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Abstract
We consider magnetic resonance electrical impedance tomography, which
aims to reconstruct the conductivity distribution using the internal current
density furnished by magnetic resonance imaging. We show the uniqueness
of the conductivity reconstruction with one measurement imposing the
Dirichlet boundary condition. And we propose a fast non-iterative numerical
algorithm for the conductivity reconstruction using the internal current vector
information. The algorithm is mainly based on efficient numerical construction
of equipotential lines. The resulting numerical method is stable in the sense
that the error of the computed conductivity is linearly proportional to the input
noise level and the introduction of internal current data makes the impedance
tomography problem well-posed. We present various numerical examples to
show the feasibility of using our method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The standard electrical impedance tomography (EIT) problem is that of recovering the interior See endnote 1
conductivity distribution σ by means of boundary measurement of the applied current g and
the voltage response f . Then the EIT problem is characterized by the following elliptic partial
differential equation:

∇ · (σ∇u) = 0 in �, u = f on ∂� See endnote 2
where u is the voltage potential satisfying σ∂u/∂ν|∂� = g. Here� denotes the cross-section of
an electrically conducting body and ν is the outward unit vector normal to ∂�. Many theoretical
and numerical approaches have been studied during last a couple of decades. Among these
we wish to cite [3, 8] and the references therein. However, the EIT problem has not been fully
conquered yet due to the fact that it is highly non-linear and severely ill-posed [10, 12].
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In contrast, a new imaging technique—so-called magnetic resonance electrical impedance
tomography (MREIT), suggested by [9]—uses the internal current densities as the data, instead
of restricting use to the boundary measurements. These internal current density data are
furnished by a recent current density imaging (CDI) technique with the aid of magnetic
resonance (MR) imaging. For readers’ convenience, we briefly explain the CDI technique.
For a more detailed discussion, please refer to [4, 6, 13, 14, 16]. The nuclear spin density
ρ(x, y, z) is obtained by the inverse Fourier transformation of the MR signal S(tx , ty, tz) on
three-dimensional data acquisition axes (tx , ty, tz):

S(tx , ty, tz) =
∫

R3

ρ(x, y, z) exp[−iγ (xGxtx + yG yty + zGztz)] dx dy dz

where γ is the gyromagnetic ratio and (Gx,G y,Gz) is the magnetic field gradient. When a
current I is injected, a new nuclear spin density ρI is given by

ρI (x, y, z) = ρ(x, y, z) exp[iγ Tc Bz(x, y, z)]

where Tc is the duration of the current pulse and Bz is the z-component of the magnetic field
B induced by the input current I . Here the main magnetic field in the MR system is along the
z-direction. Comparing the current-injected spin density ρI and the no-current-injected spin
density ρ, we can calculate Bz from the following phase difference mapping:

Bz(x, y, z) = 1

γ Tc
arctan

(
Im(ρI/ρ(x, y, z))

Re(ρI /ρ(x, y, z))

)
.

Then the internal current density J is obtained by Ampere’s law:

J = 1

µ
∇ × B

whereµ is the magnetic permeability. If the imaged domain is assumed to be two dimensional,
then just using Bz is sufficient for the calculation of J , since ∇ × B = (∂y Bz,−∂x Bz, 0).
However, in general, we need to rotate the imaged object to obtain Bx and By as well as
Bz for the calculation of J . Although there are still some technical difficulties associated
with obtaining precise information on J in real experiments, in this paper we begin with the
assumption that the current density J can be reliably obtained.

Since MREIT based on the CDI technique utilizes internal data, we may expect the ill-
posedness of standard EIT to be significantly reduced in MREIT. Now we define the MREIT
problem mathematically. Let � be a simply connected bounded Lipschitz domain in R

2. The
MREIT problem is recovering the conductivity distribution σ satisfying

∇ · (σ∇u) = 0 in � (1)

from the internal current density measurement

J = σ∇u in � (2)

and some boundary measurements. For convenience, the direction of the current density vector
J is defined to be opposite to the physical convention in (2).

