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Abstract. The Prandtl--Batchelor theory for steady Navier--Stokes flows at large Reynolds
numbers is extended to multiply connected two-dimensional domains. In this study, we investigate
incompressible flows in a concentric annulus. A proper mathematical formulation is established, and
we derive the corresponding Batchelor--Wood formula for the limiting vorticity. Our analysis reveals
that the vorticity is a constant while the angular velocity is a linear combination of r and r - 1. Under
the perturbation of the outer boundary velocity, we asymptotically calculate the effects of a finite
Reynolds number and compare our results with numerical computations. We also examine cases
involving the inner and both perturbed boundary velocities. The results show good agreement for
small perturbations at large Reynolds numbers, confirming the validity of the theory. Notably, we
observe the formation of a weak layer near the unperturbed boundary, where the vorticity is discon-
tinuous while the velocity remains continuous. This discrepancy can be regarded as an intriguing
characteristic of the inviscid limit flows. Finally, we discuss potential extensions of our findings for
future research.
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1. Introduction. There are many interesting yet complex singular phenomena
in incompressible steady-state Navier--Stokes flows as the Reynolds number R becomes
very large. One such example is the boundary layer, for which Prandtl [24] first
developed an efficient theory for explanation and analysis. He also proposed a relevant
asymptotic behavior for such flows as R increases. Specifically, he found that the
vorticity tends to a uniform constant in regions with nested closed streamlines. This
property was later rediscovered by Batchelor [2], who studied specific examples and
derived a formula for the limiting constant vorticity in the circular domain case.

This is the initial development of the ``Prandtl--Batchelor"" (PB) theory for incom-
pressible Navier--Stokes flows at large Reynolds numbers. Since then, the theory has
been generalized in various directions, such as flows with certain geometric symme-
tries [6], some three-dimensional flows [3, 27], cylindrical [9] and periodic [21] domains,
time-dependent flows [1], and even some geophysical flows [36]. Additionally, there
have been numerous applications of the theory to real physical flows [4, 5, 26, 28].

However, focusing on the theoretical aspects of PB theory in two dimensions,
we find that most of the results are essentially confined to simply connected regular
domains [11, 12, 14]. These include a disk [18] or regions with corners [33]. In such
cases, the vorticity can be effectively calculated using a formula given in [2], which
was later extended by Wood [35]. This is known as the ``Batchelor--Wood"" (BW)
formula and serves as a starting point for determining the vorticity value. (See also
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134 SUN-CHUL KIM AND JUNE-YUB LEE

[16] for an elliptic domain, [32] for discontinuous boundary conditions, and [34] for
polygonal domains.) Subsequently, Feynman and Lagerstrom [14] proposed applying
this formula to a general two-dimensional domain as a reasonable approximation,
which was rigorously studied in recent work [11]. There have been relevant works
when the BW formula cannot be expected to be accurate [25, 31]. Nevertheless, all
these results pertain to simply connected domains in two dimensions except a very
recent work on the existence of PB flows in an annulus [13].

In this paper, we extend the PB theory to general multiply connected domains, us-
ing the annulus as a simple and concrete example. We first develop the corresponding
theoretical framework for large R and then validate the results through appropriate
numerical computations. Specifically, assuming the flow depends only on r, we find
that the inviscid limit vorticity is given by a linear function of the logarithm. For
the perturbed case with \epsilon the perturbation parameter for the boundary velocity, we
compute the flow up to the order of \epsilon 2/

\surd 
R, and compare the results with precise

numerical data. The comparison shows good agreement between the theoretical pre-
dictions and the numerical results. Additionally, we consider the case where both the
inner and outer boundary velocities are perturbed, providing a proper interpretation
of the obtained result.

The contents of the paper are as follows. In section 2, we develop an analogous
PB theory for an annular domain under certain conditions. The corresponding BW
formula is derived in section 3. In section 4, we compute the second-order expansion
of the flow in R under a perturbation of the boundary velocity, using an asymptotic
matching method. The numerical method used for highly accurate computations is
explained in section 5. In section 6, the numerical results are presented and compared
with the asymptotic calculations. Finally, we conclude with remarks on the case
of general multiply connected domains in section 7. The details of the asymptotic
calculations are provided in the appendix at the end of the paper.

2. PB theory for an annulus. The two-dimensional steady incompressible
Navier--Stokes equations for a flow velocity u= (u, v,0) are

u \cdot \nabla u+\nabla p=R - 1\nabla 2u, \nabla \cdot u= 0,(2.1)

where p is the pressure and R is the Reynolds number. We consider the flow in an
annular domain

D= \{ (r, \theta ) : r1 < r < r2, 0\leq \theta < 2\pi \} 

for some positive r1 < r2 with given boundary velocity

ur| r1 = ur| r2 = 0, u\theta | r1 = q1, u\theta | r2 = q2,

respectively. Here ur, u\theta denote the r, \theta components of the velocity, and we consider a
boundary driven flow inside an annulus in this paper. For the scaling, we take r2 = 1
in section 4, but further simplification is not possible as q1, q2 are not constants in
general.

From the incompressibility, we introduce the stream function \psi (r, \theta ) by

1

r

\partial \psi 

\partial \theta 
= ur,

\partial \psi 

\partial r
= - u\theta 

as usual. Also, defining the vorticity \omega = - \nabla 2\psi , we obtain

u \cdot \nabla \omega =R - 1\nabla 2\omega .(2.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

9/
26

 to
 2

11
.2

17
.1

91
.1

95
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



PRANDTL--BATCHELOR THEORY FOR AN ANNULAR DOMAIN 135

Thus writing the inviscid limit vorticity \omega 0 = limR\rightarrow \infty \omega , we find that for the Euler
flow, i.e., R\rightarrow \infty ,

u \cdot \nabla \omega 0 = 0.(2.3)

This indicates that \omega 0 is a function of \psi alone.
For the Navier--Stokes flow inside the annulusD, we take any two different stream-

lines \psi = c1, \psi = c2 for c1 \not = c2 to integrate (2.2) on an annulus c1 \leq \psi \leq c2. Applying
Green's theorem, we obtain\oint 

\psi =c1

\biggl( 
un\omega  - 1

R

\partial \omega 

\partial n

\biggr) 
ds=

\oint 
\psi =c2

\biggl( 
un\omega  - 1

R

\partial \omega 

\partial n

\biggr) 
ds,(2.4)

where un is the normal component of u, \partial /\partial n is the normal derivative, and s is the
arc length. Since un = 0 on a streamline, (2.4) reduces to

1

R

\oint 
\psi =c1

\partial \omega 

\partial n
ds=

1

R

\oint 
\psi =c2

\partial \omega 

\partial n
ds.(2.5)

Here we may drop 1/R from both sides and send R \rightarrow \infty . Using \omega 0 = \omega 0(\psi ) from
(2.3) in the limit, we find

\gamma (c1)\omega 
\prime 
0(c1) = \gamma (c2)\omega 

\prime 
0(c2),(2.6)

where \gamma (\psi ) is the circulation integral along the streamline \psi = c1,

\gamma (c1) =

\oint 
\psi =c1

q ds, q2 = u2r + u2\theta .(2.7)

Therefore we obtain the following identity for any closed \psi (x, y) = c inside D,

\gamma (c)\omega \prime 
0(c) =K = constant,(2.8)

which is the corresponding result of PB theory for an annulus.
Historically, the result was first obtained by Prandtl [24] for a steady region of

closed streamlines with no hole inside. In this case, using the same argument, we
deduce K = 0. Thus the limiting vorticity is shown to be a uniform constant through-
out the region enclosed by a closed streamline \psi = c. Later, Batchelor independently
confirmed this result and went on to calculate the exact constant vorticity \omega 0 for the
case of a concentric circular flow. Below, we derive the analogous extension of this
result for the case of an annulus.

3. BW formula for an annulus. Let us proceed further from (2.8) to deter-
mine the limiting vorticity (and the flow). Assuming that all streamlines are circular,
we have

\partial n= \partial r, q= - d\psi 
dr

= constant(3.1)

on any closed streamline \psi = c1. Thus we simplify (2.8) to

d\omega 

dr
=
K0

r
,(3.2)
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136 SUN-CHUL KIM AND JUNE-YUB LEE

where K0 is a constant (to be determined). Consequently, \omega becomes a nonconstant
function of r. Integrating (3.2) on r, we obtain

\omega =K0 log r+K1

for another constant K1. This is the main difference from the simply connected
domain case where the limit vorticity becomes constant throughout the whole domain.
But, for an annulus, we have the vorticity given by a logarithmic linear function
of r. Accordingly, there are two unknown constants to be determined from a proper
matching of the inviscid limit Euler flow and the viscous flow. For a general domain,
it is difficult to find the exact formula for the flow. However, for a concentric annulus,
we provide a simple example below.

