Electrical impedance tomography using equipotential line method (A new approach to Inverse Conductivity Problem)

June -Yub Lee (Ewha), Ohin Kwon (Konkuk), Jeong -Rock Yoon (RPI)

Physical Background

Electrical Impedance Tomography (EIT)

(20 - 100KHz) $[\Omega-cm]$

A model problem with heart and lung

Methods of EIT/ICP

Objective
$$\underset{\sigma}{Min} \sum |f_k - u_{\sigma}(x_k)|^2$$
 where $\nabla \cdot \sigma \nabla u_{\sigma} = 0, \frac{\partial u}{\partial n} = g$

- Single Measurement minimum information
- Many Measurement full information(?) on
- Infinite Measurement
 mathematical theory

Numerical Obstacles for EIT/ICP

Objective
$$\underline{Min} \sum_{\sigma} |f(x) - u_{\sigma}(x)|_{L_{2}(\Omega)}$$
 where $\nabla \cdot \sigma \nabla u_{\sigma} = 0$, $\frac{\partial u}{\partial n} = g$
Guss $(x) \rightarrow \text{Solve } \nabla \cdot \sigma \nabla u_{\sigma} = 0$, $\frac{\partial u_{\sigma}}{\partial n} = g$ \rightarrow Find better $\tilde{\sigma}$
• Strongly nonlinear: $\sigma \in L_{2}(\Omega) \rightarrow u_{\sigma} \in L_{2}(\partial\Omega)$
Solve $\nabla \cdot \sigma \nabla u_{\sigma} = 0$, $\frac{\partial u_{\sigma}}{\partial n} = g$ \rightarrow Find better $\tilde{\sigma}$ using $u_{\sigma} - f$
• Ill -posed problem: $\sigma \neq \tilde{\sigma} \rightarrow u_{\sigma} \approx u_{\tilde{\sigma}}$
Stop condition $u_{\sigma} - f \cong 0 \rightarrow \text{Regularity restriction on } \sigma$

III - posed Nonlinear

• 50 iterations

 \triangleright

(a) Iteration 0

(d) Iteration 5

(b) Iteration 1

(e) Iteration 20

(c) Iteration 2

EIT and MREIT

(Magenetic Resonace Electrical Impedance Tomography)

MRCDI MREIT

$$\nabla \left[\frac{1}{\rho(\mathbf{r})} \nabla V(\mathbf{r}) \right] = 0 \qquad \frac{1}{\rho} \frac{\partial V}{\partial n} = J \text{ on } \partial \Omega$$
$$J(\mathbf{r}) = -\frac{1}{\rho(\mathbf{r})} \nabla V(\mathbf{r})$$
$$B_J(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{\Omega} J(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} dv'$$
$$B_{I^{\pm}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{\Pi^3 \setminus \Omega} J(\mathbf{r}') a(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} dv'$$
$$= \frac{\mu_0}{4\pi} \int_{L^{\pm}} I(\mathbf{r}') a(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} dl'$$
$$J^B(\mathbf{r}) = \frac{1}{\mu_0} \nabla \times B(\mathbf{r})$$

(2)

J-Substitution Algorithm

Current Density

Reconstructed Conductivity

Original Conductivity

Schematic Diagram for Equi-potential Line Method

Numerical Algorithm

 (a) Restoration of potential u(x_t) in x_t ∈ Ω: Find a boundary point x_b ∈ ∂Ω such that u(x_t) = f(x_b) by solving a first order ordinary differential equation on equipotential line X_t(s),

$$\frac{dX_t}{ds}(s) = \left(\frac{\mathbf{J}(X_t(s))}{|\mathbf{J}(X_t(s))|}\right)^{\perp} \quad \text{with} \quad X_t(0) = x_t \text{ and } X_t(s_f) \in \partial\Omega \qquad (9)$$

where $(\cdot)^{\perp}$ denotes the counterclockwise right angle rotation of a vector.

(b) Reconstruction of conductivity $\sigma(x_t)$ in $x_t \in \Omega$: Calculate $|\nabla u(x_t)|$ using the reconstructed potential values of nearby points, then the $\sigma(x_t)$ is the ratio of $|\mathbf{J}|$ and $|\nabla u|$,

$$\sigma(x_t) = \frac{|\mathbf{J}(x_t)|}{|\nabla u(x_t)|}.$$
(10)

Equipotential Line Method

- Step 0. Given data: Suppose $J_{ij} = \mathbf{J}(x_i, y_j)$ at all interior grid points $(x_i, y_j) \in \Omega$ and boundary potential data $f_k = f(x_k, y_k)$ at arbitrary boundary points $(x_k, y_k) \in \partial \Omega$ are given.
- Step 1. Restoration of potential u_{ij} : Use a second order Runge-Kutta method with fixed step size, say $h = \frac{1}{4}\Delta x$ to solve the ordinary differential equation

$$X'_{ij}(s) = \vec{v}^{\perp} (X_{ij}(s)), \ X_{ij}(0) = (x_i, y_j)$$

until it exits the bounding box $B_{ij} = [x_{i-1}, x_{i+1}] \times [y_{i-1}, y_{i+1}]$ or the domain Ω . Here $\vec{v}(x, y)$ is piecewise bilinear interpolation of v_{mn} ,

$$\Delta x_m \Delta y_n \vec{v}(x, \vec{y})(x_{m+1} - x) \left[(y_{n+1} - y) v_{m,n} + (y - y_n) v_{m,n+1} \right] + (x - x_m) \left[(y_{n+1} - y) v_{m+1,n} + (y - y_n) v_{m+1,n+1} \right]$$

where $v_{mn} = \frac{J_{mn}}{|J_{mn}|}$ and $(x, y) \in [x_m, x_{m+1} = x_m + \Delta x_m] \times [y_n, y_{n+1} = y_n + \Delta y_n]$. And set target potential u_{ij} at the point marked with square to be second order interpolation of potentials at three neighboring points marked with heavy dots depending on the exit point in the following three cases.

Step 2. Reconstruction of conductivity σ_{ij} : Once potential values at all interior grid points are known, ∇u can be approximated by

$$\nabla u_{ij} = \left(\frac{u_{i+1,j} - u_{i-1,j}}{2\Delta x_i}, \ \frac{u_{i,j+1} - u_{i,j-1}}{2\Delta y_i}\right).$$

And conductivity at (x_i, y_j) is just the ratio of $|J_{ij}|$ and $|\nabla u_{ij}|$,

$$\sigma_{ij} = \frac{|J_{ij}|}{|\nabla u_{ij}|}$$

Smooth conductivity distribution

Conductivity Result with noisy J

Phantom with 1%Add+10%Mul Noise

Artificially generated Human Body 1%Add+10%Mul Noise

Conclusions and further works

- Fast, stable and efficient
- Well -posed (error~noise)
- Better interpolation method to handle discontinuous cases
- Noise handling for high conductivity ratio case where |J|~0
- 3D extension is trivial But 3D data for J is expensive Usage of Bz instead of J is better