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Abstract A discontinuous Galerkin type nonconforming element method and a local
flux matching nonconforming element method for the second order elliptic boundary
value problems are presented. Both of these methods enjoy the local flux conser-
vation property. The local flux matching method finds a numerical solution in the
same solution space of the DG type nonconforming element method, but it achieves
much faster iterative convergence speed by embedding continuity requirement in the
approximation functions rather than using constraint equations that are used in the DG
type nonconforming element method. The merits of the proposed local flux matching
method are as follows: the formulation of the method is simple and the solution sat-
isfies local flux conservation property. Moreover, it can be easily applied to general
elliptic equations.
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530 S. Bu et al.

1 Introduction

There are many numerical methods that can be used to solve second order elliptic
PDEs—finite element method (FEM), finite volume method (FVM), and boundary
element method (BEM) to name a few. Although in most cases there is a way to obtain
local flux conservation property, in general, a numerical method may fails to have the
local flux conservation property in their most simplest form. The finite element method
(FEM) has been developed in its theory and analysis [1,2,5] and has been successful to
solve many problems involving complicated domains. Since the classical formulation
of FEM does not have local flux conservation property, mixed finite element methods
[3,5,15] are developed to properly compute the flux. Finite volume method (FVM)
[4,8,9] has been popular because of the local conservation property. FVM is also
easy to implement when dual mesh is provided, however, it has some difficulties in
designing primal and dual partitions. Recently, the cell boundary element method
(CBEM) was introduced by Jeon et al. [10–12]. In CBEM, the average flux on each
edge of a cell is evaluated by using the Dirichlet-to-Neumann map and matched along
each interface to ensure flux continuity. The CBEM enjoys local conservation property
and provides normal flux continuity under certain conditions.

In this paper, we introduce two new flux conservative numerical methods—DG
type nonconforming element method and local flux matching method—for a second
order general elliptic problem:

∇ · (A(x)∇u(x)) + V (x) · ∇u(x) + k(x)u(x) = f (x) in Ω,

u(x) = g(x) on Γ
(1)

where A(x) ∈ R
d×d , V (x) ∈ R

d , and k(x) ∈ R. Proposed methods show similarity
between FVM and share some of the advantages of FVM: simple to implement, easy
to model complex geometry, and most of all, local flux conservation. However, unlike
the FVM which is formulated from conservation law, the new methods are derived
from matching the average of the primary variable and the flux on each interface.
Also, proposed methods are fundamentally different from FEM and nonconforming
finite element method [6,13,14] because we are not solving variational equations. In
our case, numerical fluxes are matched at each triangular interface without interpo-
lation or penalization or flux limiters. Although our approach might look similar to
p1-nonconforming FEM, the solution space of our proposed methods contain nonhar-
monic functions which distinguishes our approach with a p1-nonconforming FEM.

Each of the proposed methods has dissimilar numerical representation for the solu-
tion and results in different linear systems. Nevertheless, the two proposed methods
seek exactly the same mathematical solution. The first (DG type nonconforming ele-
ment) method, which is easier to understand, will turn out to be inefficient, while the
second (local flux matching) method is more efficient than the first one in that the
resulting system size is much smaller and the iteration converges much faster.

The paper is organized as follows. In Sect. 2, we describe a general framework
for two local flux conservation methods. Then, a DG type nonconforming element
method is specified in Sect. 3 and a local flux matching method is described in Sect. 4.
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Local flux conservative numerical methods 531

In order to clarify the description, we simply use a Poisson equation �u = f in
Ω with Dirichlet boundary condition u = g on Γ in Sects. 2 through 4. The first
numerical example in Sect. 5 compares the DG type nonconforming method and the
local flux matching method. The second and the third examples present a simple
modification of the local flux matching method for a general elliptic BVP in the form
of ∇ · (ε(x)∇u(x)) + k(x)u(x) = f (x) and numerical computations show that the
method has the optimal order of convergence in H1-norm and L2-norm. Concluding
remarks are given in Sect. 6.

2 A local flux conservative numerical scheme

For clarity, we restrict our discussion to the Poisson equation on a convex domain
Ω ∈ R

2 with a smooth boundary Γ = ∂Ω with Dirichlet boundary conditions,

Δu = f in Ω,

u = g on Γ. (2)

Let Th = {T1, T2, . . . , TNT } be a triangulation of Ω where NT is the total number of
triangles. We further assume Th satisfies maxTi ∈Th d(Ti )/ρ(Ti ) ≤ C, where d(Ti ) and
ρ(Ti ) is the diameter of Ti and diameter of inscribed circle in Ti , respectively.