Additional integration on r yields

\psi =Ar2 log r+Br2 +C log r,(3.3)

where A =  - K0/4, B = (K0  - K1)/4, C are constants to be determined. We note
here that the boundary values of \psi at r= r1, r= r2 do not completely determine the
three constants. This is a well-known property of nonuniqueness of the solution of
Navier--Stokes equations in a multiply connected domain. However, in the special case
of inviscid limit preserving the single-eddy configuration, we obtain the uniqueness
from PB theory and the single valuedness of pressure [22] in section 3.1. This will be
explained in detail below. For a rigorous argument, see [13].

For a general boundary speed given along r = r1, r = r2, there generally appear
two boundary layers of thickness O(1/

\surd 
R) as R\rightarrow \infty . Let us denote the correspond-

ing Euler limit speed as qe1, qe2 for r = r1, r = r2, respectively. (These are given in
the limit of the outer flow away from the boundary layers.)

We first consider the boundary layer formed near the outside boundary. The
equations of the boundary layer may be written in coordinates \xi , \eta , where \xi = s is the
arc length and \eta the distance normal to the boundary measured from the wall toward
the interior, times

\surd 
R. Let the corresponding velocity coordinates be u\xi , u\eta , that is,

u\eta is the component in the direction of the inward normal times
\surd 
R. We also denote

qe as the limit of the inviscid flow velocity as one approaches the boundary; we obtain

u\xi 
\partial u\xi 
\partial \xi 

+ u\eta 
\partial u\xi 
\partial \eta 

 - qe(\xi )q
\prime 
e(\xi ) - 

\partial 2u\xi 
\partial \eta 2

= 0,
\partial u\xi 
\partial \xi 

+
\partial u\eta 
\partial \eta 

= 0.(3.4)

These equations hold for 0\leq \xi < 2\pi r2, 0\leq \eta <\infty . We will usually prefer to write
(3.4) in terms of von Mises variables s, \=\psi , where s= \xi , \=\psi =

\surd 
R\psi . Setting u\xi = q(s, \=\psi ),

we write the boundary layer equation (3.4) in the following form:

\partial q2

\partial s
 - dq2e

ds
 - q

\partial 2q2

\partial \=\psi 2
= 0.(3.5)

We are interested in solving (3.5) for q(s, \=\psi ) satisfying the conditions

q(s+ 2\pi r2, \=\psi ) = q(s, \=\psi ), q(s,0) = qw(s), q(s,\infty ) = qe(s),(3.6)

where qw is the true wall velocity on r= r2.
Here the pressure gradient vanishes identically in the circular domain and (3.5)

simplifies into

2
\partial q

\partial s
 - \partial 2q2

\partial \=\psi 2
= 0.(3.7)
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PRANDTL--BATCHELOR THEORY FOR AN ANNULAR DOMAIN 137

Thus, integrating (3.7) for s from 0 to 2\pi r2 and making use of (3.6), we obtain

d2

d \=\psi 2

\oint 
\=\psi 

q2 ds= 0,

where the integral is over a streamline \=\psi = constant [2]. Assuming that q2 is bounded
for large \=\psi (recall \=\psi =

\surd 
R\psi ), we obtain\oint 

\=\psi 

q2 ds= constant.

Thus, considering similarly for the boundary layer formed inside, we obtain\int 2\pi 

0

q2e1 d\theta =

\int 2\pi 

0

q21(\theta ) d\theta ,

\int 2\pi 

0

q2e2 d\theta =

\int 2\pi 

0

q22(\theta ) d\theta ,(3.8)

where qe1, qe2 denote the constant Euler limit speed on the boundary r= r1, r= r2 and
q1, q2 are the given wall speed on the boundary r= r1, r= r2. These are BW formulas
for an annulus, which determine the unknown constants A,B,C if combined with the
single valuedness of pressure below and thus the flow completely. Note here that for
an eccentric annulus, (3.8) gives only an approximation as the pressure gradient does
not identically vanish.

3.1. A condition for single valuedness of pressure. An essential condition
for the flow in an annulus is the single-valued property of the pressure. This can be
written in many different ways, but usually represented as an integral identity along
a closed streamline. (See [15].) Here, for convenience, we adopt the following form
of the vorticity integral along a streamline. We begin with the \theta component of the
stationary Navier--Stokes equations (2.1) in polar form:

ur +
\partial 

\partial \theta 

\biggl( 
1

2
u2\theta + p

\biggr) 
=

1

R

\biggl( 
\Delta u\theta  - 

u\theta 
r2

 - 2

r2
\partial ur
\partial \theta 

\biggr) 
.(3.9)

Using ur = 0 on r= r1, we rewrite (3.9) into

u\theta 
r

\partial u\theta 
\partial \theta 

+
1

r

\partial p

\partial \theta 
=

1

R

\partial \omega 

\partial r
(3.10)

from the fact \Delta u =  - \nabla \times \omega . Since the integral of the left side of (3.10) along the
inner boundary must be zero, we obtain\oint 

r=r1

\partial \omega 

\partial r
d\theta = 0.(3.11)

This condition will be used both in the asymptotic expansion and also in the numerical
computation below.

Now, using the condition, we immediately have

\omega \prime =K0/r= 0,

and thus A = 0, which implies no log term in the inviscid limit PB flow. Then the
boundary condition at two boundary determines the other two constants. Explicitly,
we write the system of linear equations

2Br1 +
C

r1
= - qe1, 2Br2 +

C

r2
= - qe2

to solve and obtain

B =
r2qe2  - r1qe1
2(r21  - r22)

, C =
r1r2(r2qe1  - r1qe2)

r21  - r22
.(3.12)
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138 SUN-CHUL KIM AND JUNE-YUB LEE

4. Asymptotic expansion up to second order. We calculate the flow asymp-
totically by the matched asymptotic expansion method [18]. Putting \epsilon , the pertur-
bation parameter for wall data (see below) fixed small enough, we let R \rightarrow \infty . We
shall expand the resulting system of inner and outer expansions in R with respect
to \epsilon , in order to calculate the viscous corrections to PB theory. Our specific aim is
an O(\epsilon 2/

\surd 
R) correction to the inviscid limit vorticity. To simplify the matter, we

assume the unperturbed flow depending on r only.

4.1. The principle of transcendental decay of \bfitomega to a constant. In or-
der to incorporate the matching technique, we need to investigate the behavior of
the vorticity as we approach the outer edge of the boundary layer. In the case of the
Blasius flat plate, where the flow outside the boundary layer is uniform and the vor-
ticity vanishes, the vorticity decays to zero transcendentally (usually exponentially;
see [30]). Whereas, in the disk flow, a similar principle is found, showing decay to a
(possibly nonzero) constant [18].

Now in the present case, the equation for \omega n (the nth order vorticity in the
asymptotic expansion; see (4.1) below) becomes too complicated to solve analytically
in a closed form. Therefore, we suppose an additional condition that \omega n is a function
of r only to make the problem approachable. In fact, we need to suppose \psi =\psi (r), a
little stronger condition to proceed hereafter. Physically, this means that we primarily
focus on the perturbations of rigid body rotation in this paper. We find that this
assumption is reasonable for small perturbations in wall velocity, as confirmed by
comparisons with numerical results in the later sections.

