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We propose a high-order time-discretized method for a non-homogeneous linear wave 
equation with a forcing term. The method conserves the accumulated discrete energy 
with the external term. We provide detailed proofs of unique solvability and unconditional 
energy conservation of the proposed successive multi-stage (SMS) method. We also present 
reduced order conditions up to the fourth order with aid of some important algebraic 
identities from the features of the SMS methods. We demonstrate the accuracy and stability 
of the SMS methods using numerical experiments. In addition, to show the applicability of 
the proposed method, we extend the method to solve quasi-linear wave equations and 
provide numerical simulations for sine-Gordon and Boussinesq-type equations.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Hyperbolic differential equations arise in many scientific disciplines to model wave propagation phenomena. Among 
them, linear wave equations play an important role in physics and scientific modeling: acoustic and elastic dynamics for 
sound and vibration analyses. One of the most famous properties of wave propagation is that the flow has energy conser-
vation. Therefore, to effectively represent the underlying physical phenomenon, we require an accurate numerical scheme 
with appropriate energy preservation.

A non-homogeneous linear wave equation can be represented as

∂2u

∂t2 = ∇ · (M(x)∇u) + f (x, t) , (1)

with a variable coefficient matrix M(x) and external force f (x, t) in the domain � ⊂ Rd (d = 1, 2, 3). Assuming that the 
coefficient M(x) is a symmetric positive definite matrix, the corresponding energy functional is defined as follows:

F (t) =
∫
�

⎛
⎝1

2

(
∂u

∂t

)2

+ 1

2

∣∣∣√M(x)∇u
∣∣∣2 −

t∫
0

f (x, τ )
∂u

∂τ
(x, τ ) dτ

⎞
⎠dx, (2)
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where the l2-norm 
∣∣√M(x)∇u

∣∣ is given by an inner product (∇u,M(x)∇u)1/2. Equation (1) can be completed with initial 
and boundary conditions. In this study, we take periodic or zero Neumann boundary conditions for the sake of simplicity. 
Note that the solution of the wave equation satisfies the energy conservation property,

d

dt
F (t) =

∫
�

(
∂2u

∂t2
− ∇ · (M(x)∇u) − f (x, t)

)
∂u

∂t
dx = 0. (3)

Various studies have been conducted on developing an energy-conserving high-order method for homogeneous linear 
wave equations. For example, the theta method [1] achieves energy stability by generalizing the leap-frog method [2], 
which is a well-known multi-step method used for many applications but does not guarantee stability with larger time 
steps. The Crank–Nicolson method is another well-known second-order example that guarantees energy conservation for 
the wave equation. Based on this, many studies aim to find a higher-order energy-conserving method [3–6]. On the other 
hand, the numerical treatment of Hamiltonian partial differential equations has been an intensive research area over the 
past decade; for example, the symplectic Runge–Kutta (RK) method [7–9], average vector field method [10–12], discrete 
variational derivative methods [13,14], and Hamiltonian boundary value method [15]. These studies focused on finding 
conditions for energy conservation in RK methods. Despite the remarkable numerical methods with high-order accuracy 
and energy conservation, the extension to a linear equation with external force has rarely been discussed. Most studies 
point to the semilinear and nonlinear wave equations instead. However, the non-homogeneous term that varies in space 
and time is practically valuable to physical modeling.

In this study, we present a high-order energy-preserving scheme for the non-homogeneous linear wave equation (1). 
The successive multi-stage (SMS) method, which was originally proposed in [16], guarantees energy conservation for the 
homogeneous linear wave equation without the source term, f ≡ 0. It is a high-order extension of the well-known second-
order Crank–Nicolson method using the RK framework, but we have shown [16] that the SMS method is not an example 
of symplectic RK methods. To generalize the original SMS method for more general cases with the external forcing term, 
we must discuss the extended order conditions, which create a complicated system of multi variate high-order polynomial 
equations, unlike the homogeneous case. To handle this problem, we develop a systematic approach to reduce the number 
of order conditions. We also remark that the purpose of this study is not only to present a general SMS method for non-
homogeneous linear wave equations but also demonstrate the applicability of the proposed method beyond the linear 
equation.

In Section 2, we extend the Crank–Nicolson method to design a new high-order implicit scheme that is unconditionally 
energy conserved. This idea of using RK framework is similar to that in [16], but we redo the proofs of unique solvability and 
energy conservation with the forcing term for the self-consistency of this study. In Section 3, we present basic identities 
on the variables in the RK Butcher table and a systematic approach for finding RK tables for the second-, third-, and 
fourth-order accurate SMS methods. We present numerical examples to demonstrate the order of convergence and energy 
conservation of the SMS methods in Section 4. Although the SMS method is designed for the linear wave equation with 
forcing terms, it can be used for more general cases, such as quasi-linear wave equations. The numerical simulations in 
Section 5 suggest the applicability of the high-order SMS methods, although energy conservation is no longer valid. In 
Section 6, we conclude the paper with a remark on future studies for high-order energy conserving methods for general 
Hamiltonian systems.