The first attempt to reconstruct the conductivity distribution σ using MREIT was made
in [9]. Combining (1) and (2), a non-linear partial differential equation was derived:

∇ ·
( |J |

|∇u|∇u

)
= 0 in � (3)

and an iterative algorithm developed based on two measurements of the magnitude of the
interior current density |J |. Each iteration accomplished an alternative substitution of the
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Figure 1. A schematic diagram of the equipotential line method for MREIT.

intermediate conductivity distribution. Because the non-linear partial differential equation (3)
has to be solved at each iteration, a fast numerical solver is crucial for this algorithm.

However, our main observation in this paper will be that the efficient numerical algorithm
for the MREIT problem has nothing to do with the complicated non-linear partial differential
equation (3); meanwhile the core information is readily obtained from (2). Thus our inverse
problem will be to reconstruct σ which satisfies

σ∇u = J in �, (4)

u = f on ∂� (5)

where ( f,J) are given data. We will propose a non-iterative simple numerical method for
recovering σ based on the numerical construction of equipotential lines. While in [7, 9]
the authors ignored the direction information of the internal current density, we will utilize
information on both magnitude and direction.

Now we explain briefly our algorithm, which will be presented in section 3 in detail: with
the current density J furnished by the CDI technique, we decompose it into the direction
information �v = J/|J | and the magnitude information |J |. Since �v = ∇u/|∇u| is
perpendicular to each equipotential line, we can construct all the equipotential lines X (s) by
solving the ordinary differential equation X ′(s) = �v⊥ with the boundary condition (5). Here
(·)⊥ denotes the anticlockwise right-angle rotation. Calculating |∇u| using the constructed
equipotential lines, we finally reconstruct the conductivity distribution from σ = |J |/|∇u|.
A schematic diagram of our method is shown in figure 1.

Before concluding our introduction, we want to comment on the boundary condition: the
original MREIT model introduced in [7, 9] was characterized by imposing the Neumann
boundary condition σ∂u/∂ν = g on ∂�. The main reason for imposing the Neumann
boundary condition was the experimental ease of measuring the current rather than the voltage
measurement. However, it is not difficult to design a Dirichlet MREIT model which is
characterized by the Dirichlet boundary condition (5). This model is mathematically simpler
than the Neumann MREIT model and the arguments in this paper also hold for the standard
Neumann MREIT model if the conductivity on the boundary is also known.

In section 2, we prove the uniqueness of the conductivity in MREIT with one measurement.
Recall that in [7, 9] the authors required two measurements to guarantee uniqueness when the
Neumann boundary data are specified. In section 3, we describe our equipotential line method
and comment on the actual programming. In section 4, we present various numerical examples
and discuss the convergence of our method.
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2. Uniqueness of Dirichlet-type MREIT

Let � ⊂ R
2 be a simply connected bounded domain with a C2 boundary and the conductivity

distribution σ satisfying 0 < σ(x) < ∞ for all x ∈ �̄. And we assume the boundary voltage
potential f ∈ C(∂�) to satisfy the condition that there exist only one local maximum point
and only one local minimum point. That is, there exist two points ξ0, ξ1 on ∂� and a portion
� ⊂ ∂� such that

f (ξ0)= min
∂�

f, f (ξ1)= max
∂�

f, f |� and f |∂�\� are one-to-one functions (6)

which means, roughly speaking, that the boundary voltage potential f is strictly increasing
along either route from ξ0 to ξ1.

Then by the basic theory of elliptic partial differential equations (see [5, pp 206]), the
following classical Dirichlet boundary value problem:

∇ · (σ∇u) = 0 in �, u = f on ∂� (7)

has a unique solution u in C(�̄). Moreover, we can show that

∇u(x) �= 0 for all x ∈ �
under the assumption that the conductivity distribution σ > 0 belongs to the class

	 :=
{
σ = σ0 +

M∑
k=1

σkχDk

∣∣∣∣σ0 ∈ Cα(�̄), σk ∈ Cα(D̄k), σk �= 0 on ∂Dk

}

where 0 < α < 1 is a fixed number and χDk denotes the characteristic function for inclusions
Dk such that D̄k ⊂ � has a C2 boundary and D̄k ∩ D̄� = ∅ for k �= �. Note that this class
	 includes almost all physically meaningful conductivity distributions. In fact, the class 	
was introduced in [7] to show a result analogous to the following lemma for the Neumann
boundary value problem, the proof of which can also be found in [1, 2, 15]. Since the proof
of the following lemma is parallel to that of Neumann boundary value problem, we only give
an outline of it.