Then the vorticity for every order becomes a constant similar to the disk flow
case in the following argument. Let us assume that PB theory applies to a concentric
annulus D. We also suppose that the vorticity is a function of r only for any order n
and is expanded in R near R=\infty of the form

\omega (r,R) = \omega 1(r) +A2(R)\omega 2(r) + \cdot \cdot \cdot +An(R)\omega n(r) +Rn+1(r,R),(4.1)

where Ak(R), k = 1, 2, . . . form an asymptotic sequence with Ak+1(R) = o(Ak(R)) as
R \rightarrow \infty . Here Rn+1(r,R) is the remainder term satisfying Rn+1(r,R) = o(An(R)).
Correspondingly the velocity u is supposed to be expanded by

u(r,R) = u1(r) +A2(R)u2(r) + \cdot \cdot \cdot +An(R)un(r) + \widetilde Rn+1(r,R).(4.2)

In order to compute \omega n(r) we use (2.4) to obtain\oint 
\psi =c1

\partial \omega 1

\partial n
ds=

\oint 
\psi =c2

\partial \omega 1

\partial n
ds,

\oint 
\psi =c1

\partial \omega 2

\partial n
ds=

\oint 
\psi =c2

\partial \omega 2

\partial n
ds, . . . .(4.3)

Let us consider the result after substituting (4.1), (4.2) into (2.2). Collecting O(1)
terms and applying (4.3), we recover the result \omega 1(r) = \omega 1 = K1 log r +K2 for the
annulus, where K1,K2 are constants. But together with the single-valued condition,
it follows that K1 = 0 and \omega 1 =K2. Utilizing this result in (2.2) and considering next
order terms, we find A2(R) = 1/R and obtain the following equation:

u2 \cdot \nabla \omega 1 + u1 \cdot \nabla \omega 2 =\nabla 2\omega 1.(4.4)

Accordingly, as R\rightarrow \infty , we simplify (4.4) into

u1 \cdot \nabla \omega 2 = 0
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PRANDTL--BATCHELOR THEORY FOR AN ANNULAR DOMAIN 139

which shows that \omega 2 = \omega 2(r) from the above assumptions. Then, again from (4.3) for
\omega 2, we conclude

\omega 2 =K \prime 
1 log r+K \prime 

2

for additional constants K \prime 
1,K

\prime 
2. But again, from the single-valuedness of pressure,

we have K \prime 
1 = 0 and \omega 2 =K \prime 

2. This argument is generalized to characterize \omega n, n\geq 1,
and establish the principle by induction. Thus, we suppose each \omega n is constant.

4.2. 1st order outer expansion: Euler flow. We calculate the asymptotic
expansion of the flow when the outer wall velocity is slightly perturbed from rigid
rotation. This approach simplifies our analysis of the effects of finite R \gg 1 and
allows us to compare the asymptotic results with numerical computations later on. In
our numerical computations, we also consider other scenarios, including perturbations
to the inner wall velocity and perturbations to both wall velocities.

Let us fix r2 = 1 and vary r1 for the convenience. We suppose initially a solid
body rotation of the flow with the outer wall speed 1 in the given annulus. This is
also a simple example of Taylor-Couette flow in an annular domain. Then we perturb
the flow with the outer wall velocity

ur(1, \theta ) = 0, u\theta (1, \theta ) = 1+ \epsilon f(\theta )

for a small \epsilon > 0. Here f(\theta ) =
\sum 
n \not =0 cne

in\theta , cn = c - n and has zero average along
the wall. All the complex summations below are done with the positive and the
negative indices in pair. Taking the curvilinear coordinate x, y along the circular wall
i.e. x for \theta and y for r2  - r = 1 - r, we use \Psi k,U,V,P,Y,\Delta k for outer variables and
\psi k, u, v, p, y, \delta k for inner variables.

The equations for the outer expansion in curvilinear coordinate (x, y) are

(u \cdot \nabla  - R - 1\nabla 2)\nabla 2\Psi = 0(4.5)

\Psi (x,0) = 0, \Psi y(x,1 - r1) = r1 = qe1(4.6)

where u= ( - \partial \Psi /\partial r, \partial \Psi /(r\partial \theta )). We start with the outer expansion as R\rightarrow \infty ,

(\Psi , u, v, p,\omega )(x, y;R)\sim \Delta 1(R)(\Psi 1,U1, V1, P1,\Omega 1)(x, y)(4.7)

+\Delta 2(R)(\Psi 2,U2, V2, P2,\Omega 2)(x, y) + \cdot \cdot \cdot 

For the 1st order terms, we take \Delta 1(R) = 1 and \Omega 1(\Psi 1) =\Omega 1(r) from PB theory.
Here BW formula yields

\Omega 1 = 2+
1

1 - r21

\sum 
n \not =0

| cn| 2\epsilon 2 +O(\epsilon 3),(4.8)

from which we obtain the 1st order terms of the expansions,

\Psi 1(x, y; \epsilon ) = - 

\left[  1
2
+

1

4(1 - r21)

\sum 
n\not =0

| cn| 2\epsilon 2
\right]  r2  - r21

2(1 - r21)

\sum 
n \not =0

| cn| 2\epsilon 2 log r+O(\epsilon 3),

U1(x, y; \epsilon ) =

\left[  1 + 1

2

\sum 
n \not =0

| cn| 2\epsilon 2
\right]  r+ r21

2(1 - r21)

\sum 
n\not =0

| cn| 2\epsilon 2
1

r
+O(\epsilon 3),

V1(x, y; \epsilon ) = 0.
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140 SUN-CHUL KIM AND JUNE-YUB LEE

4.3. First order inner expansion: The boundary layer equation. The
Navier--Stokes equations under the curvilinear coordinates (x, y) are given in [29] by

\partial u

\partial x
+ (1+ \kappa y)

\partial v

\partial y
+ \kappa v= 0,(4.9)

u

h1

\partial u

\partial x
+ v

\partial u

\partial y
+
\kappa uv

h1
= - 1

\rho h1

\partial p

\partial x
(4.10)

+
1

R

\biggl( 
1

h1
2

\partial 2u

\partial x2
+
\partial 2u

\partial y2
+

2\kappa 

h1
2

\partial v

\partial x
+
\kappa \prime y

h1
2

\partial v

\partial y
+

\kappa 

h1

\partial u

\partial y
 - \kappa 2

h1
2u+

\kappa \prime 

h1
2 v

\biggr) 
,

u

h1

\partial v

\partial x
+ v

\partial v

\partial y
 - \kappa u2

h1
= - 1

\rho 

\partial p

\partial y
(4.11)

+
1

R

\biggl( 
1

h1
2

\partial 2v

\partial x2
+
\partial 2v

\partial y2
+

2\kappa 

h1

\partial v

\partial y
 - \kappa 

h1
2

\partial u

\partial x
 - \kappa \prime y

h1
3

\partial v

\partial x
 -  - \kappa 

\prime u

h1
3

\biggr) 
.

Here h1 = 1 + \kappa y and \kappa =  - 1, \kappa \prime = d\kappa /dx = 0, \rho = 1 in the present case. Below we
always simplify the calculation using these specific values.

For the inner expansion, we suppose

(\psi ,u, v, p,\omega )(x, y;R)\sim \delta 1(R)(\psi 1, u1/\delta 1(R), v1, p1/\delta 1(R), \omega 1/\delta 1
2(R))(x,Y )

+ \delta 2(R)(\psi 2, u2/\delta 1(R), v2, p2/\delta 1(R), \omega 2/\delta 1
2(R))(x,Y ) + \cdot \cdot \cdot 

as R\rightarrow \infty , x,Y fixed, where Y = y/\delta 1(R) is an extended coordinate in the boundary
layer. Immediately we obtain \delta 1(R) = 1/

\surd 
R and \delta 2(R) = 1/R from the principle

of nondegeneracy. Inserting these expansions into the above and collecting the O(1)
terms, we obtain the same boundary layer equation for the flat wall case. Proper
boundary conditions are found by matching u1(x,\infty ; \epsilon ) with U1(x,0; \epsilon ), and the prob-
lem becomes

\partial u1
\partial x

+
\partial v1
\partial Y

= 0, u1
\partial u1
\partial x

+ v1
\partial u1
\partial Y

 - \partial 2u1
\partial Y 2

= 0,(4.12)

u1(x,0; \epsilon ) = 1+ \epsilon 
\sum 
n \not =0

cne
inx, v1(x,0; \epsilon ) = 0,(4.13)

u1(x,\infty ; \epsilon ) = 1+
1

2

\sum 
n\not =0

| cn| 2\epsilon 2 + \cdot \cdot \cdot .(4.14)

We assume the expansion of the solution u1(x,Y ; \epsilon ), v1(x,Y ; \epsilon ) in \epsilon as the following:

(u1, v1)(x,Y ; \epsilon ) = (u10, v10)(x,Y ) + \epsilon (u11, v11)(x,Y ) + \epsilon 2(u12, v12)(x,Y ) + \cdot \cdot \cdot .

