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Abstract
We consider a reconstruction formula for the internal conductivity and
uniqueness of conductivity in magnetic resonance electrical impedance
tomography (MREIT) which aims to reconstruct the conductivity distribution
using internal current distribution. We provide a counter-example of uniqueness
for a single measurement of current density with Neumann boundary data and
show that at least two measurements are required unless Dirichlet boundary
data are given. We present a reconstruction formula and a non-iterative
reconstruction method using two internal current densities, which gives a
unique conductivity distribution up to a constant factor even without any
boundary measurement. The curl-J method is based on the fact that the
distortion of the current density vector is induced by the gradient of conductivity
orthogonal to the current flow and the fact that no MREIT method can detect
the conductivity gradient parallel to the current flow direction directly. We
demonstrate the feasibility of our method with several realistic numerical
examples.

1. Introduction

A goal of electrical impedance tomography (EIT) is to recover the interior conductivity
distribution σ satisfying the conductivity equation

∇ · (σ∇u) = 0 in � (1.1)

for electric potential u defined in a simply connected bounded Lipschitz domain �. Classical
EIT attempts to solve this problem using the relationship between the injected current
σ∂u/∂ν|∂� = g and the corresponding boundary voltage u|∂� = f on ∂�. Many theoretical
and numerical approaches have been studied during the last couple of decades (see [3, 4] and
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the references therein). However, no fully satisfactory numerical method exists due to the
strong non-linearity and the highly ill-conditioned nature of the problem [13, 16].

A new imaging technique called magnetic resonance electrical impedance tomography
(MREIT) significantly reduces the ill-conditioning of standard EIT by also using the internal
current density as data. The current density data J is furnished by a recent current density
imaging (CDI) technique [5, 6, 18, 19],

J = 1

µ
∇ × B in � (1.2)

where the magnetic field B inside � can be obtained by magnetic resonance (MR) imaging.
Some of the recent MREIT techniques directly utilize B instead of numerically differentiated
J [2, 17, 20, 21]. We, however, focus on MREIT using J as input data and postpone detailed
discussion on new B-type MREIT or B-MREIT techniques for subsequent papers. J-type
MREIT, or simply MREIT, is a problem to recover the conductivity distribution σ from some
boundary measurements and the internal current density data

J = −σ∇u in � (1.3)

which is divergence free, ∇ · J = 0.
Zhang [23] tried to find a conductivity σ distribution which satisfies Ohm’s law (1.3) and

best matches the measured boundary voltage difference f (b) − f (a),

f (b) − f (a) = −
∫

C(a→b)

1

σ(x)
J(x) · dl (1.4)

where J is given input data and C(a → b) is any path joining boundary points a and b.
This minimization uses only a single measurement of J and Dirichlet data f , which can
be classified as Dirichlet-type MREIT. Birgül et al [1] further extended this optimization
idea to multiple Neumann measurements which provide internal current densities Ji and
corresponding boundary current data gi , but not voltage data. The current constrained voltage
scaled reconstruction (CCVSR) algorithm starts with σ (k=0) and searches for an optimal σ (k+1)

to minimize the difference between −σ (k+1)∇u
(k)
i and the given current density data Ji ,

min
σ

∑
i

∥∥Ji + σ∇u
(k)
i

∥∥2
L2(�)

(1.5)

where u
(k)
i satisfies ∇ · σ (k)∇u

(k)
i = 0 in � and σ (k) ∂

∂ν
u

(k)
i = gi on ∂�. Both minimization

methods could successfully remove the ill-conditioning of the standard EIT problems; however
there is no clear way to find an optimizer σ other than iterating with previous guesses.

The first attempt based on the partial differential equation (1.1), not just Ohm’s law (1.3),
to reconstruct the conductivity distribution σ was made by Kwon et al in [12]. Combining
(1.1) and (1.3), they derived a non-linear partial differential equation for u with given current
data |J|,

∇ ·
( |J|

|∇u|∇u

)
= 0 in �. (1.6)

The conductivity σ can be easily obtained once this non-linear equation is solved; however the
PDE cannot be solved using a single measurement of |J| due to non-uniqueness [9]. So they
use two measurements of the magnitude of interior current density |J1| and |J2| and try to
solve the coupled non-linear PDE,

