor expansion of the exact solution of the system (A.1) can be written 

as follows using Lm (φ) = ∂mφ
∂tm ,

φ (h) = φ0 + ΔtL (φ0) + Δt2

2! L2 (φ0) + · · · + Δtm

m! Lm (φ0) + O
(
Δtm+1) . (A.2)

Let φn be an approximation of φ
(
tn
)

of the RK method computing φn+1 at tn+1 = tn + Δt . Starting with φ0 = φn and 
k0 =L (φ0), we calculate φi for each stage i = 1, 2, . . . , s,

φi = φ0 + Δt
s∑

j=0

aijk j, (A.3)

where aij are real coefficients and ki =L (φi). Finally, we evaluate the next time approximation φn+1 as

φn+1 = φ0 + Δt
s∑

j=0

b jk j, (A.4)

where b j are weights. For the simple description, we denote the coefficients as a matrix A ∈ R(s+1)×(s+1) and a vector 
b ∈Rs+1. Defining a vector-wise operator evaluation as L (φ) = (L (φ0) ,L (φ1) , · · · ,L (φs))

T with φ = (φ0, φ1, . . . , φs)
T , we 

can rewrite k0, k1, . . . , ks as k =L (φ01 + ΔtAk). The linear RK method (A.4) can be rewritten as

φn+1 = φ0 + Δtb · k, (A.5)

where

k = L (φ0)1 + ΔtL2 (φ0)A1 + · · · + Δts−1Ls (φ0)As−11 + O
(
Δts) . (A.6)

By equating the coefficients of the elementary differential (A.2) with the Taylor expansion (A.5), we obtain that the order 
condition for the s-th order accuracy is b · Aq−11 = 1/q! for q = 1, 2, . . . , s.
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