These are substituted into (4.12)--(4.14) and the O(1) terms give,

u10(x,Y ) = 1, v10(x,Y ) = 0, \omega 10(x,Y ) = 0.(4.15)

For O(\epsilon ) terms, a similar procedure yields

\partial u11
\partial x

+
\partial v11
\partial Y

= 0, u10
\partial u11
\partial x

 - \partial 2u11
\partial Y 2

= 0,(4.16)

u11(x,0) =
\sum 
n \not =0

cne
inx, v11(x,0) = u11(x,\infty ) = 0,(4.17)
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PRANDTL--BATCHELOR THEORY FOR AN ANNULAR DOMAIN 141

and

u11(x,Y ) =
\sum 
n\not =0

cne
inx - 

\surd 
inY , v11(x,Y ) =

\sum 
n \not =0

cn
\surd 
ineinx[e - 

\surd 
inY  - 1].(4.18)

Third, working with the O(\epsilon 2) terms, we have

\partial u12
\partial x

+
\partial v12
\partial Y

= 0, u10
\partial u12
\partial x

+ u11
\partial u11
\partial x

+ v11
\partial u11
\partial Y

 - \partial 2u12
\partial Y 2

= 0,(4.19)

u12(x,0) = v12(x,0) = 0, u12(x,\infty ) =
1

2

\sum 
n \not =0

| cn| 2.(4.20)

Then, we solve to obtain,

u12(x,Y ) = - 
\sum 
n,m \not =0

cncm

\Biggl\{ 
(
\surd 
in
\surd 
im - im)

2
\surd 
in
\surd 
im

\Bigl( 
e - (

\surd 
in+

\surd 
im)Y  - e - 

\surd 
i(n+m)Y

\Bigr) 
+

\surd 
im\surd 
in

\Bigl( 
e - 

\surd 
imY  - e - 

\surd 
i(n+m)Y

\Bigr) \Biggr\} 
ei(n+m)x,

v12(x,Y ) =
\sum 
n,m\not =0

cncm

\Biggl[ 
(
\surd 
in
\surd 
im - im)

2
\surd 
in
\surd 
im

\biggl\{ 
 - i(m+ n)\surd 

in+
\surd 
im

(e - (
\surd 
in+

\surd 
im)Y  - 1)

+
\sqrt{} 
i(n+m)(e - 

\surd 
i(n+m)Y  - 1)

\Bigr\} 
 - i(m+ n)\surd 

in
[e - 

\surd 
imY  - 1]

+
\sqrt{} 
i(n+m)

\surd 
im\surd 
in

(e - 
\surd 
i(n+m)Y  - 1)

\Biggr] 
ei(n+m)x.

4.4. Second order outer expansion. For the next order terms, we need to
incorporate the displacement thickness phenomenon. Namely, the normal velocity of
the first order inner expansion does not vanish outside the boundary layer and thus
modifies the outer flow.

From the matching order condition,

\delta 1(R)\psi 1x(x,\infty ) =\Delta 2(R)\Psi 2x(x,0),(4.21)

we derive \Delta 2(R) = 1/
\surd 
R. For \Psi 2(x, y), substituting the outer expansion (4.7) into

the full equation (4.5) yields a linear equation for \Psi 2,

(U1, V1) \cdot \nabla (\nabla 2\Psi 2) + (U2, V2) \cdot \nabla (\nabla 2\Psi 1) =\nabla 2\nabla 2\Psi 1.(4.22)

Here the second term, representing the convection of the first order vorticity along the
second order corrections to the streamlines, does not vanish in general. This makes
it more difficult to proceed than the flat plate or disk flow case [18].

However, assuming \Psi 2 as a function of r only when unperturbed, the second term
vanishes identically and we find that \Omega 2 is a linear function of log r. This result is
consistent with the principle of transcendental decay in section 4.1. Consequently,
the problem for \Psi 2(x, y) becomes
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142 SUN-CHUL KIM AND JUNE-YUB LEE

\nabla 2\Psi 2 =K \prime 
2, \Psi 2(x,0) = 0,

(4.23)

\Psi 2x(x,0) =

\left(  \sum 
n \not =0

cn
\surd 
ineinx

\right)  \epsilon  - 

\left[  \sum 
n,m\not =0

cncme
i(n+m)x

\Biggl\{ 
(
\surd 
in
\surd 
im - im)

2
\surd 
in
\surd 
im

\times 
\biggl( 

i(m+ n)\surd 
in+

\surd 
im

 - 
\sqrt{} 
i(n+m)

\biggr) 
+
i(m+ n)\surd 

in
 - 
\sqrt{} 
i(n+m)

\surd 
im\surd 
in

\Biggr\} \Biggr] 
\epsilon 2.

Here \Omega 2 is the second order vorticity which has the expansion

\Omega 2(x, y; \epsilon ) =\Omega 20(x,Y ) +\Omega 21(x,Y )\epsilon +\Omega 22(x,Y )\epsilon 2 + \cdot \cdot \cdot .(4.24)

From the result of section 4.1, we put all \Omega 20(x,Y ),\Omega 21(x,Y ), . . . as some fixed
constants. We may set \Omega 20 = 0 immediately, since \Omega 20 represents a viscous correction,
and for \epsilon = 0, there is no boundary layer. This will be verified explicitly in the solution
of the second order inner expansion problem. For \Omega 21,\Omega 22, . . . , the second order inner
expansion should determine these functions from the principle of transcendental decay
and the BW formula. This differs from the Blasius problem, where the external
vorticity is known in advance to be zero to all orders; see [30].

Solving (4.23), we obtain

\Psi 2(x, y) =

\left(  B21(1 - y)2 +C21 log(1 - y) +
\sum 
n \not =0

cn\surd 
in
einx[(1 - y)| n|  - r

| n| 
1 ]

\right)  \epsilon 

 - 

\Biggl[ 
B22(1 - y)2 +C22 log(1 - y)

+
\sum 
n,m \not =0
n+m \not =0

cncm

\Biggl\{ 
(
\surd 
in
\surd 
im - im)

2
\surd 
in
\surd 
im

\Biggl( 
1\surd 

in+
\surd 
im

 - 1\sqrt{} 
i(n+m)

\Biggr) 

+
1\surd 
in

 - 
\surd 
im\surd 

in
\sqrt{} 
i(n+m)

\Biggr\} 
\times [(1 - y)| m+n|  - r

| m+n| 
1 ]ei(n+m)x

\Biggr] 
\epsilon 2

for some constants B21,B22,C21,C22. Thus

U2(x, y; \epsilon ) =

\left(   - 2B21(1 - y) - C21

1 - y
 - 
\sum 
n \not =0

cn| n| \surd 
in
einx(1 - y)| n|  - 1

\right)  \epsilon 

+

\Biggl[ 
 - 2B22(1 - y) - C22

1 - y

+
\sum 
n,m \not =0
n+m \not =0

cncm

\Biggl\{ 
(
\surd 
in
\surd 
im - im)

2
\surd 
in
\surd 
im

\Biggl( 
1\surd 

in+
\surd 
im

 - 1\sqrt{} 
i(n+m)

\Biggr) 

+
1\surd 
in

\Biggl( 
1 - 

\surd 
im\sqrt{} 

i(n+m)

\Biggr) \Biggr\} 
| m+ n| (1 - y)| m+n|  - 1ei(n+m)x

\Biggr] 
\epsilon 2.
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4.5. Second order inner expansion. Next we proceed to the second order
boundary layer equation. Gathering the O(1/

\surd 
R) terms in the curvilinear Navier--

Stokes equations (4.9)--(4.11), we have the following equations for u2, v2, p2:

\partial u2
\partial x

+
\partial v2
\partial Y

=
\partial 

\partial Y
(v1Y ),

\partial p2
\partial Y

= - u12,(4.25)

u1
\partial u2
\partial x

+ v1
\partial u2
\partial Y

+ u2
\partial u1
\partial x

+ v2
\partial u1
\partial Y

= - \partial p2
\partial x

+
\partial 2u2
\partial Y 2

(4.26)

 - 
\biggl\{ 
Y

\biggl( 
u1
\partial u1
\partial x

+
\partial p1
\partial x

\biggr) 
+
\partial u1
\partial Y

 - u1v1

\biggr\} 
.