∇ ·
( |Ji |

|∇ui |∇ui

)
= 0 in � i = 1, 2 (1.7)
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|J1|
|∇u1| = |J2|

|∇u2| in � (1.8)

|Ji |
|∇ui |

∂ui

∂ν
= gi on ∂� i = 1, 2. (1.9)

The coupled PDE guarantees the uniqueness of σ up to a constant and can be solved
iteratively where each iteration is accomplished by the alternative substitution of intermediate
conductivity distribution [10]. The J-substitution algorithm also shows good experimental
results [8, 14]. However, the algorithm needs to solve the non-linear partial differential
equation (1.6) iteratively thus strongly relying on a fast and accurate forward numerical solver.

Our main goal in this paper is to present a direct reconstruction formula for σ which
does not require an iterative forward solver. A direct solver is also able to reconstruct the
conductivity σ in a region of interest (ROI) even when there is experimental difficulty in
obtaining necessary information outside the field of view. There were a couple of previous
attempts to find conductivity directly: the equipotential line method by Kwon et al [11] and
the first-order hyperbolic PDE approach by Ider et al [7]. We briefly mention two closely
related approaches before presenting our new curl-J reconstruction method.

Kwon et al [11] observed that the MREIT problem has nothing to do with the complicated
non-linear partial differential equation (1.6), but the inverse problem can be solved explicitly
using the first-order differential equation (1.3),

−σ∇u = J in � and u = f on ∂� (1.10)

where (J, f ) are the given data for Dirichlet-MREIT. The equipotential line method computes
all the equipotential lines X(s) by solving the ordinary differential equation with the boundary
data f ,

X′(s) =
( ∇u

|∇u|
)⊥

(1.11)

where (·)⊥ denotes the anticlockwise right angle rotation. Then the conductivity distribution
can be calculated using the computed |∇u| and the given magnitude information |J|,
σ = |J|/|∇u|. This idea of a system of first-order ordinary differential equations can
be extended to Neumann-type MREIT using two current densities J1 and J2 wherever f

information is not available [7]. By taking the curl of Ohm’s law (1.3), we get

−∇σ × ∇u = ∇ ln σ × J = ∇ × J (1.12)

and we obtain a first-order hyperbolic partial differential equation for σ ,

Jd · ∇ ln σ = (∇ × J
) · d (1.13)

where Jd := J × d and
(∇ × J

) · d are given data for any given directional vector d in R3.
This hyperbolic equation for σ (1.13) can be solved explicitly using two current densities J1

and J2 by the method of characteristics, integrating over a Cartesian grid, and inversion of a
finite difference matrix by Ider et al [7].

In this paper, we present a formula to solve the curl-J identity (1.12) directly without
solving any partial differential equation. In section 2, we comment on the uniqueness of
conductivity in Dirichlet-MREIT and non-uniqueness of Neumann-MREIT with a single
measurement. In section 3, we describe our curl-J reconstruction formula and a non-iterative
numerical method using two internal current distributions J1 and J2 without any boundary
condition. In section 4, we present various numerical examples and discuss the convergence
of our implementation and the stability of the algorithm under noisy input data.
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2. Uniqueness of Dirichlet- and Neumann-type MREIT

Let � ⊂ R3 be a simply connected bounded domain with C2 boundary and let the conductivity
distribution σ ∈ C1(�) satisfy 0 < σ(x) < ∞ for all x ∈ �̄. Then the conductivity equation
∇ · (σ∇u) = 0 in � has a unique solution given either Dirichlet boundary condition u = f or
Neumann boundary condition σ ∂u

∂ν
= g on ∂� with a trivial normalization such as

∫
∂�

u = 0.
The goal of MREIT is to reconstruct the conductivity σ using the internal current density

J = −σ∇u which can be obtained by the CDI technique. The Dirichlet-type MREIT problem
with non-vanishing divergence-free current density J and continuous Dirichlet boundary
condition f

J = −σ∇u in � and u = f on ∂� (2.1)

has a unique solution of conductivity and potential [11]. The proof is based on the equipotential
line method and it can be easily extended to the case where boundary conductivity is given
instead of boundary potential. However, it is more difficult to accurately measure boundary
conductivity with surface current density or boundary potential than Neumann boundary data
on ∂�.