We also denote the total edge set E as a union of interface set EI = {E j }NI
j=1 and

boundary set EB = {E j+NI }NB
j=1 where total number of edges NE is NI + NB . Fur-

thermore, we denote i+( j) and i−( j) for indices of outer and inner adjacent triangles
for each interface E j ∈ EI , respectively.

We define the approximation space V with first order polynomials V L and non-
harmonic functions V F as follows

V = V L ⊕ V F (3)

where

V L := {vi | vi ∈ P1(Ti ), i = 1, 2, . . . , NT }, (4)

V F := {Fi | supp(Fi ) = Ti , i = 1, 2, . . . , NT }. (5)

Here, V L and V F give the harmonic and non-harmonic part of the approximation
function when restricted on a triangle. Note that for each Ti ∈ Th , we can decompose
a numerical solution

vi (x, y) = ai + bi (xi − xi ) + ci (yi − yi ) + di Fi (x, y) for (x, y) ∈ Ti (6)

into two parts; a non-harmonic function Fi (x, y) ∈ V F and the first order polynomial
vL

i (x, y) = ai + bi (xi − xi ) + ci (yi − yi ) ∈ V L where (xi , yi ) is the incenter of Ti .
Our proposed scheme can be summarized in one sentence: Find approximation

vi = vL
i + di Fi ∈ V L ⊕ V F satisfying function value and flux continuity conditions
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532 S. Bu et al.

across an interface E j with di Fi generating the total flux of f in Ti . The algorithm
can be explained in three steps as follows.

1. For all Ti ∈ Th , the following balance equation which is the conservation form of
(2) will determine di as follows.

∫

Ti

Δv = 0 + di

∫

∂Ti

∇Fi · n (7)

=
∫

Ti

f

where n denotes the outer normal direction on ∂Ti . Therefore the coefficient di can
be determined on each Ti ∈ Th as follows,

di =
∫

Ti
f∫

∂Ti
∇Fi · n

. (8)

Note that our approximated solution v will always satisfy the conservation law (7)
locally for all Ti ∈ Th .

2. For each interface E j ∈ EI between two adjacent triangles Ti+( j) and Ti−( j) as
shown in Fig. 1, we match the average jump of v and ∇v · n as follows:

〈v〉E j
= 0, (9)〈

∂v

∂n

〉
E j

= 0 (10)

where 〈V 〉E j
denotes an average jump across E j ,

〈V 〉E j
= 1

|E j |
∫

E j

[V (x)] dx (11)

and [V (x)] denotes the jump of V at x ∈ E j = T i+( j) ∩ T i−( j),

[V (x)] = lim
h→0+ Vi+( j)(x + hn) − lim

h→0+ Vi−( j)(x − hn). (12)

Fig. 1 An interface E j between
two adjacent triangles Ti+( j)
and Ti−( j)

Ej

Ti-(j) Ti+(j)
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3. For each Dirichlet boundary segment E j ∈ EB ,

∫

E j

v(x) dx =
∫

E j

g(x) dx. (13)

Before closing the section, we make several comments on this scheme. First, any
trial function v ∈ V , V as given in (3), of the proposed scheme will always satisfy
the local conservation law on any triangular subregion D ⊂ Ω . More specifically,

∫

D

�v(x) dx =
∫

∂ D

∂v

∂n
=

∑
Ti ⊂D

∫

∂Ti

∂vi

∂n
=

∫

D

f dx. (14)

Second, the resulting non-symmetric system of equations can be effectively solved
by GMRES [16] method.

Finally, we emphasize the non-harmonic nature of the Fi in (6) as the most notable
feature of our proposed scheme. Of course, one has freedom to choose the space V F .

However, the order of convergence does not seem to depend on the choice of Fi . In
this paper we will demonstrate our scheme with two simple examples of Fi .