We apply the matching principle for the first two terms in the expansions of u(x, y)
to obtain

[ - Y U1(x,0) +U2(x,0)]
1\surd 
R

= u2(x,\infty )\delta 2(R)
\surd 
R.(4.27)

Thus \delta 2(R) = 1/R and as Y \rightarrow \infty ,

u2(x,Y ; \epsilon ) = - Y U1(x,0; \epsilon ) +U2(x,0; \epsilon )

= - Y  - 

\left(  2B21 +C21 +
\sum 
n \not =0

cn
| n| \surd 
in
einx

\right)  \epsilon 

+

\left[   - 1

2
Y
\sum 
n \not =0

| cn| 2  - 2B22 +C22

+
\sum 
n,m \not =0
n+m \not =0

cncm

\Biggl\{ 
(
\surd 
in
\surd 
im - im)

2
\surd 
in
\surd 
im

\Biggl( 
1\surd 

in+
\surd 
im

 - 1\sqrt{} 
i(n+m)

\Biggr) 

+
1\surd 
in

 - 
\surd 
im\surd 

in
\sqrt{} 
i(n+m)

\Biggr\} 
| m+ n| ei(n+m)x

\Biggr] 
\epsilon 2.

By a similar matching procedure on the pressure p(x, y), we have the condition
for p2(x,Y ) as Y \rightarrow \infty :

p2(x,Y )\sim Y
\partial P1

\partial y
(x,0) + P2(x,0)

= - Y +

\left(  C21 +
\sum 
n \not =0

cn\surd 
in

(| n|  - 2)einx

\right)  \epsilon +O(\epsilon 2).

(See Appendix A.1 for the computation of P1, P2.) Let us assume that the second
term of the inner expansions is expanded by

(u2, v2, p2, \omega 2)(x,Y ; \epsilon ) = (u20, v20, p20, \omega 20)(x,Y ) + \epsilon (u21, v21, p21, \omega 21)(x,Y ) + \cdot \cdot \cdot .

At this stage, averaging over x for (0,2\pi ) simplifies the calculation and we obtain
the result on the following second order vorticity:

\Omega 20 = 0, \Omega 21 = 0, 2B22 +C22 = - 2
\sum 
n>0

| cn| 2
4 - n\surd 
2n

.(4.28)
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144 SUN-CHUL KIM AND JUNE-YUB LEE

(Details of the calculation are in Appendix A.2.) In particular, if f(x) = sinx, we
compute

2B22 +C22 = - 3
\surd 
2

4
.(4.29)

Therefore, from the boundary condition at r1, we fully determine

\Omega 22 = 2
\surd 
2.(4.30)

5. Numerical method. From the geometry, we introduce the polar coordinate
(r, \theta ) \in [r1, r2]\times [0,2\pi ] to rewrite the steady state stream-function--vorticity formula-
tion as

\partial 2\psi 

\partial r2
+

1

r

\partial \psi 

\partial r
+

1

r2
\partial 2\psi 

\partial \theta 2
= - \omega ,(5.1)

\partial 2\omega 

\partial r2
+

1

r

\partial \omega 

\partial r
+

1

r2
\partial 2\omega 

\partial \theta 2
=
R

r

\biggl( 
\partial \psi 

\partial \theta 

\partial \omega 

\partial r
 - \partial \psi 

\partial r

\partial \omega 

\partial \theta 

\biggr) 
(5.2)

with the physical boundary conditions

ur(ri, \theta ) =
1

r

\partial \psi 

\partial \theta 
(ri, \theta ) = 0, u\theta (ri, \theta ) = - \partial \psi 

\partial r
(ri, \theta ) = g(ri, \theta )(5.3)

for some given function g along the boundaries r = r1, r = r2. Note that the two
disconnected boundaries are natural streamlines and we may set \psi (r2) = 0. It is
worth noting that the value of \psi on the inner boundary r = r1 is unknown at this
stage although it should be a constant. Accordingly, using the boundary velocity
conditions, we may set up the corresponding boundary conditions for \psi as follows,

\psi (r1, \theta ) = c,  - \partial \psi 
\partial r

(r1, \theta ) = g(r1, \theta ),(5.4)

\psi (r2, \theta ) = 0,  - \partial \psi 
\partial r

(r2, \theta ) = g(r2, \theta ),(5.5)

where c is an unknown constant. Here, we use the single-valued condition (3.11) for
\psi on r= r1 in subsection 3.1 in order to solve the coupled system (5.1) and (5.2) (and
determine c).

Specifically, we utilize a fast high order numerical method using an adaptive
scheme [20]. Namely, we further expand \psi , \omega in Fourier-mode form with \psi  - k(r) =
\psi k(r) and \omega  - k(r) = \omega k(r),

\psi (r, \theta ) =

N\sum 
k= - N

\psi k(r)e
ik\theta , \omega (r, \theta ) =

N\sum 
k= - N

\omega k(r)e
ik\theta ,(5.6)

and obtain the relation for each mode k= 0, . . . ,N ,

\psi \prime \prime 
k +

1

r
\psi \prime 
k  - 

k2

r2
\psi k = - \omega k,(5.7)

\omega \prime \prime 
k +

1

r
\omega \prime 
k  - 

k2

r2
\omega k =

R

r

\sum 
l+m=k

il(\psi l\omega 
\prime 
m  - \psi \prime 

m\omega l).(5.8)
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PRANDTL--BATCHELOR THEORY FOR AN ANNULAR DOMAIN 145

Here the boundary conditions for \psi (r) can be easily obtained from (5.4) and (5.5):

 - \psi \prime 
0(r1) = g0(r1), \psi 0(r2) = 0,(5.9)

\psi k(r1) = 0, \psi k(r2) = 0, k= 1, . . . ,N.(5.10)

Additionally from the tangential components of the boundary velocity g(ri, \theta ), we
have overimposed the boundary condition on \psi \prime 

k(r),

g(ri, \theta ) =

N\sum 
k= - N

gk (ri)e
ik\theta = - 

N\sum 
k= - N

\psi \prime 
k (ri)e

ik\theta .(5.11)

Next, we implement an explicit iterative scheme on these coupled Poisson equa-
tions (5.7) and (5.8). First, \psi k in (5.7) are updated from the previous \omega k for all k
with boundary conditions (5.9) and (5.10). And then \omega k in (5.8) are updated using
the updated \psi i=0,...,N , \omega i=0,...,k - 1, and the previous \omega i=k,...,N . Here boundary values
of \omega k are given using a McLaurin-type condition [23]:

\omega = - \nabla 2\psi + \beta 

\biggl[ 
\partial \psi 

\partial n
+ g

\biggr] 
on \{ (ri, \theta ) : i= 1,2\} (5.12)

for some proper constant \beta . We set \beta = \beta 0/ri for current computations. Now the
resulting equation becomes a Bessel-like second order differential equation (5.8) with
two proper boundary conditions at r= r1 and r= r2,

\omega \prime 
0(r1) = 0, \omega 0(r2) = - \psi \prime \prime 

0 (r2) - 
1

r2
\psi \prime 
0(r2) +

\beta 0
r2

(\psi \prime 
0(r2) + g0(r2)) ,(5.13)

\omega k(ri) = - \psi \prime \prime 
k (ri) - 

1

ri
\psi \prime 
k(ri)\mp 

\beta 0
ri

(\psi \prime 
k(ri) + gk(ri))(5.14)

for k > 0. Here, we use the single-valuedness condition, \omega \prime 
0(r1) = 0 instead of imposing

the given boundary velocity condition with g0(r1) which is already used in (5.9).
We remark that once an iterative solution of the system of ordinary differential

equations (5.7) and (5.8) using the boundary conditions (5.9), (5.10), (5.13), and
(5.14) reaches a consistent stage, the order of spatial accuracy of the solution solely
depends on the order of accuracy of \nabla 2\psi and \partial \psi /\partial n. Therefore, the computational
result guarantees the same order of accuracy with the integral equation solver and an
eighth order method are used for the simulations in the following section.

The Stokes iteration [20], which solves (5.7) and (5.8) alternatively as described
above, with the convection terms explicitly computed from previous iterations con-
verges fairly well for R \leq 100. However, the number of iterations increases as the
Reynolds number becomes large, and the numerical solution may blow up without
additional care. To compute the flow for significantly larger Reynolds numbers, such
as R = 10000, we employ a continuation procedure [20]. We start by computing the
solution at a relatively small Reynolds number and gradually increase the Reynolds
number after reaching a steady state, allowing us to achieve another steady state, and
so on. For large perturbations, we find that a more refined continuation method is
necessary.