Therefore, it is an important question whether we can reconstruct conductivity uniquely
using only J in � and g on ∂�. Unfortunately, Neumann-type MREIT with

J = −σ∇u in � and g = σ
∂u

∂ν
on ∂� (2.2)

has non-uniqueness examples [9]. Furthermore, there exist infinitely many solutions of the
Neumann-type MREIT problem. Suppose σu is a conductivity distribution with corresponding
u satisfying

∇ · (σu∇u)(x) = 0. (2.3)

Then for any strictly-increasing function V ∈ C1(R),

v(x) = V (u(x)) (2.4)

σv(x) = σu(x)

V ′(u(x))
(2.5)

satisfies ∇ · (σv∇v)(x) = 0 with the same current density J = −σu∇u = −σv∇v in � and
Neumann boundary condition g = σu

∂u
∂ν

= σv
∂v
∂ν

on ∂�.
We conclude this section by commenting that a single current density measurement, even

with Neumann boundary data, is not enough to reconstruct conductivity distribution uniquely
and our goal of this paper is to develop a fast and efficient non-iterative reconstruction scheme
with two current density measurements.

3. A reconstruction formula

In this section, we assume that the conductive media in � are isotopic and there is no internal
current source so that current density vector field J = −σ∇u is divergence free. By taking
the curl of J, we get the following curl-J identity:

−∇σ × ∇u = ∇ × J, (3.1)

∇σ

σ
× J = ∇ × J. (3.2)
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The Helmholtz theorem states that a divergence-free vector field can be reconstructed from its
curl field so ∇ × J contains the same information as J. Therefore, neither ∇ × J nor J can
provide information about conductivity changes ∇σ

σ
parallel to J. This is the reason why the

uniqueness result from a single measurement requires extra information along a current field
line.

Now suppose that we have two current density profiles, J1(x) and J2(x) in �, whose cross
product is non-vanishing J1(x) × J2(x) �= 0. This non-vanishing cross-product condition can
easily be obtained in most experimental environments (see lemma 4.2 in [9]). Then from (3.2),
the conductivity σ(x) satisfies the following two equations simultaneously,

∇σ

σ
(x) × J1(x) = ∇ × J1(x) (3.3)

∇σ

σ
(x) × J2(x) = ∇ × J2(x). (3.4)

In order to make a representation formula for ∇σ
σ

(x) using ∇ × J1(x) and ∇ × J2(x), we
choose

A(x) := J1 + J2

2
B(x) := J2 − J1

2
C(x) := J1 × J2 (3.5)

as three independent basis vector sets in R3. Using these three basis vectors, the gradient of
conductivity can be represented as

∇σ

σ
(x) = a(x)A(x) + b(x)B(x) + c(x)C(x) (3.6)

and by multiplying J1(x) and J2(x), we get

∇σ

σ
× J1(x) = a + b

2
(J2 × J1) + c ((J1 · J1)J2 − (J1 · J2)J1) (3.7)

∇σ

σ
× J2(x) = a − b

2
(J1 × J2) + c ((J1 · J2)J2 − (J2 · J2)J1) . (3.8)

Combining these equations with (3.3) and (3.4), we can derive the curl-J reconstruction
formula

∇σ

σ
= a(x)

J1 + J2

2
+ b(x)

J2 − J1

2
+ c(x) (J1 × J2) (3.9)

where

a(x) = J1 × J2

|J1 × J2|2 · (∇ × J2 − ∇ × J1) (3.10)

b(x) = J2 × J1

|J1 × J2|2 · (∇ × J1 + ∇ × J2) (3.11)

c(x) = J2 · ∇ × J1

|J1 × J2|2 = −J1 · ∇ × J2

|J1 × J2|2 . (3.12)

Once the conductivity gradient field F(x) := ∇σ
σ

(x) is obtained

F[J1,J2,∇×J1,∇×J2](x) = a(x)A(x) + b(x)B(x) + c(x)C(x) (3.13)

from the two physical measurements of J1, J2 in �, the conductivity distribution σ(x) can be
computed uniquely up to a constant,

σ(x) = σ(x0) exp

(∫
C(x0→x)

F(y) · dy

)
(3.14)



852 J-Y Lee

where C(x0 → x) is any path in � from x0 to x. Here, σ(x0) might be a known conductivity
value at x0 or could be derived from a single voltage measurement [7, 8]. The formula will
give a unique result independent of the path joining x0 to x since the vector field F(x) is a
gradient field when there is no noise on J1 and J2 or ∇ × J1 and ∇ × J2.