2. Successive multi-stage methods

By defining an auxiliary variable v = ut , we can represent the linear wave equation (1) in a decoupled form:

∂u

∂t
= v,

∂v

∂t
= ∇ · (M(x)∇u) + f (x, t) ,

(4)

where we take periodic or zero Neumann boundary conditions. The system can be evolved with initial conditions u(x, 0) =
u0(x), v(x, 0) = ∂u

∂t (x, 0) = v0(x). Then, the energy F (t) in (2) can be redefined as

H (u, v) =
∫
�

⎛
⎝1

2
v2 + 1

2

∣∣∣√M(x)∇u
∣∣∣2 −

t∫
0

f (x, τ ) v (x, τ ) dτ

⎞
⎠ dx. (5)

First, we denote un and vn as the approximations of u and v at time tn = nΔt , respectively. We now consider the well-
known Crank–Nicolson method as

un+1 − un

Δt
= vn+1 + vn

2
,

vn+1 − vn

= ∇ ·
(

M(x)∇ un+1 + un )
+ f n+1 + f n

,

(6)
Δt 2 2

2
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where f n = f
(
x, tn

)
. The corresponding semi-discrete energy can be defined as

H
(
un, vn) =

∫
�

1

2

(
vn)2 + 1

2

∣∣∣√M(x)∇un
∣∣∣2 − Δt

4

n∑
k=1

(
f k + f k−1

)(
vk + vk−1

)
dx. (7)

Here, Δt
4

∑n
k=1

(
f k + f k−1

) (
vk + vk−1

)
is the Crank–Nicolson summation of the energy induced by the forcing term, ∫ tn

0 f (x, τ ) v (x, τ ) dτ .

Theorem 1. The Crank–Nicolson method (6) is unconditionally energy conserving, meaning that, for any time step size Δt,

H
(
un+1, vn+1) = H

(
un, vn) . (8)

Proof. We first calculate the difference of energy functionals:

H
(
un+1, vn+1) −H

(
un, vn) = 1

2

∫
�

(
vn+1)2 − (

vn)2 +
∣∣∣√M(x)∇un+1

∣∣∣2 −
∣∣∣√M(x)∇un

∣∣∣2

− Δt

2

(
f n+1 + f n) (

vn+1 + vn)dx.

(9)

For the first two terms and the last term in the integrand of (9), we can rearrange as follows:

1

2

∫
�

(
vn+1)2 − (

vn)2 − Δt

2

(
f n+1 + f n) (

vn+1 + vn) dx

= 1

2

∫
�

(
vn+1 − vn) (

vn+1 + vn) − Δt

2

(
f n+1 + f n) (

vn+1 + vn) dx

= Δt

4

∫
�

(
vn+1 + vn)∇ · (M(x)∇ (

un+1 + un)) dx

= −Δt

4

∫
�

∇ (
vn+1 + vn) · (M(x)∇ (

un+1 + un)) dx.

(10)

Moreover, for the middle two terms of (9), we can expand as follows:

1

2

∫
�

∣∣∣√M(x)∇un+1
∣∣∣2 −

∣∣∣√M(x)∇un
∣∣∣2

dx

= 1

2

∫
�

∇ (
un+1 − un) · (M(x)∇ (

un+1 + un)) dx

= Δt

4

∫
�

∇ (
vn+1 + vn) · (M(x)∇ (

un+1 + un)) dx.

(11)

Adding (10) and (11), we obtain

H
(
un+1, vn+1) −H

(
un, vn) = 0. (12)

Therefore, we can prove that the energy corresponding to the numerical solution 
(
un, vn

)
of the Crank–Nicolson method 

remains a physical constant F (t),

H
(
un, vn) = H

(
u0, v0

)
= F

(
t0

)
, (13)

for any time step Δt . �
We now extend an SMS method [16] to the forced linear wave equation, which is a high-order energy conserving 

numerical scheme.
3
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Algorithm 1 (SMS). For a given coefficient vector

Rs = [r1, r2, · · · , rs] , (14)

the SMS(Rs) method computes 
(
un+1, vn+1

)
at tn+1 = tn + Δt . Starting with

u0 = un, v0 = vn

for the initial stage, we evaluate (ui, vi) for i = 1, 2, · · · , s by solving

ui − ui−1

Δt
= ri (vi + vi−1) ,

vi − vi−1

Δt
= ri∇ · (M(x)∇ (ui + ui−1)) + ri ( f i + f i−1) ,

(15)

where f i = f
(
x, tn + ciΔt

)
. Then, the next time step approximations are given by

un+1 = us, vn+1 = vs.