6. Numerical results and discussion. For the confirmation and validity of
the theory developed above, we numerically compute a few practical perturbed cases.
Let us set r1 = 1/2, r2 = 1. For all cases, we begin with the basic flow of solid body
rotation,
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146 SUN-CHUL KIM AND JUNE-YUB LEE

\psi = - (r2  - 1)/2, u\theta = r, \omega = 2,(6.1)

where we put A= 0, B = - 1/2 in (3.3). In the computation below, we first take

q1 = 1/2, q2 = 1+ \epsilon sin\theta ,(6.2)

where \epsilon represents the magnitude of perturbation and is taken small enough for the
stability of the flow and with no reverse flow. This is a perturbation of the solid body
rotation with only the outer boundary velocity. Later, we also try the perturbed case
by both the inner and outer boundary velocity. For this, we put

q1 = 1/2 + \epsilon 1 sin\theta + \epsilon 2 cos\theta , q2 = 1+ \epsilon sin\theta ,(6.3)

where \epsilon represents the magnitude of the outer perturbation, while \epsilon 1 and \epsilon 2 represent
the in-phase and quadrature-phase components of the inner perturbation.

6.1. Boundary layers for high Reynolds number flows. During the com-
putation, we encounter a significant difficulty related to the potential emergence of
boundary layers near the two walls. As we increase the Reynolds number, a thin
boundary layer forms that must be resolved accurately in our numerical calculations.
To address this, an adaptive method [20] has already been developed, demonstrating
both effectiveness and accuracy.

In this paper, we modify and adapt this method for multiply connected domains.
This adaptation requires solving the Poisson equation for an annulus, which presents
a difficulty in imposing boundary conditions on both walls. This issue has been previ-
ously discussed in [22], and appropriate techniques have been developed to overcome
these difficulties. We summarize our results through the following eight experiments.

Experiment 1 (spectral convergence for large Reynolds numbers).
In this experiment, we check how many Fourier modes are needed to resolve the

high Reynolds number flows for R = 100,1000,10000. Figure 1 displays the relative
L2-norm of \omega k,

\| \omega k(\cdot )\| 
\| \omega 0(\cdot )\| , k = 1, . . . ,N , for (6.2) with \epsilon = 0.02,0.2. We note that

the amplitudes of the higher modes are exponentially decaying so the method is
spectrally accurate in angular direction. The number of frequency modes to resolve

Fig. 1. Spectral convergence of Fourier modes: Relative L2-norm of \omega k for q1 = 1/2, q2 =
1+ \epsilon sin\theta with \epsilon = 0.02,0.2.
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PRANDTL--BATCHELOR THEORY FOR AN ANNULAR DOMAIN 147

Fig. 2. Streamline, velocity, and vorticity distribution in contour lines for q1 = 1/2, q2 = 1 +
0.1 sin\theta . Solid and solid-dotted contour lines on the annulus domain represent \omega > 2 and \omega < 2,
respectively, while the spacing and the range of \omega are given on the bottom.

the computation increases for the higher Reynolds number and larger perturbation
cases. However, we found that 16 modes are enough to guarantee single precision
accuracy for most of performed simulations with \epsilon \leq 0.1, R\leq 10000.

Experiment 2 (streamline and vorticity for the outer perturbation).
We begin to discuss the numerical result for the outer perturbation case with

\epsilon = 0.1 and \epsilon 1 = \epsilon 2 = 0. In Figure 2, the stream function \psi (r, \theta ) shown on the top
row smoothly increases from 0 to 3/8 as moving inward. The speed | | u(r, \theta )| | on the
inner wall is about 1/2 while it varies from 0.9 to 1.1 on the outer wall, as expected.

The vorticity distribution \omega (r, \theta ) presented in the bottom row is particularly
intriguing. Figure 2 also displays the contour lines of the vorticity distribution for
various R values in the annular domain. Here, we clearly observe a thin layer emerg-
ing near the outer boundary r2 = 1 as R increases, along with a rapid increase in both
the strength and fluctuations of the vorticity in that region.
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148 SUN-CHUL KIM AND JUNE-YUB LEE

It is noteworthy that the vorticity on the inner boundary r1 = 1/2 (without speed
perturbation on the boundary) varies significantly, while the vorticity in the bulk
region of the domain approaches \omega = 2 as R increases. The plots in the left column for
R= 100 clearly demonstrate fluctuations in vorticity, even in the absence of boundary
velocity perturbations. However, for larger R, it becomes less evident to observe this
phenomenon on the inner wall, as the relative magnitude of the fluctuations increases
substantially on the outer boundary

In Experiment 3, we will quantitatively analyze the strength of the vorticity
fluctuations and the thickness of the layer as functions of R.

Experiment 3 (vorticity profile for various Reynolds numbers).
In order to determine the thickness and the strength of the vorticity layers, we

consider three different perturbation cases:
(i) outer layer only (top): q1 = 1/2, q2 = 1+ 0.1 sin\theta ;
(ii) both layers (middle): q1 = 1/2 + 0.1cos\theta , q2 = 1+ 0.1 sin\theta ;
(iii) inner layer only (bottom): q1 = 1/2 + 0.1cos\theta , q2 = 1,
where the corresponding (\epsilon , \epsilon 1, \epsilon 2) = (0.1,0,0), (0.1,0,0.1), (0,0,0.1), respectively.
The upper half plots in Figure 3 show the minimum and the maximum envelop of

the vorticity \omega (r, \cdot ) as a function of r. We clearly see that the layer becomes thinner
and the deviation from limiting constant value \omega = 2 becomes larger as R increases.
To investigate this phenomenon quantitatively, let us define the strength of the layer
to be

max
0\leq \theta <2\pi 

| \omega (ri, \theta ) - 2| (6.4)

for r1 or r2 and the thickness of the layer to be the length where the strength becomes
half of the averaged boundary vorticity. The second column of the bottom half plots
show that the layer strength is O(

\surd 
R) only on the perturbed boundary (top: r2;

middle: r1, r2; bottom: r1) and it is O(1) on the unperturbed boundary whereas the
thickness shown on the third column is always O(1/

\surd 
R).

It clearly shows the appearance of the classical boundary layer where a disconti-
nuity of velocity appears as R\rightarrow \infty . In contrast to this, there occurs a boundary layer
of O(1)-strength and O(1/

\surd 
R)-thickness even on the unperturbed boundary (top: r1;

bottom: r2). This is unexpected and quite interesting as no perturbation is imposed
there initially. For this case, the velocity there is supposedly continuous by a simple
scaling argument, which is confirmed in the second row of Figure 2. Consequently, in
spite of the absence of perturbation, we observe an occurrence of a weak discontinuity
near the unperturbed boundary in the sense that the vorticity is discontinuous while
the velocity is continuous there. We do not know the precise mechanism for this
phenomenon, but regard it as an intriguing characteristic of an inviscid limit flow.

6.2. Vorticity profile for outer boundary velocity perturbed. Here we
first consider the case of outer boundary velocity perturbed,

q1 = 1/2, q2 = 1+ \epsilon sin\theta .(6.5)

The corresponding Euler limit flow has the following speed on the inner and outer
boundaries,

qe1 = 1/2, qe2 =
\sqrt{} 

1 + \epsilon 2/2(6.6)

from the BW formula (3.8). Accordingly, we obtain

\omega 1 = 2+ 2\epsilon 2/3 =\Omega 1.(6.7)
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PRANDTL--BATCHELOR THEORY FOR AN ANNULAR DOMAIN 149

Fig. 3. Vorticity distribution along r and layer strength/thickness of the layers for outer, both,
and inner perturbations cases: (A) (\epsilon , \epsilon 1, \epsilon 2) = (0.1,0,0), (B) = (0.1,0,0.1), and (C) = (0,0,0.1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

9/
26

 to
 2

11
.2

17
.1

91
.1

95
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



150 SUN-CHUL KIM AND JUNE-YUB LEE

This exactly coincides with the first order outer expansion result in (4.8) for r1 = 1/2.
Furthermore, considering the finite Reynolds number effect, we obtain the second
order outer result as

\omega 2 =\Omega 1 + 2
\surd 
2
\epsilon 2\surd 
R

(6.8)

in section 4. These results are compared with numerical results in the following.