When there exists some noise in the data, a conductivity profile can be found in the least
squares sense using the over-determined gradient field F(x),

σ(x) = σ(x0) exp(s(x) − s(x0)) where min
s

‖∇s − F‖L2(�). (3.15)

We choose rectangular bilinear elements {φj } as a basis for s, s(x) = ∑N
j=1 sjφj (x) and solve

a Galerkin-type finite element minimization equation,

N∑
j=1

sj

∫
�

∇φj · ∇φi dx =
∫

�

F · ∇φi dx for i = 1, . . . , N (3.16)

with the constraint s(x0) = log(σ (x0)) at any given point x0.
We conclude this section by mentioning that the curl-J algorithm is the first explicit

reconstruction method for Neumann-type MREIT. There is no iterative forward solver for
optimization nor partial differential equation to solve. The curl-J reconstruction formula
(3.13) is explicit and the corresponding conductivity can also be computed explicitly using the
path integration of F in (3.14). A finite element minimization to find s in (3.15) is merely one
of many possible denoising techniques for noisy J data.

4. Numerical examples

The curl-J method described in the previous section has been implemented in Fortran 77. In
principle, there is no difference between two- and three-dimensional algorithms but for the
sake of simplicity we demonstrate only two-dimensional examples where the solutions do
not depend on z. In this section, we present three numerical examples. The first example
demonstrates numerical accuracy and convergence order of the implementation, the second
shows robustness and stability of the method even with noisy data and the third presents
practical feasibility of the algorithm for realistic situations. The computational cost for
computation of F in (3.13) on an n × n grid is only O(n2) and is dominated by the O(n3)

cost of finding finite element minimization solution s in (3.16). The computation itself takes
around 1.2 s for a 128 × 128 grid and 10 s for a 256 × 256 grid under 866 MHz Pentium III
CPU without applying any serious optimization techniques.

Example 1 (order of convergence). The first example contains rectangular and elliptic
inclusions in a rectangular homogeneous medium of size [−1, 1]2. Each of the inclusions
has constant conductivity from 10−3 to 103 and the conductivity near the inclusion boundary
sharply but continuously changes to background conductivity with a 1

200 length scale. We
solve the conductivity equation (1.1) twice, once with current flowing from the left to the
right boundary and second with current flowing from the bottom to the top using a standard
second-order finite element method on a 512 × 512 grid in order to get two current densities
J1 and J2 for this experiment.

Figure 1 shows the conductivity distribution σ and the current density profile J1 and J2.
The rightmost figure shows the angle between J1 and J2. Current tends to flow towards the
nearby conductor, therefore the angle between two current directions remains almost the same
near highly conductive inclusions surrounded by a poor conductor. Even though J1 × J2 �= 0
mathematically [9], there are several regions where the two directions are nearly parallel.
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Figure 1. Conductivity distribution σ and current density profiles of J1 and J2 for example 1. The
rightmost figure shows the angle between J1 and J2 with white indicating a region of orthogonality.

Figure 2. Computed gradient field F for example 1. Contour lines in the rightmost figure show
the reconstructed log10 σ on 256 × 256 grid and grey shading shows the ratio of the reconstruction
solution to the original.

The effects of parallel flow direction due to noise or computational error will be discussed
later.

Figure 2 shows the computational results for x and y components of F and σ = es on a
256 × 256 grid. We take down-sampled 256 × 256 J1 and J2 data from those on a 512 × 512
grid in figure 1, then apply a second-order finite difference to compute F using (3.10)–
(3.12) followed by a second-order finite element minimization for s using (3.16). Relative
L2 computational error defined by Es := ‖s−log(σ )‖2

‖log(σ )‖2
is 0.23 for this computation and grey

shading in the rightmost figure shows the local error in terms of the ratio of computed to true
conductivity. It indicates that higher error occurs near poorly conductive regions surrounded
by good conductors, which is a natural phenomenon in any type of inverse conductivity
reconstruction algorithm.