2.1. Unique solvability

Theorem 2. The proposed SMS method (15) is uniquely solvable for any time step size Δt, provided that f depends only on x and t.

Proof. For each stage i = 1, 2, · · · , s, we must solve

ui − riΔt vi = ui−1 + riΔt vi−1,

vi − riΔt ∇ · (M(x)∇ui) = vi−1 + riΔt ∇ · (M(x)∇ui−1) + riΔt ( f i + f i−1) .
(16)

System (16) can be represented as

ui − r2
i Δt2 ∇ · (M(x)∇ui) = χi + r2

i Δt2 ( f i + f i−1) , (17)

where

χi = ui−1 + 2riΔt vi−1 + r2
i Δt2 ∇ · (M(x)∇ui−1) . (18)

Because M(x) is a symmetric positive definite matrix and I − r2
i Δt2 ∇ · (M(x)∇) is an invertible operator, (17) has a unique 

solution for any time step Δt . Using the solution ui of (17), we can easily obtain a unique solution vi using (16). �
Remark 1. The SMS method is an implicit RK scheme which is computationally more expensive than an explicit RK method. 
Theorem 2 implies unique solvability of the implicit equation (16) and the proposed method has a unique novelty for 
inheriting the energy conservation property to the forced linear wave equation, which will be shown in next subsection.

2.2. Energy conservation

Now, the semi-discrete energy can be defined as

HΔt (
un, vn) =

∫
�

(
1

2

(
vn)2 + 1

2

∣∣∣√M(x)∇un
∣∣∣2

)
dx − Δt

2

n−1∑
k=0

s∑
p=1

σ k
p , (19)

where

σ k
p = rp

∫
�

(
f k

p + f k
p−1

)(
vk

p + vk
p−1

)
dx. (20)

Note that Δt
2

∑n−1
k=0

∑s
p=1 σ k

p is the Runge–Kutta summation of the energy induced by the forcing term, 
∫ tn

0

∫
�

f (x, τ )v(x,

τ ) dx dτ .

Theorem 3. For each intermediate stage of the proposed SMS method (15) with (u0, v0) = (un, vn), we can extend the discrete en-
ergy (19) as follows:

HΔt (ui, vi) =
∫ (

1

2
(vi)

2 + 1

2

∣∣∣√M(x)∇ui

∣∣∣2
)

dx − Δt

2

⎛
⎝n−1∑

k=0

s∑
p=1

σ k
p +

i∑
p=1

σ n
p

⎞
⎠ .
�

4
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Then, the discrete energy between adjacent stages is conserved for any time step riΔt,

HΔt (ui, vi) = HΔt (ui−1, vi−1) . (21)

Finally, the proposed method (15) is unconditionally energy conserving, meaning that HΔt
(
un+1, vn+1

) =HΔt
(
un, vn

)
for any time 

step Δt.

Proof. Similar to the proof of Theorem 1, we first arrange the difference of adjacent discrete energy functionals,

HΔt (ui, vi) −HΔt (ui−1, vi−1) = 1

2

∫
�

v2
i − v2

i−1 +
∣∣∣√M(x)∇ui

∣∣∣2 −
∣∣∣√M(x)∇ui−1

∣∣∣2

− riΔt (vi + vi−1) ( f i + f i−1)dx.

(22)

We can then expand the separated terms of (22) as

1

2

∫
�

v2
i − v2

i−1 − riΔt (vi + vi−1) ( f i + f i−1) dx

= − riΔt

2

∫
�

∇ (vi + vi−1) · (M(x)∇ (ui + ui−1)) dx,

(23)

1

2

∫
�

∣∣∣√M(x)∇ui

∣∣∣2 −
∣∣∣√M(x)∇ui−1

∣∣∣2
dx

= riΔt

2

∫
�

∇ (vi + vi−1) · (M(x)∇ (ui + ui−1)) dx.

(24)

Now, we have HΔt (ui, vi) =HΔt (ui−1, vi−1) for any riΔt , i = 1, 2, · · · , s. Therefore,

HΔt (
un+1, vn+1) = HΔt (us, vs) = HΔt (u0, v0) = HΔt (

un, vn) , (25)

which proves the conservation of the discrete energy functional HΔt
(
un, vn

)
. �

3. Order conditions for temporal accuracy

Note that the SMS(R1) with R1 = [ 1
2

]
is identical to the Crank–Nicolson method and provides the second-order accuracy. 

To construct a high-order method, we introduce a framework of Runge–Kutta (RK) method to explain the time accuracy for 
the successive multi-stage method. As in [16], we can describe the s-stage SMS method (15) using a Butcher table:

c A

bT
=

0 0 0 0 · · · 0

c1 r1 r1 0 · · · 0

c2 r1 r1 + r2 r2 · · · 0
...

...
...

...
. . .