3 A discontinuous Galerkin type nonconforming element method

We consider a solution of (2) in the form of (6) with a given non-harmonic function
Fi (x, y),

vi (x, y) = ai + bi (xi − xi ) + ci (yi − yi ) + di Fi (x, y) (15)

where di can be explicitly computed by (8). There are three unknowns per triangles and
total 3NT unknowns, {ai , bi , ci }NT

i=1. To close 3NT system, we impose the following
constraints:

〈v〉E j
= 0,

〈
∂v

∂n

〉
E j

= 0 (16)

for each interface E j , j = 1, . . . , NI and

∫

E j

v(x) dx =
∫

E j

g(x) dx (17)

for each boundary segment ENI + j , j = 1, . . . , NB . Here, equation (16) is used to
ensure continuity as required by (9) and (10) and Eq. (17) is used to impose boundary
condition as given by (13). Therefore, the number of total constraints is 2NI + NB

and it matches exactly with total number of edges in the triangulation which is 3NT

because each of the interfaces is counted exactly twice and each of the boundary
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534 S. Bu et al.

segments is counted only once. We call the above 3NT -by-3NT system of equations
a DG type “Nonconforming element method” (Method NC). It is well-defined once
non-harmonic functions Fi are given.

We consider a solution non-harmonic quadratic polynomial in the replacement of
Fi in (15) as follows,

vi (x, y) = ai + bi (xi − xi ) + ci (yi − yi ) + di ((xi − xi )
2 + (yi − yi )

2) (18)

where di can be computed by (8), more explicitly as follows,

di =
∫

Ti
f (x)

4|Ti | = 1

4
fi . (19)

Here fi is the flux preserving piecewise constant approximation of fi (x) in the trian-
gle. Numerical experiments for the method with non-harmonic quadratic polynomial
function (Method NCq) is given in Sect. 5.

4 A local flux matching nonconforming element method

We introduce a new non-harmonic function Λi (x, y) to be used for Fi in (15). We
specifically design Λi (x, y) to generate constant flux along all of three edges of Ti .
Therefore, with the new non-harmonic function, the numerical solution (6) for the
Poisson equation (2) can be written as follows:

vi (x, y) = ai + bi (x − xi ) + ci (y − yi ) + diΛi (x, y) (20)

where the trigonal pyramid shape function Λi (x, y) is defined in the following para-
graph.

For each Ti ∈ Th , Λi (x, y) has a unit height at the incenter of Ti and has 0 values
along 3 edges in the triangle. More precisely, we create three sub-triangles by inter-
connecting two adjacent vertices of the given triangle and the incenter Di (xi , yi ) of
the triangle Ti as shown Fig. 2.

Ci(xc, yc)

Di(x,y)

Bi(xb, yb)Ai(xa, ya)

_ _

Fig. 2 A triangle Ti and inscribed circle centered at Di (x, y). Sub-triangle ΔAB D is shaded

123



Local flux conservative numerical methods 535

The piecewise linear function Λi (x, y) has closed-form representation in each sub-
triangles of Ti ,

Λi (x, y) = 1 − (x − x̄)(yb − ya) − (xb − xa)(y − ȳ)

(xa − xb)(yb − ȳ) − (xb − x̄)(ya − yb)
, (x, y) ∈ ΔAB D (21)

where ΔAB D is one of three sub-triangles of Ti . Similarly, Λi (x, y) is defined on
ΔBC D and ΔC AD . Note that Λi (∂Ti ) = 0 and supp(ΛT ) = T .

To find di for each triangle Ti , we apply the balance equation (7) on each triangle
with the trial function given in (20),

di

∫

∂Ti

∂Λi

∂n
=

∫

Ti

f. (22)

Note that the normal derivatives of the pyramid shape function Λi is constant along
the edges in each triangle,

∂Λi

∂n
= 1

ρi
(23)

where ρi is the radius of the inscribing circle in each triangle Ti . Therefore, the
coefficient of the non-harmonic term di can be obtained using (8),

di = f i
ρ2

i

2
(24)

where
∫

Ti
f = fi |Ti | and |Ti | = 1

2ρi |∂Ti |.
Before we proceed to a new local flux matching method, readers can easily see

that the coefficient ai , bi , and ci of the solution defined in (15) can be computed if
the value di is given in similar way as we discussed in previous section, which we
refer the method as a nonconforming element method with a pyramid shape function
(Method NCΛ).