Lemma 2.1. Assume f ∈ C(∂�) satisfying (6) and σ ∈ 	. Then the solution u to the classical
Dirichlet boundary value problem (7) satisfies

∇u(x) �= 0 for all x ∈ �.
Proof. When σ ∈ 	 is expressed by σ = σ0 +

∑M
k=1 σkχDk , then by the standard theory of

elliptic equations [5, 11], we know that ∇u ∈ Cα(∪M
k=1 D̄k) ∩ Cα(� \ ∪M

k=1 Dkt). Thus ∇u is
well defined in �. Suppose that there exists a point x0 ∈ � satisfying ∇u(x0) = 0. Since the
point x0 is a saddle point of u, the level set {x ∈ � | u(x) = u(x0)} divides� into at least four
disjoint connected components. Applying the maximum principle on each subdivided region,
we obtain either a local maximum or local minimum on the intersection of each subregion and
the outer boundary ∂�. Hence it is a contradiction to (6), since we have admitted only two
local extrema. �

The internal current density J = σ∇u obtained with the aid of the CDI technique is
naturally divergence-free and lemma 2.1 shows that J must be nonzero for almost all physically
meaningful conductivity distributions (σ ∈ 	), if we apply the boundary voltage f ∈ C(∂�)
as in (6). With these data ( f,J), our inverse problem is that of reconstructing σ ∈ 	 which
satisfies

σ∇u = J in �, u = f on ∂�. (8)

While the Neumann-type MREIT problem in [7] has examples exhibiting non-uniqueness, our
Dirichlet-type MREIT problem (8), utilizing vector information of the interior current density,
has a uniqueness result. See endnote 3
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Theorem 2.2. Let J be a nonzero divergence-free vector field in� and f ∈ C(∂�). If (σ1, u1)

and (σ2, u2) are two solutions of (8), then we have u1 = u2 and σ1 = σ2.

Proof. Since J is divergence-free,we can apply the maximum principle for u1. For any x ∈ �,
by the maximum principle and the continuity of u1, we are able to construct an equipotential
curve X (s) satisfying X (0) = x , X (s f ) = xb for some xb ∈ ∂�, and

u1(X (s)) = u1(xb) = f (xb), 0 � s � s f .

Using the boundary condition u1|∂� = u2|∂� = f and line integrals of gradient vector fields
on the equipotential curve X of u1, we obtain

u2(x) = u2(xb) +
∫

X
∇u2 · d� = f (xb) +

∫
X

σ1

σ2
∇u1 · d� = f (xb) = u1(x),

which implies u1 = u2. See endnote 4
Since J is nonzero, so are ∇u1 and ∇u2. Thus we easily see that

0 = σ1∇u1 − σ2∇u2 = (σ1 − σ2)∇u1,

which yields that σ1 = σ2. The proof is complete. �
In the proof of theorem 2.2, a partial differential equation for u1, such as (7), was used

only for the maximum principle, which determined whether we could construct equipotential
curves. Hence as long as we may construct the equipotential curves from the data ( f,J)
without trouble, the reconstruction of u or σ has nothing to do with the partial differential
equation itself. As seen in the proof of theorem 2.2, the unique reconstruction is based on
the construction of the equipotential curve of u; hence one of the efficient algorithms will
be constructing the equipotential curves of u using the data ( f,J). Moreover, it will be a
non-iterative scheme and therefore fast and efficient, which is the main goal of this paper.