...

cs r1 r1 + r2 r2 + r3 · · · rs

r1 r1 + r2 r2 + r3 · · · rs

(26)

where A ∈R(s+1)×(s+1) , b ∈Rs+1, and c = A1 with 1 = (1,1, . . . ,1)T ∈Rs+1. Note that the last row of the coefficient matrix 
A is identical to the evaluation vector b, which is known as a stiffly accurate condition.

Table 1 lists the order conditions of the Runge–Kutta method up to fourth-order accuracy. For more information, we refer 
to [17,18]. Because the SMS method (15) is not homogeneous, we must consider all the order conditions of the RK method 
for the desired order accuracy.

We may require more stages to find an SMS method that satisfies all of these conditions compared with the SMS meth-
ods [16] for the linear and autonomous system. However, by the following simple and useful lemmas, we can dramatically 
reduce the number of the required order conditions.

Lemma 4. The tables with A, b, and c for the SMS method (15) satisfy the following equality, c2 = 2Ac.
5
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Table 1
Order conditions of RK methods up to the fourth-order accuracy. Here, �
denotes component-wise multiplication of two vectors and cn = cn−1 � c.

order 1 2 3 4

condition bT 1 = 1 bT c = 1/2 bT Ac = 1/6 bT A2c = 1/24
bT c2 = 1/3 bT Ac2 = 1/12

bT (c � Ac) = 1/8
bT c3 = 1/4

Table 2
Reduced order conditions up to the fourth-order accuracy.

order 1 2 3 4

condition bT 1 = 1 bT c = 1/2 bT Ac = 1/6 bT A2c = 1/24
bT c3 = 1/4

Proof. The i-th components of c and Ac can be written as follows:

ci = 2
i∑

j=1

r j, (27)

(Ac)i =
∑

j

ai jc j =
i−1∑
j=1

(
r j + r j+1

)
c j + rici . (28)

Clearly, 2 (Ac)1 = 2r1c1 = c2
1. Let us use a mathematical induction starting with

2 (Ac)i = 2
i−1∑
j=1

(
r j + r j+1

)
c j + 2rici = c2

i . (29)

Because ci+1 = ci + 2ri+1, we have

2 (Ac)i+1 = 2
i∑

j=1

(
r j + r j+1

)
c j + 2ri+1ci+1

= 2
i−1∑
j=1

(
r j + r j+1

)
c j + 2rici + 2ri+1ci + 2ri+1 (ci + 2ri+1)

= c2
i + 4ri+1ci + 4r2

i+1 = (ci + 2ri+1)
2 = c2

i+1. �

(30)

By Lemma 4, we can simplify the order conditions, and Table 2 lists the reduced order conditions. We should note that 
only one condition bT c3 = 1/4 is additionally involved compared with the linear RK method; see the appendix in [16].

We define a lower triangular matrix L as li j = 1 if i > j, and 0 otherwise. For simplicity, we define r0 = 0. Then, we can 
represent the coefficient matrix A as

aij = li jb j + δi jr j, (31)

where δi j is the Kronecker delta function. Furthermore, we can rearrange the multiplication of b and A as

(
bT A

)
j
=

∑
i

biai j =
∑

i

bi
(
li jb j + δi jr j

) =
⎛
⎝∑

i> j

bi

⎞
⎠b j + r jb j (32)

and the multiplication of A and c as

(Ac) j =
∑
i< j

bici + r jc j. (33)

Lemma 5. For the SMS method (15), the first-order condition bT 1 = 1 implies that the second-order condition bT c = 1/2.
6
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Proof. Using (32), we first extend it as follows:

bT c =
(

bT A
)

1 =
∑

j

(∑
i

biai j

)
=

∑
i> j

bib j +
∑

j

r jb j

= 1

2

∑
i, j

bib j + 1

2

∑
j

b j
(
2r j − b j

)
.

(34)

Because

s∑
j=0

b j(2r j − b j) = −r2
1 +

s−1∑
j=1

(r2
j − r2

j+1) + r2
s = 0, (35)

we finally obtain

bT c = 1

2

∑
i, j

bib j = 1

2

(∑
i

bi

)⎛
⎝∑

j

b j

⎞
⎠ , (36)

which means that bT 1 = ±1 and bT c = 1/2 are equivalent. �
Lemma 6. Suppose that bT 1 = 1 is satisfied in the SMS method (15). Then,

(
bT − bT A

)
Ac = 1

2

⎛
⎝∑

j

c jb j

⎞
⎠(∑

i

cibi

)
= 1

8
. (37)

Therefore, bT Ac = 1/6 and bT A2c = 1/24 are equivalent.

Proof.

(
bT − bT A

)
j
= b j −

⎛
⎝∑

i> j

bi

⎞
⎠b j − r jb j =

⎛
⎝∑

i≤ j

bi

⎞
⎠b j − r jb j

= (
c j + r j+1

)
b j − r jb j = c jb j + (r j+1 − r j)b j .