Experiment 4 (velocity ur, u\theta , and vorticity \omega profile with \epsilon = 0.1)
Figure 4 shows the velocity ur(r, \theta ), u\theta (r, \theta ), and vorticity \omega (r, \theta ) profile for the

outer perturbation case (6.5) with \epsilon = 0.1. As R increases from 100 to 10000, thin
layers emerge on both boundaries. On the inner layer, ur(r, \theta ) becomes smaller while
u\theta (r, \theta ) remains at the given velocity 1/2. On the other hand, \omega (r, \theta ) approaches a
constant (nearly 2) for most of the region as R increases, but the fluctuation along
the inner boundary r1 = 1/2 does not decrease as shown at top plots in Figure 4. This
supports the emerging of a weak boundary layer near the inner wall as commented in
Experiment 3.

Along the perturbed outer layer, ur(r, \theta ) becomes smaller and u\theta (r, \theta ) approaches
to the given velocity between 0.9 and 1.1. The strength of the vorticity in the layer
increases O(

\surd 
R) as described in Experiment 3.

For the following experiments, we take the average of vorticity along a circle r= c
to investigate the radial behavior of the vorticity as a function of R and \epsilon .

Experiment 5 (radial \omega profile for large Reynolds number).
We draw the radial variation of the vorticity mean for \epsilon = 0.05 and \epsilon = 0.1

in Figure 5, The solid lines are computed values and the dashed or dotted lines
are the asymptotic formulas, (6.7) for \omega 1 and (6.8) for \omega 2. It clearly shows that the
average vorticity in the core region becomes constant as R increases and the deviation
from constant 2 becomes much larger when \epsilon doubles. Another noticeable point is
that the average vorticity forms no discontinuity on the inner wall but it becomes
discontinuous on the outer wall as R goes to infinity. Here, We also note that \omega 2

provides a slightly better approximation of the numerical results compared to \omega 1 for
larger R.

Experiment 6 (asymptotic formula for 0.02\leq \epsilon \leq 0.2 and 100\leq R\leq 1000).
Figure 6 shows \omega as a function of the perturbation strength \epsilon and Reynolds

number R. Here, we pick a representative of the mean vorticity at r= 2/3 to minimize
the boundary layer effect for comparison. For various \epsilon = 0.02, . . . ,0.2, the rightmost
plot shows scaled vorticity deviation, | \omega (2/3) - 2| / \epsilon 2. We note that the effect of
\epsilon 2 is clear and the decay patterns for R > 500 look similar. For a more detailed
comparison and prediction, we draw the right graph in Figure 6. Here we found
that the theoretical second order result in (6.7) is a rather good approximation for
R\geq 1000.

6.3. Vorticity profile for both boundary velocities perturbed. Next, we
consider the case when both the inner and the outer velocities are perturbed. Gen-
erally, we expect two boundary layers occurring near both boundaries in such cases.
Therefore, we can apply the matching method to determine the second order correc-
tion of the flow as we did in section 4. This is essentially a local analysis and should
be done for both boundaries independently. However, the calculation is very messy
and we just use the corresponding first order BW formula instead. For the boundary
conditions in (6.3), it immediately follows that
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PRANDTL--BATCHELOR THEORY FOR AN ANNULAR DOMAIN 151

Fig. 4. Velocity ur, u\theta and vorticity near the walls r1 = 1/2\leq r\leq 0.6 (top) or 0.9\leq r\leq r2 = 1
(bottom) with q1 = 1/2, q2 = 1+ 0.1 sin\theta .

qe1 =

\sqrt{} 
1

4
+
\epsilon 21 + \epsilon 22

2
, qe2 =

\sqrt{} 
1 +

\epsilon 2

2
.(6.9)

The corresponding BW formula (3.12) yields

\omega 1 = 2+ 2(\epsilon 2  - \epsilon 21  - \epsilon 22)/3.(6.10)

These will be compared to numerical results below.
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152 SUN-CHUL KIM AND JUNE-YUB LEE

Fig. 5. Vorticity profiles for steady state along r for R =1000 (left), 10000 (right), and q1 =
1/2, q2 = 1+ \epsilon sin\theta with \epsilon = 0.05 (top), 0.1 (bottom).

Experiment 7 (vorticity profile for both inner and outer perturbations).
Figure 7 shows the radial vorticity variation for (\epsilon , \epsilon 1, \epsilon 2) = (0.1,0,0.05), where

four curves are computed values for various R= 1000,2000,5000,10000 and the con-
stant solid line is the asymptotic formulas (6.10) for \omega 1. We note that there form
layers in the vorticity near the walls r1 = 1/2 or r2 = 1 and the result seems roughly
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PRANDTL--BATCHELOR THEORY FOR AN ANNULAR DOMAIN 153

Fig. 6. Computed vorticity values with asymptotic formula (black dash line) for 102 \leq R\leq 104

and q1 = 1/2, q2 = 1+ \epsilon sin\theta , 0.02\leq \epsilon \leq 0.2.

Fig. 7. Vorticity profiles for q1 = 1/2 + 0.05cos\theta , q2 = 1+ 0.1 sin\theta .

a superposition of the two boundary layers. Figure 8 shows the vorticity profile for
(\epsilon , \epsilon 1, \epsilon 2) = (0.1,0,0.1). As we expect from the preceding cases, there generally appear
two boundary layers near the inner and the outer boundary but the perturbation from
the inner boundary affects the flow more than that of the outer boundary. The con-
sistency with numerical results confirms the validity of (6.10) for both wall velocity
perturbed cases.
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154 SUN-CHUL KIM AND JUNE-YUB LEE

Fig. 8. Vorticity profiles for q1 = 1/2 + 0.1cos\theta , q2 = 1+ 0.1 sin\theta .

Fig. 9. Vorticity profiles for q1 = 1/2 + 0.1cos\theta , q2 = 1.

Experiment 8 (vorticity profile for stronger inner perturbation).
We finally consider the stronger inner perturbation case and Figure 9 shows the

numerical result of the vorticity values for q1 = 1/2 + 0.1cos\theta , q2 = 1. We notice
that the numerical results are slightly increasing for r > 2/3 and a rather small but
noticeable difference exists between the asymptotic result \omega 1 and numerical values
around r= 1. This phenomenon occurs when

\sqrt{} 
\epsilon 21 + \epsilon 22 is bigger than \epsilon in our numer-

ical computation. We do not know the exact reason for this difference but possibly is
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PRANDTL--BATCHELOR THEORY FOR AN ANNULAR DOMAIN 155

due to the stronger effect of the inner perturbation than the outer perturbation. This
point is explained in more detail below in section 7.

7. Concluding remark. In this paper, we study the incompressible viscous
fluid flow at large Reynolds numbers in an annulus. We properly extend the PB
theory to apply to these types of flows. The BW formula for the inviscid limit of
vorticity is derived analogously, and a further correction of the second-order result is
calculated using a matching technique in the expansion. To validate the theoretical
results, we perform suitable numerical computations employing a highly accurate
numerical method. In this context, we offer two important observations.

First, the comparison shows good agreement with asymptotic formulas in the
case of perturbed outer wall velocity. However, a type of weak layer appears near the
unperturbed boundary which possibly shows the discrepancy in the inviscid limit flow.
This phenomenon is not physically observable, as the velocity remains continuous
while the vorticity is discontinuous. A similar occurrence of continuous velocity and
discontinuous vorticity is noted in the counterrotating eddies after an obstacle [17]
and viscous shedding of the Sadovskii dipole [7]. However, in those cases, the physical
boundary effect is absent. We suppose that it may contribute to inaccuracies in the
theoretical predictions.

On the other hand, we observe an increased discrepancy between the theoretical
and numerical results for the cases where the inner wall velocity is perturbed or both
walls are perturbed. The exact reason for this is unclear; however, we hypothesize
that the inner boundary, having double the curvature of the outer boundary, might
exert a stronger influence on the flow. (Recall that we assume the unperturbed flow
depends only on r suggesting that the inner flow is potentially more affected by the
same perturbation than the outer flow.) These two aspects remain only partially
understood and warrant further investigation in future research.

For convenience, we restrict our study to the concentric annular domain. There is
a clear potential for extending the present results to eccentric annuli or more general
multiply connected domains in two dimensions. In such investigations, the first issue
to consider is the stability of the flow, as most flows tend to become unstable at large
R [10]. Bifurcations possibly occur with increasing R, complicating the identification
of a definitive inviscid limit for the flow. In connection to this, we refer to recent work
that presents an explicit formula to describe a possible Euler limit flow in general
multiply connected domains, using the Schottky--Klein prime function in complex
variables. This approach provides a family of conformal mappings that transform
such complex domains into standard, simpler canonical domains [8].