3. Numerical algorithm

Our algorithm for reconstructing the internal conductivity distribution σ(x) consists of
following two simple steps which require non-vanishing current density vector field J |� and
boundary measurement of the voltage f |∂�:

(a) Restoration of the potential u(xt) in xt ∈ �. Find a boundary point xb ∈ ∂� such that
u(xt) = f (xb) by solving a first-order ordinary differential equation on the equipotential
line Xt (s):

dXt

ds
(s) =

(
J(Xt (s))

|J(Xt(s))|
)⊥

with Xt(0) = xt and Xt(s f ) ∈ ∂� (9)

where (·)⊥ denotes the anticlockwise right-angle rotation of a vector.
(b) Reconstruction of the conductivity σ(xt) in xt ∈ �. Calculate |∇u(xt)| using the

reconstructed potential values of nearby points; then σ(xt) is the ratio of |J | and |∇u|:
σ(xt) = |J(xt)|

|∇u(xt)| . (10)

We now present a fast numerical scheme using current density data at Cartesian grid points
which can be easily tabulated in a conventional MR imaging system. Developing a high-order
numerical scheme using data at arbitrary points is nothing more than applying high-order
interpolation and numerical differentiation techniques for those points. Our aim in this paper
is to present a new idea for reconstructing the internal conductivity profile using MREIT; thus
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building a fast, flexible, and accurate computational tool for industrial applications will be the
next step of our research.

The computational cost of step (b) is proportional to the number of target points, say N2

points in two dimension; thus there is not much to be done in terms of computational cost.
However, a naive implementation of step (a), such as by applying the Runge–Kutta method
to the ordinary differential equations (9) for each target point, would be too expensive, since
it takes order-of-N Runge–Kutta steps for each point and order-of-N3 steps in total. The
following recursive algorithm reduces the total computational cost to O(N2) by evaluating a
potential value using neighbouring potential values which are supposed to be already computed
from boundary values.

The formal description of the method is as follows.

Equipotential line method for MREIT

Step 1. Given data. Suppose that Ji j = J(xi , y j) at all interior grid points (xi , y j) ∈ � and
the boundary potential data fk = f (xk, yk) at arbitrary boundary points (xk, yk) ∈ ∂� are
given.

Step 2. Restoration of the potential ui j . Use a second-order Runge–Kutta method with fixed
step size, say h = 1

4 x , to solve the ordinary differential equation

X ′
i j (s) = �v⊥(Xi j(s)), Xi j(0) = (xi , y j )

until it leaves the bounding box Bi j = [xi−1, xi+1][yi−1, yi+1] or the domain �. Here �v(x, y)
is a piecewise-bilinear interpolation of vmn :

xm yn �v(x, y) = (xm+1 − x)[(yn+1 − y)vm,n + (y − yn)vm,n+1]

+ (x − xm)[(yn+1 − y)vm+1,n + (y − yn)vm+1,n+1]

where vmn = Jmn/|Jmn| and (x, y) ∈ [xm, xm+1 = xm +xm][yn, yn+1 = yn +yn]. And set
the target potential ui j at the point marked with a square to be the second-order interpolation
of potentials at three neighbouring points marked with heavy dots, depending on the exit point
in the following three cases.

Step 3. Reconstruction of the conductivity σi j . Once potential values at all interior grid points
are known, ∇u can be approximated by

∇ui j =
(

ui+1, j − ui−1, j

2xi
,

ui, j+1 − ui, j−1

2yi

)
.
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And the conductivity at (xi , y j) is just the ratio of |Ji j | and |∇ui j |:
σi j = |Ji j |

|∇ui j | .

Many technical issues have to be addressed before discussion of numerical experiments.
Bilinear interpolation of �v(x, y) and second-order numerical differentiation of ui j near the
boundary require special care in programming; however, we will not go into detail, since this
is trivial. A far more serious issue is that of how to implement step 2. One may apply a
fast marching-type algorithm which computes higher potential values first and lower potential
values later. A simpler attempt would use a recursive programming method—that is, if any
potential for three points near the box exit point is not ready, then evaluate the missing potentials
first. However, regardless of the computational order, this algorithm always generates a
deadlock between two target points marked with squares in the left-hand-side diagram below
if ui−1, j requires ui, j+1, ui, j , ui, j−1 and ui, j−1 requires ui−1, j , ui, j , ui+1, j . In such a case, we
switch to linear interpolation using two points (marked with heavy dots) near the box exit
point (marked with triangles) shown in right-hand-side figure below. Switching to linear
interpolation to avoid the deadlock, our marching always terminates unless the neighbouring
current flows in the opposite direction.