(38)

Now, using (33) and (38), we can expand as follows:

(
bT − bT A

)
Ac =

∑
j

(
c jb j + (

r j+1 − r j
)

b j
)⎛
⎝∑

i< j

bici + r jc j

⎞
⎠

= 1

2

⎛
⎝∑

j

c jb j

⎞
⎠(∑

i

cibi

)
− 1

2

∑
j

c2
j b

2
j

+
∑

j

(
r j+1 − r j

)
b j

⎛
⎝∑

i< j

bici + r jc j

⎞
⎠ +

∑
j

r jb jc
2
j

= 1

2

⎛
⎝∑

j

c jb j

⎞
⎠

(∑
i

cibi

)
.

(39)

The last simplification comes from r j − b j/2 = (
r j − r j+1

)
/2, 

∑
i≤ j bici = c jc j+1/2, and

∑
j

b j

⎛
⎝r jc

2
j − b jc

2
j /2 + (

r j+1 − r j
)⎛
⎝∑

i< j

bici + r jc j

⎞
⎠

⎞
⎠

=
∑

j

b j
(
r j+1 − r j

)⎛
⎝−c2

j /2 +
∑
i≤ j

bici − r j+1c j

⎞
⎠ = 0. �

(40)
7
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Table 3
Reduced order conditions up to the fourth-order accu-
racy.

order 2 3 4

condition bT 1 = 1 bT Ac = 1/6 bT c3 = 1/4

Fig. 1. Coefficients of R3.

By Lemma 5 and 6, the order conditions in Table 2 can be simplified to those in Table 3. We should recall [16] that 
the coefficients satisfying up to third-order conditions for the linear wave equation also satisfy the fourth-order condition 
bT A2c = 1/24. However, with the forcing term, we need to have one additional order condition bT c3 = 1/4 to obtain the 
fourth-order accuracy. We remark that the number of order conditions for fifth- or higher-order cases increases dramatically 
with the forcing term unlike the linear cases in [16] and we will deal with reduction techniques for higher-order cases in 
another manuscript.

Remark 2. By Lemmas 4 and 5, the order conditions in Table 3 can be written as bT c = 1/2, bT c2 = 1/3, and bT c3 = 1/4
for the second-, third-, and fourth-order accuracies, respectively.

Remark 3. No solution for the two-stage coefficient vector R2 = [r1, r2] satisfies the order conditions up to third-order 
accuracy.

Next, we introduce a process for finding R3 to construct three-stage SMS methods. We now choose a possible choice of 
the coefficient vector R3 = [r1, r2, r3] and consider the corresponding matrix A and vector b as

A =

⎡
⎢⎢⎣

0 0 0 0
r1 r1 0 0
r1 r1 + r2 r2 0
r1 r1 + r2 r2 + r3 r3

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

r1
r1 + r2
r2 + r3

r3

⎤
⎥⎥⎦ . (41)

To satisfy the second-order condition bT 1 = 1, the coefficients should satisfy

r1 + r2 + r3 = 1

2
. (42)

With the identity in (42) and the third-order condition bT Ac = 1/6, we obtain the following identity after some algebraic 
manipulations,

r1r2 + r1r3 + r2r3 − 2r1r2r3 = 1

12
. (43)

When we set a free parameter r2 = γ , parameters r1 and r3 satisfy

r1 + r3 = 1 − 2γ

2
, r1r3 = 1 − 6γ + 12γ 2

12 (1 − 2γ )
. (44)

Fig. 1 shows the coefficients of R3 with respect to the parameter of γ . Note that switching r1 and r3 can be another solution 
because of the symmetry between the two variables. This figure implies that infinitely many three-stage third-order SMS 
methods exist. In choosing γ = 4/5 for numerical simulation, we have

R3 (4/5) ≈ [0.5993,0.8000,−0.8993] . (45)
8
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Fig. 2. Evolution of the solution for the 1D wave equation.

There is no solution in γ ∗ < γ ≤ 1/2, where γ ∗ = − 3√2
3 − 1

3 3√2
− 1

6 (approximately −0.8512) is the value that makes r1

and r3 the double roots of (44). We observe that the coefficients R3 (γ ∗) satisfy the order condition bT c3 = 1/4 for the 
fourth-order accuracy, which is the unique choice for the three-stage fourth-order SMS method.

We remark that a third-order SMS method with R3(γ ) has a negative time step for any γ . A negative time step may 
cause trouble for an energy dissipative case, however, it does not cause a serious problem for an energy-conserving equation 
which is our main concern in the paper. Especially, the unique solvability of ui in (17) is always valid regardless of the sign 
of ri
t .

4. Numerical results

The proposed SMS method can be coupled with a method of lines that first discretizes in space and then solves the 
resulting system of ordinary differential equations. To focus on the temporal order of convergence and energy conservation, 
we use the Fourier spectral method for spatial discretization, which provides fully resolved spatial accuracy.