We reconstruct conductivity on four different grids in order to check the order of accuracy
of the implementation. All four sets of current density data J1 and J2 are obtained by down-
sampling the same forward solution on 512 × 512 to reduce the effect of the forward solver
error. Figure 3 shows the reconstructed solutions on 128 × 128 and on 512 × 512 whose
relative L2 errors of s are Es = 1.4 and Es = 0.05, respectively. The rightmost plot shows
that the implementation is of second order. The actual error value depends on the range of
conductivity and the smoothness of current density. Developing a higher order method even
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Figure 3. Reconstructed σ on 128 × 128 and 512 × 512 grids. The rightmost plot shows relative
L2-error convergence of s = log σ in terms of the number of grid points.

.1 1 10

Conductivity σ and J
1

.1 1 10

Conductivity σ and J
2

.1 1 10

Computed σ with 2/20% Noise

Figure 4. Conductivity distribution σ and current density profile of J1 and J2 for example 2. The
rightmost figure shows the reconstructed conductivity distribution on a 256 × 256 grid with 2%
additive and 20% multiplicative noise.

with discontinuous current density is a rather technical job but an important future task for
real applications.

Example 2 (stability under noise). The second example checks stability of the algorithm
under noisy input data using a phantom shown in figure 4. The phantom has eight inclusions
whose constant conductivity values are between 0.1 and 10 inside but sharply change to 1
near the boundaries with a 1

500 length scale. Four highly conductive limbs, coined as recessed
electrodes in [15], provide two different types of current injections and suctions.

Current density data J1 and J2 on a 256 × 256 grid are obtained using a second-order
FEM solver. Then the data are mixed with additive and multiplicative noise. Multiplicative
noise is linearly proportional to J(x, y) like signal measurement error while additive noise is
independent of local amplitude like white background noise. For additive noise level noiseadd

and multiplicative noise level noisemul, computational input data are given as follows,

Jnoisy(x, y) = J + noiseadd
(
εa
x , εa

y

)‖J‖2 + noisemul
(
εm
x Jx, ε

m
y Jy

)
(4.1)

where εa
x , εa

y , εm
x and εm

y are four independent random variables uniformly distributed on
[−1, 1].

The rightmost picture in figure 4 shows the computational result for σ with 2% additive
and 20% multiplicative noise, which gives 7.5% relative L2 error in s, Es = 0.075. The
conductivity on the three marked lines in the figure has been drawn in three graphs in figure 5.



A reconstruction formula and uniqueness of conductivity 855

−0.2 0 0.2
10

−1

10
0

10
1

Conductivity(x,−0.30)

−0.2 0 0.2
10

−1

10
0

10
1

Conductivity(x,−0.05)

−0.2 0 0.2
10

−1

10
0

10
1

Conductivity(x,0.10)

Figure 5. Reconstructed conductivity on the three marked lines in figure 4 for example 2. Solid
lines are used for the original conductivity, dashed lines for the computational result without noise
and dotted lines with 2% additive and 20% multiplicative noise.
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Figure 6. Relative F-reconstruction error with additive and multiplicative noise. Solid lines for
L2-relative error in F and dashed lines for error in s. markers + for additive noise and * for
multiplicative noise. The rightmost plot shows the relationship between s-reconstruction error and
F-reconstruction error.

The solid lines are used for the original conductivity, the dashed lines for the reconstruction
without noise and the dotted lines for the computational result shown in figure 4 with 2/20%
noise.

In order to check the stability of the algorithm in the presence of noise, we increase
the additive noise level from 0 to 2% with 0% multiplicative noise. The leftmost graph in
figure 6 shows the L2-relative errors in F and s, compared to the original values, EF and
Es are proportional to the noise level. The middle graph shows the same errors when the
multiplicative noise level varies from 0 to 40% with 0 additive noise. These experiments
demonstrate that the reconstruction errors are linearly proportional to the noise level, thus
the algorithm is linearly stable to the noise. There are two reasons why reconstruction error
for F is not zero even without any noise. The first one is that our simulation data J1 and J2

on 256 × 256 already contain discretization error from a second-order finite element forward
solver. The second reason is that we use a second-order finite difference scheme to compute
∇ × J in (3.10)–(3.12). The rightmost graph in figure 6 shows the relationship between error
in F and error in s from both experiments. It shows that the overall reconstruction error for s
is linearly proportional to the error level of F regardless of the type of error source. Again the
second-order Galerkin-type minimization method has discretization error and does not give a
perfect s even with error-free F.
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64x64 grid, 10/10% noise
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128x128 grid, 10/10% noise
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Figure 7. Reconstructed conductivity distribution with 10% additive and 10% multiplicative noise
on 64 × 64, 128 × 128 and 256 × 256 grids.
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Figure 8. Reconstructed conductivity distribution on a 128 × 128 grid with various noise levels.