Another possible extension to mention is the flow reversal in the boundary layers.
We perturb the wall velocity by a relatively small amount so that there is no flow
reversal inside the boundary layer. However, the case of larger perturbation can be
also discussed for a marginal separation case [19] and further general separation case
[25, 31, 33].

Appendix A. Additional calculations on the second order expansion
terms.

A.1. Computation of \bfitP 1 and \bfitP 2. Applying the matching principle to the first
two terms of pressure, we have the condition for p2(x,Y ),

p2(x,Y )\sim Y
\partial P1

\partial y
(x,0) + P2(x,0) as Y \rightarrow \infty .(A.1)
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156 SUN-CHUL KIM AND JUNE-YUB LEE

Then, P1, P2 are computed in the following manner. Forming the inner product of U
with the first equation in (2.1) gives the kinematic energy equation

U \cdot \nabla 
\biggl( 
P +

1

2
U2

\biggr) 
 - R - 1U \cdot \nabla 2U= 0.(A.2)

Substituting U= (U,V ) as given in (4.7) into this, the O(1) terms yields

P1 +
1

2
U1 \cdot U1 =B1(\Psi 1).(A.3)

Similarly, the O(1/
\surd 
R) terms satisfy

P2 +U1 \cdot U2 =\Psi 2B1
\prime (\Psi 1) +B2(\Psi 1),(A.4)

where B1,B2 are first and second Bernoulli functions [29].
In our case, we note that B1

\prime (\Psi 1) =  - \Omega 1(\Psi 1) =  - \Omega 1(r). As we assumed the
outer flow is independent of Reynolds number, we may take B2 = 0. It follows that

\partial P1

\partial y
(x,0) = - U1

2(x,0)(A.5)

and from (A.4), that

P2(x,0) =\Psi 2(x,0)B1
\prime (0) - U1(x,0)U2(x,0).(A.6)

We thus obtain the corresponding pressure boundary condition as Y \rightarrow \infty ,

p2(x,Y ) = - Y +

\left(  C21 +
\sum 
n \not =0

cn\surd 
in

(| n|  - 2)einx

\right)  \epsilon +O(\epsilon 2).(A.7)

A.2. Computation of (\bfitu 2, \bfitv 2, \bfitp 2)(\bfitx ,\bfitY ; \bfitepsilon ). The second term of the inner ex-
pansions are expanded as

(u2, v2, p2, \omega 2)(x,Y ; \epsilon ) = (u20, v20, p20, \omega 20)(x,Y ) + \epsilon (u21, v21, p21, \omega 21)(x,Y ) + \cdot \cdot \cdot .

We need to compute the first three terms in these expansions.

A.2.1. Computations of \bfitu 20(\bfitx ,\bfitY ), \bfitv 20(\bfitx ,\bfitY ), \bfitp 20(\bfitx ,\bfitY ), \bfitomega 20(\bfitx ,\bfitY ). Sub-
stituting the expansion into (4.25)--(4.26) and solving O(1) terms, we obtain

u20(x,Y ) = - Y, v20(x,Y ) = 0, p20(x,Y ) = - Y.(A.8)

A.2.2. Computations of \bfitu 21(\bfitx ,\bfitY ), \bfitv 21(\bfitx ,\bfitY ), \bfitp 21(\bfitx ,\bfitY ), \bfitomega 21(\bfitx ,\bfitY ). Next
collecting O(\epsilon ) terms, we have the system

\partial u21
\partial x

+
\partial v21
\partial Y

=
\partial 

\partial Y
(v11Y ),

\partial p21
\partial Y

= - 2u11,

\partial u21
\partial x

 - v11  - Y
\partial u11
\partial x

= - \partial p21
\partial x

+
\partial 2u21
\partial Y 2

 - 
\biggl\{ 
Y
\partial 2u11
\partial Y 2

+
\partial u11
\partial Y

 - u10v11

\biggr\} 
,(A.9)

u21(x,0) = v21(x,0) = 0,(A.10)

u21(x,\infty )\sim  - 2B21  - C21  - 
\sum 
n \not =0

cn
| n| \surd 
in
einx,

p21(x,\infty )\sim C21 +
\sum 
n \not =0

cn\surd 
in

(| n|  - 2)einx.
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We obtain immediately

p21(x,Y ) =C21 + 2
\sum 
n \not =0

cn\surd 
in
einx - 

\surd 
inY +

\sum 
n\not =0

cn\surd 
in

(| n|  - 2)einx.(A.11)

Inserting this into (A.9), we have

u21(x,Y ) =
\sum 
n \not =0

cn

\biggl[ \biggl\{ 
1

2
Y +

| n| \surd 
in

\biggr\} 
e - 

\surd 
inY  - | n| \surd 

in

\biggr] 
einx,

v21(x,Y ) =
\sum 
n \not =0

cn

\biggl[ \biggl\{ 
3

2

\surd 
inY +

\biggl( 
1

2
+ | n| 

\biggr) \biggr\} 
e - 

\surd 
inY (| n|  - 1)

\surd 
inY  - 

\biggl( 
1

2
+ | n| 

\biggr) \biggr] 
einx.

A.2.3. Computation of \bfitu 22(\bfitx ,\bfitY ), \bfitv 22(\bfitx ,\bfitY ), \bfitp 22(\bfitx ,\bfitY ), \bfitomega 22(\bfitx ,\bfitY ). The
next order terms satisfy

\partial u22
\partial x

+
\partial v22
\partial Y

=
\partial 

\partial Y
(v12Y ),

\partial p22
\partial Y

= - (u11
2 + 2u10u12)

\partial u22
\partial x

(A.12)

+ u11
\partial u21
\partial x

+ v11
\partial u21
\partial Y

+ v12
\partial u20
\partial Y

+ u21
\partial u11
\partial x

+ u20
\partial u12
\partial x

+ v21
\partial u11
\partial Y

= - \partial p22
\partial x

+
\partial 2u22
\partial Y 2

 - 
\biggl\{ 
Y

\biggl( 
\partial 2u12
\partial Y 2

 - v11
\partial u11
\partial Y

\biggr) 
+
\partial u12
\partial Y

 - u11v11  - v12

\biggr\} 
.

The solutions of these are a complicated expression of the sums of the exponentials.
Since we need only the vorticity at the outer edge of the boundary layer, we average
these equations with respect to x from 0 to 2\pi (denoted by overbar):

\partial v22
\partial Y

=
\partial 

\partial Y
(v12Y ),

\partial p22
\partial Y

= - (u211 + 2u10u12),(A.13)

v11
\partial u21
\partial Y

+ v12
\partial u20
\partial Y

+ u20
\partial u12
\partial x

+ v21
\partial u11
\partial Y

=
\partial 2u22
\partial Y 2

 - 

\Biggl\{ 
Y

\Biggl( 
\partial 2u12
\partial Y 2

 - v11
\partial u11
\partial Y

\Biggr) 
+
\partial u12
\partial Y

 - u11v11  - v12

\Biggr\} 
.

(A.14)

The corresponding boundary conditions are

u22(0) = v22(0) = 0, u22(Y )\sim  - 1

2
Y
\sum 
n \not =0

| cn| 2  - 2B22  - C22(A.15)

as Y \rightarrow \infty . The final equation on u22(Y ) is

\partial 2u22
\partial Y 2

=
\sum 
n \not =0

| cn| 2
\Bigl[ \Bigl\{ 

((2 - 
\surd 
2) + 3)| n| Y +

\sqrt{} 
| n|  - (1 + 2| n| )

\surd 
in)
\Bigr\} 
e - 

\surd 
2| n| Y

+

\biggl\{ \biggl( 
3

2
 - | n| 

\biggr) 
| n| Y  - 1

2

\surd 
in+

1

2

\surd 
 - in - | n| 

\sqrt{} 
2| n| 

\biggr\} 
e - 

\surd 
 - inY

\biggr] 
.

Integrating twice and using (A.15), we find

2B22 +C22 = - 2
\sum 
n>0

| cn| 2
4 - n\surd 

2n
.(A.16)
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For the case f(x) = sinx, this becomes

2B22 +C22 = - 3
\surd 
2

4
.(A.17)
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