4.1. Time evolution in 1D homogeneous medium

To demonstrate the order of the accuracy and energy conservation property of the proposed scheme, we apply the SMS 
methods to a one-dimensional wave equation in homogeneous medium,

utt = uxx + sin
(
πt3

)
tanh (5 − 10 |x|) (46)

with a periodic boundary condition and the following initial conditions,

u (x,0) = sin (πx) and ut (x,0) = cos (πx) (47)

on the domain � = [−1, 1]. For simulation, the Fourier spectral method is used for spatial derivatives in the numerical 
computations up to time T f = 2. Fig. 2 shows the time evolution of the reference solution of the wave equation (46) using 
the fourth-order method SMS(R3(γ

∗)) with a sufficiently refined computation grid, Δt = T f /210 and Δx = 1/128.
We demonstrate the numerical convergence using the same conditions and parameters as those used in the beginning. 

Fig. 3 shows the relative l2-errors of numerical solutions for spatial and temporal convergence, where the error is computed 
by comparing with the reference solution. To estimate the spatial convergence, simulations are performed by varying grid 
points 8, 12, · · · , 128 using the fourth-order method, SMS(R3 (γ ∗)). As shown, the spatial convergence of the results under 
the grid refinements is evident. Furthermore, the figure shows that 64 grid points (Δx = 1/32) provide sufficient spatial 
accuracy for estimating the temporal convergence. To highlight the numerical convergence results for temporal accuracy, 
9
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Fig. 3. Relative l2-errors of solutions at t = 2.

Fig. 4. Evolution of the absolute difference of the discrete energy.

we plot the relative l2-errors with respect to various time steps Δt = T f /28, · · · , T f /24 and a fixed space step Δx = 1/32. 
These methods evidently provide the desired order of temporal accuracy.

Fig. 4 shows the time evolution of the difference in the discrete energy defined in (19) for three SMS methods with 
several time steps. As shown, the energy difference slightly increases because of the accumulation of the random noise error; 
however, the conservation of the discrete energy is demonstrated under the machine precision. Therefore, the proposed 
SMS method exhibits discrete energy conservation regardless of the time step size, except for the round-off calculation 
errors.

4.2. Time evolution in 2D non-homogeneous medium

We present a more complex configuration propagating acoustic pressure, motivated by a numerical example in [1]. We 
consider a non-homogeneous wave equation with a non-homogeneous medium in a two-dimensional domain,

∂2u

∂t2
= ∇ · (c (x, y)∇u) + f (x, y, t) , (48)

where u is the acoustic pressure, c (x, y) the material properties of the domain of propagation, and f (x, y, t) = g (x, y)h (t)
an external source term. Here, the underlying functions are

c (x, y) = 1 + 9e−0.08
(
x2+y2−52

)2

, (49)

g (x, y) = e−(
(x−1)2+(y−1)2)

, (50)

h (t) =
(

50 (t − 0.7)2 − 1
)

e−25(t−0.7)2
. (51)

Fig. 5 presents the profiles of parameters c (x, y) and h (t). The black dashed circles in the leftmost plot indicate the contour 
lines at the level of c (x, y) = 1.01.

We begin by showing the solution of the wave equation (48) with a zero Neumann boundary condition and the following 
initial conditions:

u (x, y,0) = 0 and ut (x, y,0) = 0 (52)
10
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Fig. 5. Representation of the functions c (x, y) and h (t). (For interpretation of the colors in the figures, the reader is referred to the web version of this 
article.)

Fig. 6. Evolution of the pressure field.

on a domain � = [−10, 10] × [−10, 10], and then evolve the system up to a final time T f = 10. Fig. 6 shows the temporal 
evolution of the pressure field with a sufficiently small time step Δt = T f /211 and Δx = 20/384 using the fourth-order 
method, SMS(R3 (γ ∗)). These solutions are used as the reference solution to estimate the convergence rate. In each snapshot, 
we show a 3D plot and its 2D projection on the bottom, where the red and blue regions indicate where u is larger than 
5 · 10−4 and less than −5 · 10−4, respectively. To highlight the magnitude, we used red and blue contour lines in increments 
of 5 · 10−4. Again, the black dashed circles indicate where the variable coefficient c (x, y) = 1.01.

We demonstrate the numerical convergence in space and time with the same conditions and parameters used at the 
beginning of this subsection. Fig. 7 shows the relative l2-errors of the solution at t = 0.625 with respect to the grid points 
and time steps. The simulations are performed by varying grid points Nx = N y = 64, 96, · · · , 256 and time steps Δt =
T f /210, · · · , T f /26. As shown, the spatial convergence of the results under the grid refinements is evident. Furthermore, 
the figure shows that 256 grid points provide more than a six-digit spatial accuracy to estimate the numerical convergence 
with respect to the time steps. To highlight the numerical convergence results for temporal accuracy, we plot the relative 
l2-errors with respect to the time step with a fixed space step Δx = 20/256. These methods evidently provide the desired 
order of temporal accuracy.