Instead of finding unknowns given as coefficients of closed form solution in (20), we
set unknowns to function values v(M j ) at the midpoints M j of all edges E j ∈ E . Our
element consists of piecewise linear polynomials that are continuous at the midpoint of
edges and non-harmonic terms whose boundary values are zero,Λi |∂Ti = 0. Therefore,
continuity at midpoints guarantees average jump condition of v defined in (9), 〈v〉E j

=
0 and the Dirichlet boundary condition (13) can be set as v(M j ) = 1

E j

∫
E j

g(x)dx for
E j ∈ EB and its midpoint M j .

To find remaining unknowns v(M j ), j = 1, . . . , NI , we match local flux continuity
condition (10) along the interfaces for E j ∈ EI as follows:

〈
∂v

∂n

〉
E j

= 0. (25)
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We name this simple numerical algorithm as “Local flux matching method”
(Method LFΛ). The method LFΛ finds a solution in the same space as the method NCΛ

with exactly same constraints, however, the number of unknowns NI is much smaller
than 3NT = 2NI +NB for NCΛ. In the essence, the significant saving in the number of
unknowns has been possible by introducing the pyramid shape non-harmonic function
with zero values along the triangle edges. We will compare numerical properties of
these methods in Sect. 5.

5 Numerical results

In this section, we present several numerical results to test performance of the pro-
posed method (LFΛ) and to compare it with the nonconforming methods (NCq and
NCΛ). In the first example, we start with a simple Poisson problem and apply all of
three methods proposed in Sects. 3 and 4. All of the methods have the same order of
convergence, especially NCΛ and LFΛ provide exactly same solutions. However, the
GMRES convergence speed of the local flux matching method (LF) is much faster than
the nonconforming methods (NC). In the second example, we numerically demonstrate
that the LF method provides the optimal order of convergence for a variable coefficient
conductivity equation ∇ ·(ε(x)∇u(x)) = f (x). In the third example, we illustrate that
it is very easy to modify the LF method for more general type of elliptic equation such
as ∇ · (ε(x)∇u(x))+k(x)u(x) = f (x) and the possibility of the proposed LF method
as a general tool for wide class of boundary value problems in 2 or 3 dimensional
domains.

5.1 Constant coefficient on a nonuniform mesh

First, we consider the following Dirichlet boundary value problems on the unit square
domain Ω = [0, 1] × [0, 1] with nonuniform mesh seen in Fig. 3,

�u = f in Ω, (26)

u = 0 on ∂Ω (27)

Fig. 3 A nonuniform coarse
grid with NT =48 triangles,
NI =64 interfaces, and NB =16
boundary edges on the square
domain [0, 1] × [0, 1]
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where the exact solution is u(x, y) = exp−(x2+y2) sin(πx) sin(πy) and the function
f is generated by the exact solution.

In this example, we investigate the convergence order for two different methods
(NC and LF) described in Sects. 3 and 4. For the nonconforming (NC) method, we
test two different nonharmonic terms (NCq and NCΛ).

As described in previous sections, the unknowns of the NC methods are defined
for each triangle Ti but those of the LF method are defined on each interface E j . For
the comparison of L2-error of the NC and the LF methods, we calculate the function
value vi (Di ) at the incenter Di of each triangle Ti . Relative L2-error is computed as

E2
n =

∑NT
i=1(vi (Di ) − u(Di ))

2|Ti |∑NT
i=1(u(Di ))2|Ti |

. (28)

Relative error in H1-norm for NCq is simply calculated as

E2
n =

∑NT
i=1(∇vi (Di ) − ∇u(Di ))

2|Ti |∑NT
i=1(∇u(Di ))2|Ti |

. (29)

However, we need more complicated calculation for H1-error for methods (NCΛ

and LFΛ) since the derivative of the pyramid-shape non-harmonic function Λ is not
well-defined at the centroid in each triangle Ti . Therefore, we subdivide a triangle into
three smaller triangles with Di as a new vertex as shown in Fig. 2 and then relative
error in H1-norm is calculated as follows,

E2
n =

∑NT
i=1

∑
K∈{A,B,C} (∇vi (DK

i ) − ∇u(DK
i ))2|T K

i |∑NT
i=1

∑
K∈{A,B,C} (∇u(DK

i ))2|T K
i | (30)

where DC
i is a centroid of triangle T C

i := �AB D. D A
i and DB

i are those of sub-
triangles T A

i and T B
i , respectively.