In step 2, the second-order Runge–Kutta method with bilinear interpolation of �v(x, y)
gives a local truncation error of third order and the three-point interpolation method for the
potential at the box exit point also gives an error of third order. Thus evaluation of potential
values at interior grid points is locally third order in accuracy and globally second order, since
the local error can be accumulated at most order-of-N times from the boundary measurements.
Because we sometimes use two points instead of three points for the interpolation in order to
release the deadlock, the actual order of accuracy for the potential evaluation would be little
bit poorer than second order. In step 3, a central difference or three-point one-side numerical
differentiation gives second order of accuracy for ∇u if ui j is of locally third order in the
absence of input noise in Ji j . It is also worth remarking that our algorithm reconstructs the
conductivity distribution with errors linearly proportional to the input noise in Ji j and fk for
fixed grid size.

4. Numerical examples

The equipotential line method described in the previous section has been implemented in
Fortran 77. In this section, we present three numerical examples: the first example shows the
numerical accuracy and convergence order of the implementation, the second demonstrates
the robustness of the method even for discontinuous conductivity distributions, and the third
shows the practical feasibility of using the algorithm for realistic situations. The computational
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cost is proportional to the number of grid points, O(N2), and it takes 0.45–0.58 s to generate
figures 2–5, or 6 with 128 × 128 grid points using an Ultra-60 Sparc station with a 450 MHz
CPU.

Example 1 (Smooth conductivity distribution). In this numerical experiment, the conduc-
tivity distribution σ ∈ C1([−1, 1] × [−1, 1]) is given by

σ(x, y) = 10(
∑n

i=1 wiψi (x,y)) (11)

where the function ψi(x, y) supported on [ai , bi ][ci, di ] has the form

ψi (x, y) = 256
(x − ai)

2(x − bi)
2

(ai − bi)4

(y − ci )
2(y − di)

2

(ci − di)4
.

The left figure in figure 2 shows the original conductivity distribution and the right figure
visualizes the internal current density data Ji j given at 128 × 128 interior grid points (xi , y j )

which have been obtained by a standard finite-volume solver for (1) with given injected current
source, through the Neumann boundary. Reconstructed potential values and their gradients—
using Ji j and boundary potential data—are plotted in the middle figure. The contour lines in
the right-hand-side figure show the reconstructed conductivity values on a logarithmic scale.
Each line represents the same conductivity value of 10 to the power −1.25, −1.0, . . . , −0.25,
0.25, . . . , 1.25, respectively. The recovered conductivity has about 2.37% error in a relative
l2-norm.

In the example shown in figure 3, white background noise has been added to the same input
data Ji j as for figure 2 to check the robustness of our algorithm. 1% additive noise at (xi , y j )

consists of x-and y-component pairs of random numbers varying from −1 to 1% of ‖Ji j‖l2 .
The left figure in figure 3 shows the reconstructed conductivity distribution on a logarithmic
scale and the middle and the right plots show the reconstructed conductivity values at x = 0
and at y = 0 using heavy dots in comparison with the original conductivity shown by solid
lines. The method recovers the conductivity distribution successfully with data spoiled by 1%
additive noise and the computational result contains 5.87% error in a relative l2-norm.

Figure 4 shows the convergence of the algorithm in various situations. The first plot
demonstrates that the convergence rate is between first order and second order as the number
of grid points 2n × 2n varies: n = 5, . . . , 9. The middle plot shows the convergence property
for the reconstructed conductivity in a noisy environment. It is well known that numerical
differentiation with a small grid size may be harmful if there is a high level of errors in the
input data, since the total computational error consists of discretization error and noise error
which is inversely proportional to the grid size. To overcome the increasing error with a smaller
grid sizex , a higher-order method to compute the gradient ∇ui j should be employed, which
gives a relatively small discretization error in ∇ui j even with a relatively largex . For fixed
grid size x , the total error in computing ∇ui j is proportional to the input noise level until it
reaches the discretization error. The right figure shows that the method is stable for noise data
in the sense that the computational error is proportional to the noise level with fixed grid size
x = 2

128 .

Example 2 (Piecewise-constant conductivity distribution). The circular-shape domain
shown in figure 5 contains seven elliptic inclusions of piecewise-constant conductivity. The
conductivities of the seven inclusions are 0.1; 5, 30, 5; 20, 0.01, 20 from top to bottom and
left to right, respectively, while the background conductivity is 1.