Fig. 8 shows the convergence results at t = 10, which is quite similar to Fig. 7 except that the convergence order of the 
SMS(R3 (4/5)) is higher than 3. Such a super-convergence (of an odd-order numerical method) sometimes occurs when the 
leading order term in the error equation vanishes.
11
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Fig. 7. Relative l2-errors of solutions at t = 0.625.

Fig. 8. Relative l2-errors of solutions at t = 10.

5. Extension to quasi-linear equations

Although the SMS method (15) is designed for the linear wave equation with forcing terms (1), it can be applied for 
more general classes of wave equations. For example, the quasi-linear wave equation

∂2u

∂t2
= ∇ · (M(x)∇u) + f (u) (53)

is a system of partial differential equations,

∂u

∂t
= v,

∂v

∂t
= ∇ · (M(x)∇u) + F ′ (u) ,

(54)

where the corresponding Hamiltonian functional can be represented as

HF (u, v) =
∫ (

1

2
v2 + 1

2

∣∣∣√M(x)∇u
∣∣∣2 − F (u)

)
dx. (55)

Now, the SMS method (17) for ui in (54) becomes an implicit equation,

ui − r2
i Δt2 μi = ϕi, (56)

where μi = ∇ · (M(x)∇ui) + f (ui) and ϕi = ui−1 + 2riΔt vi−1 + r2
i Δt2 μi−1.

Another example is a system of spatially fourth-order partial differential equations,

∂u

∂t
= v,

∂v

∂t
= −
μ,

(57)
12
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where μ = ∇ · (M(x)∇u)+ F ′ (u). Note that (57) can be obtained from the H−1 flow of the Hamiltonian functional HF (u, v), 
while (54) from the L2 flow. Therefore, applying the SMS method for (57) is rather trivial by replacing μ with −
μ. Then, 
the SMS method becomes an implicit equation,

ui + r2
i Δt2 
μi = ψi, (58)

where ψi = ui−1 + 2riΔt vi−1 − r2
i Δt2 
μi−1.

The purpose of this section is not to provide an extensive study on the applicability of the SMS method but simply 
describe using the method beyond the linear wave equation. Thus, we provide only the computational convergence results 
for a sine-Gordon and Boussinesq-type equations without thorough theoretical analysis.

5.1. Sine-Gordon equation

The sine-Gordon equation is an example of the nonlinear Klein–Gordon equation in the form of (54) the corresponds 
to the Hamiltonian functional HF (u, v) with F (u) = cos (u) and a homogeneous media M(x) = 1. Hence, we consider a 
specific example

utt = 
u − sin u. (59)

For the numerical tests, we consider a soliton-like solution [8] in the form of 4 tan−1
(
ϕ(t;γ ) sech

(
x
γ

))
, where ϕ(t; γ ) =

1√
γ 2−1

sin

(√
γ 2−1
γ t

)
. In the special case of γ = 1, a double-pole solution is provided as follows:

u(x, t) = 4 tan−1(t sech x). (60)

For the numerical test, we set a computational domain � = [−20, 20] and periodic boundary condition. We choose the 
number of spatial discretization Nx = 256 to provide sufficient spatial accuracy and set the initial conditions as u0 = u(x, 0)

and v0 = ut(x, 0). For i = 1, · · · , s, we obtain ui using Newton’s method for the nonlinear implicit equation (56),

ui − r2
i Δt2 (
ui + f (ui)) = ϕi, (61)

where ϕi = ui−1 + 2riΔt vi−1 + r2
i Δt2 (
ui−1 + f (ui−1)). We have an iterative solver for each stage i starting with the 

previous solution u(m=0)
i = un:

u(m+1)
i −r2

i Δt2 
u(m+1)
i − r2

i Δt2 f ′ (u(m)
i

)
u(m+1)

i

= ϕi + r2
i Δt2

(
f
(

u(m)
i

)
− f ′ (u(m)

i

)
u(m)

i

)
.

(62)

We terminate the Newton-type m-iteration when the relative consecutive error of u(m+1)
i is less than tol = 10−10 and define 

ui = u(m+1)
i . Then, we have

vi = vi−1 + riΔt 
(ui + ui−1) + riΔt ( f (ui) + f (ui−1)) . (63)

Finally, we can obtain the next time approximations un+1 and vn+1 using us and vs , respectively.
Fig. 9 shows the time evolution of the solution and difference in the Hamiltonian functional up to T f = 16 using the 

fourth-order SMS(R3(γ
∗)) method. Starting with the zero profile, the evolving speed is fast at the beginning and then slows. 