We start with a triangulation having NT = 48 triangles as shown in Fig. 3 and
then iteratively subdivide each of triangles in the domain into four equal triangles.
Tables 1, 2, and Fig. 4 show relative L2 and H1 errors of the numerical computation
for NT = 48, 22 · 48, and 24 · 48. Here, the rate of convergence for doubled mesh is
calculated as α = log2(En/En+1).

Note that computed solutions by the method NCΛ and the method LFΛ shown in
Table 2 are identical since both of them find a solution in the same space V = V L ⊕V F

with the same constraints even though the linear systems are different. As seen in

Table 1 Relative errors for
method (NCq ) NT L2-norm α H1-norm α

48 1.5877e−2 1.7459e−1

192 3.7669e−3 2.0755 8.4818e−2 1.0415

768 9.3229e−3 2.0145 4.2107e−2 1.0103

123



538 S. Bu et al.

Table 2 Relative errors for
method (NCΛ) and method
(LFΛ)

NT L2-norm α H1-norm α

48 2.6413e−2 2.0721e−1

192 6.4475e−3 2.0344 1.0289e−1 1.0100

768 1.6065e−3 2.0048 5.1380e−2 1.0017

10
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−1

10
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H1 error

NCq
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Λ
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Λ

Fig. 4 Order of convergence. L2 and H1 relative errors as a function of mesh size are shown. Note that
the results for NCΛ and LFΛ coincide

Fig. 5 Iterative convergence
behavior of the GMRES method.
Linear system size for the
method NCq or NCΛ is
144 × 144 and L FΛ is 64 × 64

20 40 60 80 100 120 140
10

−15

10
−10

10
−5

10
0

NCq
NC

Λ

LF
Λ

Tables 1 and 2, all of the methods provide the optimal convergence order; 2nd order
of convergence in L2-norm and the 1st order of convergence in the H1-norm. Figure 4
visualizes the same error data in Tables 1 and 2 as a function of effective mesh size
h̄ = √|Ω|/NT .

Even though all of the proposed methods have the same order of convergence,
the iterative convergence behavior shows difference (Fig. 5) and is subject to future
investigation. Note that the number of unknowns in the LF framework is the number
of internal edges NI while there are 3NT = 2NI + NB unknowns in the NC methods,
3 coefficients in each triangle. For example, the system size of the method NCq or
NCΛ is 3NT = 144 and that of LFΛ is NI = 64 for the triangulation shown in Fig. 3.
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Fig. 6 Distribution of 144 eigenvalues of the method NCq and NCΛ and 64 eigenvalues of the method
L FΛ
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Fig. 7 A coarse mesh on ellipse with NT = 16 triangles and a computed solution on a finer mesh with
NT = 210

The convergence speed of the GMRES is determined by distribution of the eigen-
values. Figure 6 shows the eigenvalue distributions of the linear systems for method
(NC) and (LF). It explains the numerical experiment in which the LF method is much
faster than the NC methods. From this observation, we propose the method LFΛ as a
proper numerical tool to find a solution in the space consisting of the piecewise-linear
and non-harmonic functions.

5.2 Variable coefficient problem

In this example, we consider a variable coefficient equation with conductivity
ε(x, y) = 1 + x2 + y2 in the elliptical domain shown in Fig. 7,

∇ · (ε(x, y)∇u(x, y)) = f (x, y) in Ω, (31)

u(x, y) = g(x, y) on ∂Ω (32)

where f (x, y) and g(x, y) are chosen so that the exact solution is u(x, y) =
exp−(x2+y2) sin(πx) sin(πy). We slightly modify the LFΛ method defined in Sect. 4
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in order to find a solution in the form of (20) for this kind of variable equations. First,
we define a piecewise constant conductivity

ε̄(x, y) = ε̄i for (x, y) ∈ Ti (33)

where ε̄i := 1
|Ti |

∫
Ti

ε. Then di defined in (24) should be redefined as

di = f i

ε̄i

ρ2
i

2
. (34)

The resulting system of linear equation for the function value v(M j ) at the midpoint

of each interface {E j }NI
j=1 comes from the flux continuity equation,

〈
ε̄

∂v

∂n

〉
E j

= 0. (35)

Figure 7 shows a coarse grid triangulation with NT = 16 and a computational result
on a finer grid with NT = 210.