The actual size of the relative error for F depends on many factors such as current density
profile, the numerical method used to compute the curl of J and the discritization number.
However, the algorithm stably computes s in the presence of up to 40% multiplicative noise
in most cases regardless of the error size in F, which suggests that the minimization solution
s can be obtained as long as the current flow direction is preserved. Another interesting point
is that errors in F or s are around 10 times larger for additive noise than for the same level of
multiplicative noise. The ratio 10 depends largely on the contrast ratio which is the rough ratio
between the largest to average or the average to the smallest conductivity. In this examples,
the current density in a poor conductor is about 10 times smaller than average, therefore it is
10 times more vulnerable to changes in local flow direction change.

Example 3 (human head phantom). In vivo electrical conductivity for the human body is
not yet available, so we simply assign conductivity values proportional to the intensity of a
256 × 256 human head MRI image. The conductivity for the first simulation ranges from 1 to
10 and is discontinuous, unlike the previous examples. Two current density vectors J1 and J2

are obtained from the same finite element solver used for example 1 and then 10% additive
and 10% multiplicative noise are added. Figure 7 shows the reconstructed conductivity on
64 × 64, 128 × 128 and 256 × 256 under-sampled grids whose L2-relative errors in s, Es

are 37.3%, 15.6% and 8.8%, respectively. The algorithm reconstructs the discontinuous
conductivity distribution reasonably well even on a 64 × 64 grid with 10/10% noise level.
The reconstructed image on a 256 × 256 grid is not easily distinguishable from the original.
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The conductivity for the second simulation ranges from 1 to 100. Figure 8 shows the
reconstructed conductivity on a 128 × 128 grid with various noise levels. The reconstruction
errors Es are 48.5%, 48.9%, 52.0% with 0/20%, 1/10%, 2/0% additive/multiplicative noise,
respectively. The reconstruction quality is quite similar but worse than the result for a 128×128
grid with 10/10% noise. We could infer from this simulation that 1% additive noise has a
similar effect as 10% multiplicative noise in the reconstruction of conductivity with contrast
ratio around 10.

5. Conclusion

We implemented a direct and stable numerical method for MREIT using two current density
profiles based on the curl-J identity (3.2) and the corresponding curl-J reconstruction formula
(3.13). The algorithm is based on a reconstruction formula, so it does not require an iterative
forward solver and the result is linearly stable with respect to the noise level.

Example 2 and figure 6 show that the error of F in the reconstruction formula (3.13) is
significantly higher than minimization solution s although both F and s are linearly stable with
respect to the noise level. In particular, error in F may be locally high when J1 × J2 ≈ 0;
however this local error peak can be significantly reduced by the minimization procedure
(3.16). A fundamental requirement for the reconstruction procedure in a noisy environment is
preservation of global current flow direction F and the algorithm could provide a good image
even with 40–50% multiplicative noise. The effect of additive noise is much stronger in poorer
conducting regions and a key factor to the reconstruction image quality is the contrast ratio
times the additive noise level. The resistivity of the human body is below 100 � cm for body
fluid and above 10 000 � cm for bone, so the signal-to-noise ratio (SNR) for J should be
around 100 in order to apply this reconstruction algorithm to such a sample with contrast ratio
around 10.

It is current state-of-the-art in MRCDI technique to obtain current density data J with
SNR higher than 100, so making a robust and high order solver for the data in a noisy empirical
environment would be a very important step in our work. The smoothing of the input current
density data or the weighted minimization of s by current density strength might be a couple
of examples among many helpful tricks. Also it is very important to make an algorithm
directly utilizing the magnetic field strength B or its z-component Bz, instead of numerically
differentiated values J = ∇ × B as in current standard J-type MREIT technique [17, 20, 21].
We will discuss the nature of B-type MREIT and possible numerical methods thoroughly in
our future papers.
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