For this quasi-linear example, the SMS method no longer guarantees energy conservation. Thus, the energy HF associated 
with the computed solution depends on Δt = T f /210, · · · , T f /25. Fig. 10 shows the computational solution un and energy 
HF (un, vn) associated with the computed solution that converges in the desired order of temporal accuracy. We must 
remark that the third-order SMS(R3(4/5)) method shows super-convergence, as in Fig. 8, but the next example reveals that 
this is a special case owing to the shape of the solution.

We also consider a superposition of two soliton-like traveling solutions in the form of 4 tan−1
(

e(x−xc−vt)/
√

1−v2
)

:

u(x, t) = 4 tan−1
(

e
(x−x1−v1t)/

√
1−v2

1

)
− 4 tan−1

(
e
(x−x2−v2t)/

√
1−v2

2

)
, (64)

where (x1, v1) = (−20, 0.5) and (x2, v2) = (10, 0.25). For the numerical test, we set a computational domain � = [−40, 40]
with the periodic boundary condition. We then compute the reference solution up to T f = 32 using the fourth-order 
SMS(R3(γ

∗)) method with Nx = 256 and Δt = T f /211. Fig. 11 shows that all SMS methods with Δt = T f /29, · · · , T f /24

provide the desired temporal order of accuracy for the computed solution. The convergence order of the Hamiltonian energy 
at least equals that of the solution.
13
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Fig. 9. Evolution of the solution and computational errors of HF (u, v) by SMS(R3(γ ∗)).

Fig. 10. Convergence of the solution and computational errors of HF (u, v) at t = 16.

Fig. 11. Evolution of the solution and order of convergence at t = 16.

5.2. A Boussinesq-type equation

The Boussinesq-type equation [19],

utt + 

(

u + 3u2 − u

)
= 0 (65)

is a spatially fourth-order partial differential equation in the form of (57) that corresponds to the Hamiltonian functional 
HF (u, v) with F (u) = u3 − 1

2 u2 and M(x) = 1. For the nonlinear implicit equation (58),

ui + r2Δt2
μi = ϕi, (66)
i

14
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Fig. 12. Evolution of the solution and computational errors of HF (u, v).

Fig. 13. Order of convergence of the solution at t = 72 and t = 128.

where μi = 
ui +3 (ui)
2 − ui and ϕi = ui−1 +Δtvi−1 + r2

i Δt2
μi−1. Using the Newton-type method, we obtain an iterative 
solver for ui ,

u(m+1)
i + r2

i Δt2

(

 + 6u(m)

i − 1
)

u(m+1)
i = ϕi + 3r2

i Δt2

(

u(m)
i

)2
. (67)

We consider solitary wave solutions in the form of 2b2 sech2 (b(x − xc ± ct)) and numerically evolve a combination of 
two solitary wave-packets moving in opposite directions:

u(x, t) = 2b2
1 sech2 (b1(x − x1 − c1t)) + 2b2

2 sech2 (b2(x − x2 + c2t)), (68)

where (b1, x1) = (0.15, 40), (b2, x2) = (0.1, 180), and ci =
√

1 − 4b2
i is the corresponding wave speed.

For the numerical test, we set a computational domain � = [0, 256] with the periodic boundary condition. We choose a 
number of spatial discretization Nx = 256 that provides sufficient spatial accuracy and initial conditions as u0 = u(·, 0) and 
v0 = ut(·, 0). Fig. 12 shows the computational solution up to T f = 128 using the fourth-order SMS(R3(γ

∗)) method. Again, 
the SMS method is no longer an energy conserving method for this quasi-linear example, but the energy HF associated 
with the computed solution depends on Δt = T f /29, · · · , T f /25. The error of the energy decays at a fourth-order rate at 
t = 72 when the two peaks merge; however, the convergence rate of the energy error shows a much better performance 
than the convergence order of the solution at t = 128.

Fig. 13 shows that the computational solution converges in the desired order of temporal accuracy (except slightly better 
convergence rate of SMS(R3(4/5))), not only at t = 72 but also at t = 128 when the convergence rate of the energy error is 
higher than the expected order.

6. Conclusions

We proposed a successive multi-stage (SMS) method for the non-homogeneous linear wave equation, utt = ∇ ·
(M (x)∇u) + f (x, t), which inherits the energy conservation and high-order accuracy with time. The SMS method in [16] is 
only for the linear wave equation, and we extend it for a case with an external force. We provided mathematical proofs of 
unconditional energy conservation and the unique solvability of a semi-discrete scheme and numerically demonstrated the 
15
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accuracy and energy conservation for various examples. To show the applicability of the proposed method beyond linear 
wave cases, we presented some examples of quasi-linear equations and demonstrated the desired order accuracy both for 
the solution and energy. The extension of SMS method to the quasi-linear wave or Hamiltonian partial differential equations 
for an energy-preserving method is the future direction of our studies.
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