The internal current density Ji j and boundary potential fk were computed with a highly
accurate numerical solver using a single-layer integral equation method and then 1% additive
white background noise and 10% multiplicative noise were added for the numerical simulation.
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Figure 2. The conductivity distribution for example 1, the computational result for the potential
values, and the reconstructed conductivity distribution without noise.

Figure 3. The reconstructed conductivity distribution, using input data Ji j with 1% additive noise.

Figure 4. The order of convergence, the convergence result using input data with additive noise,
and the numerical stability in a noisy environment.

The 10% multiplicative noise at (xi , y j) is a random number pair with the x-and y-components
of the random number varying from −10 to +10% of |Ji j |.

The upper left figure in figure 5 shows the computed equipotential lines and arrows
representing ∇u on the domain with seven elliptic inclusions. The upper right figure shows the
reconstructed conductivity on a logarithmic scale. Three lower plots show the cross-sections of
the conductivity values at y = −0.35, 0.0, and 0.25, respectively. Heavy dots with connecting
light dots represent the computed conductivity and solid lines show the original values.

Example 3 (Realistic conductivity distribution). It was not easy to get a real conductivity
distribution for a human body, so we assigned conductivity ranging 1–10 to a computerized
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Figure 5. The piecewise-constant conductivity distribution for a phantom with seven inclusions
and current density data with 1% additive and 10% multiplicative noise.

Figure 6. Artificially generated conductivity distributions for the human body with 1% additive
and 10% multiplicative noise.

tomography image of a human body with 128 × 128 pixels shown in figure 6. Current density
and boundary data for simulation were obtained using the forward conductivity problem solver
used in example 1. It is not related to the conductivity reconstruction problem of a real human
body; however, this example simulates the performance of our numerical method in empirical
situations.

The left-hand-side figure shows the original conductivity distribution for the simulation.
Bright regions represent high conductivity up to 10 and dark regions represent low conductivity
down to 1. The right-hand-side figure gives the conductivity distribution reconstructed from a
current density data with 1% white background noise and 10% multiplicative measuring error.
The relative computational error of the conductivity in an l2-norm is 12.65%.
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5. Conclusions

We implemented a fast, stable, and efficient numerical method for MREIT to reconstruct the
conductivity distribution, based on the equipotential line construction. The computational cost
is proportional to the number of grid points and the reconstruction error depends linearly on
the noise level. As seen in the last graph in figure 4, our problem is no longer ill-posed. It is
the usage of the interior data J that enables us to reduce the original ill-posed EIT problem to
a well-posed one. The only ill-posed part of our algorithm is computing the gradient of ui j , in
which the error due to input noise could be controlled linearly with respect to the noise level
using a higher-order numerical differentiation method.

Although the algorithm can also reconstruct discontinuous conductivity distributions,
some artefacts such as oscillations or abrupt changes may be found in figure 5. In order
to develop a robust method for finding a discontinuous conductivity distribution, we need
to pay extra attention to interpolating the directional field �v and differentiating u near the
discontinuity. Also, general interpolation and differentiation tools need to be added to handle See endnote 5
the input data at arbitrary points.

A far more serious limitation of our algorithm is that the solver does not work when |J | = 0
at any interior point. It is proved in theorem 2.2 that such a situation never arises theoretically
with the Dirichlet boundary condition satisfying (6). However, additive noise may render the
theorem inapplicable, especially in cases of high conductivity contrast ratio, where the current See endnote 6
density |J | in a poorly conducting area would be much smaller than the average current density
‖J‖L2 . Smoothing the input current density data to arrange for the neighbouring current vectors
not to be in opposite directions might be a helpful trick to overcome such a difficulty. Our
next step will be developing a robust and high-order solver for application to data for a noisy
empirical environment. See endnote 7

It is worth commenting that the equipotential line method can be naturally extended to
three-dimensional problems, although many traditional EIT algorithms become intractable
in three-dimensional cases. Equipotential surfaces can be obtained using sequences of
equipotential lines from the boundary surface with the current vector field given in the three-
dimensional object. Once all equipotential surfaces are known, then the later part of the
algorithm is identical to that in the two-dimensional case.
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