To examine the convergence behavior of the proposed method (LF), we calculate
the relative L2-error and H1-error. The mean function value on each interface E j is the
computed solution v(M j ) at the midpoint, so it is natural to define a relative L2-error
using these values. The derivative ∇vi along each side is constant, but the value ∇v is
not well-defined on the interface E j since the tangent derivatives on the left and right

triangles are different and the flux across E j is continuous, ε̄i+( j)
∂vi+( j)

∂n = ε̄i−( j)
∂vi−( j)

∂n
for two adjacent triangles Ti+( j) and Ti−( j). Therefore, we define a relative H∗-error
using continuous normal flux as follows,

E2
n =

∑NI
j=1

(
ε̄i+( j)

∂vi+( j)
∂n (M j ) − ε(M j )

∂u
∂n (M j )

)2

∑NI
j=1

(
ε(M j )

∂u
∂n (M j )

)2 . (36)

As shown in Fig. 8, numerical results of the proposed method (LF) with NT = 16
to NT = 3024 triangles show the expected optimal second order convergence in L2-
norm sense. The order of convergence in the new H∗-norm is higher than the first
order expected for H1-norm since only normal component ∂v/∂n is used instead of
the gradient ∇v.

5.3 Helmholtz equations

Our final example is the Helmholtz equations with ε(x, y) = 1 + x2 + y2 and k = 1
on the punctured elliptical domain shown in Fig. 9,

∇ · (ε(x, y)∇u(x, y)) + ku = f (x, y) in Ω, (37)

u(x, y) = g(x, y) on ∂Ω (38)
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Fig. 8 Decay rates of L2-error
(solid line) and H∗-error
(dash-dotted line) as a function
of effective mesh size
h̄ = √|Ω|/NT
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Fig. 9 A coarse mesh on ellipse with NT = 46 triangles and a computed solution on a finer mesh with
NT = 170

where f (x, y) and g(x, y) are chosen so that the analytical solution becomes u(x, y) =
exp−(x2+y2) sin(πx) sin(πy).

We approximate ε(x, y) by a piecewise constant function ε̄(x, y) as in (33), how-
ever, di in the solution form (20) can not be directly computed as in (34) since non-
harmonic source comes not only from f but also ku. Therefore, we form a linear
system with NI + NT unknowns, {v(M j )}NI

j=1 and {di }NT
i=1. The corresponding con-

straints equations are

〈
ε̄

∂v

∂n

〉
E j

= 0 (39)

for all interface E j , j = 1, . . . NI and

ε̄i

∫

∂Ti

∂vi

∂n
dy + k

∫

Ti

vi dx = f̄i |Ti | (40)
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Fig. 10 Decay rates of L2-error
(solid line) and H∗-error
(dash-dotted line) as a function
of effective mesh size
h̄ = √|Ω|/NT
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for all triangles Ti , i = 1, . . . NT . Note that all of the integrals in (40) can be explicitly
written with function values {v(M j )} on midpoints of the edges M j ∈ ∂Ti and the
nonharmonic strength di . Equations (39) and (40) form a well-conditioned system of
linear equations.

Figure 10 depicts the expected convergence order in the L2-norm and in the nor-
mal derivative based H∗-norm defined in (36). Similar to the previous example, the
convergence order in L2-norm is two and H∗-norm convergence order is one and a
half, which are in good agreement with the expected convergence rate.

6 Concluding remark

We introduce a numerical scheme satisfying the local conservation law and present two
different numerical methods, DG type nonconforming element (NC) method and local
flux matching (LF) method, depending on how we choose the unknowns. These meth-
ods work for second order elliptic problem with variable coefficients on unstructured
triangular mesh and satisfy conservation law locally and globally.

Moreover, we investigate convergence behavior of iterative solver such as GMRES
for the two local flux conservative methods. The (LF) method has smaller system size
and much better iterative convergence than the (NC) method by eliminating constraints
on function continuity. As a result, we propose the local flux matching (LF) method
as a simple and efficient numerical tool compared to the native nonconforming ele-
ment (NC) method. The numerical experiments validate the efficiency of the proposed
method and its convergence for wide class of the second order elliptic BVPs.

Extension of the LF method for more general class of elliptic problems and higher
dimensional spaces will be reported in near future. Domain decomposition idea is
one of the noteworthy view points in the era of multiprocessor. Our approach like
non-conforming FEM exchanges information only across each sub-domain boundary
[7] so that it can be useful in parallel computing. Parallelization of the method is also
one of our future research directions.
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