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Abstract
We consider a problem of reconstructing a cluster of small elastic inclusions
which are located close to each other. We show that the location of the cluster
and the elastic moment tensor associated with it can be reconstructed by the
measurements of the displacement vectors on the boundary corresponding to
the traction applied on the boundary. The detected elastic moment tensor
represents the overall (or effective) property of the cluster of inclusions. We
implement this idea of reconstruction for the two-dimensional linear isotropic
elasticity to demonstrate its viability. We also perform a numerical study on the
relation between the elastic moment tensor and the total size of the inclusions
of general shape.

1. Introduction

Let � be an elastic body in R
d (d = 2, 3) and suppose that multiple inclusions, which are

close to each other (but not touching), are included in �. We consider the inverse problem
of reconstructing the inclusions by means of a finite number of measurements of traction
displacement on the boundary of �. Since the inclusions are closely spaced, it is unlikely
that we will be able to reconstruct the individual inclusion separately with good resolution.
Separating closely spaced inclusions requires very high-frequency information and the inverse
problem under consideration is nonlinear and ill-posed. Thus it is natural to ask what kind of
information of the cluster of inclusions we can detect from the boundary measurements.

In [7], Ammari et al considered an analogous problem to find a cluster of small conductive
inclusions. They showed that the polarization tensor (and the location) associated with the
cluster can be detected approximately by means of boundary measurements, and then showed
that the polarization tensor yields an equivalent ellipse of the cluster. This equivalent ellipse
represents the overall or effective property of the cluster as a conductor. In this paper, we adapt
the same idea to detect a cluster of small elastic inclusions by means of boundary measurements
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of the displacements. We will show that the location and the elastic moment tensor (EMT),
which is a concept for elasticity analogous to the polarization tensor for electromagnetism, of
the cluster can be found approximately and it represents the overall property of the cluster.
We also perform some numerical experiments on the size estimates of the inclusions (not
necessarily small) of general shape in terms of certain entries of the associated EMT.

There have been many efforts to detect electric or elastic inclusions using asymptotic
expansions of the perturbation of the voltage or displacement on the boundary as the diameter
of the inclusion tends to zero [7, 8, 11, 13, 14, 16, 18–20]. For a comprehensive study on the
development in this direction, we refer to recent texts [5, 6]. We particularly mention that in
[11] a MUSIC-type algorithm based on the asymptotic expansion formula was designed and
implemented to reconstruct well-separated small electric inclusions. It would be interesting
to combine the method in [11] and that of [7] (and this paper) to reconstruct well-separated
clusters of electric (and elastic) inclusions. There also have been several significant works for
the estimation of the total size of inclusions [1–4, 12, 21].

This paper is organized as follows. In section 2, we define the EMT associated with
multiple inclusions and some of its important properties are explained. In section 3, we derive
an asymptotic expansion formula for the displacement perturbation in the presence of a cluster
of small inclusions and then explain the reconstruction algorithm based on the asymptotic
formula. Since derivation of the properties of the EMT for multiple inclusions and asymptotic
expansion is similar to those in [7, 8, 19], we will be brief. The details of the derivation of the
properties of the EMT for multiple inclusions can be found in [17]. The last section presents
the results of numerical experiments.

2. Layer potentials for the Lamé system

Let � be a bounded Lipschitz domain in R
d , d = 2, 3, which occupies a homogenous isotropic

elastic body with the Lamé constants (λ, µ) satisfying µ > 0 and dλ + 2µ > 0, so that the
elasticity tensor C = (Cijkl) for � is given by

Cijkl = λδij δkl + µ(δikδjl + δilδjk), i, j, k, l = 1, . . . , d. (2.1)

For a given displacement vector u, the strain is defined to be

E(u) := 1
2 (∇u + ∇uT), (2.2)

where T denotes the transpose. The elastostatic system corresponding to C is defined by

Lλ,µu := ∇ · (CE(u)) = µ�u + (λ + µ)∇(∇ · u), (2.3)

and the corresponding conormal derivative ∂u
∂ν

on the boundary ∂� is defined to be

∂u
∂ν

:= CE(u)N = λ(∇ · u)N + µ(∇u + ∇uT)N, (2.4)

where N is the outward unit normal to ∂�.
The Kelvin matrix of fundamental solutions � = (�ij )

d
i,j=1 for Lλ,µ is defined by

�ij (x) :=


− γ1

4π

δij

|x| − γ2

4π

xixj

|x|3 , if d = 3,

γ1

2π
δij log|x| − γ2

2π

xixj

|x|2 , if d = 2,

(2.5)

where

γ1 = 1

2

(
1

µ
+

1

2µ + λ

)
and γ2 = 1

2

(
1

µ
− 1

2µ + λ

)
.



Numerical reconstruction of a cluster of small elastic inclusions 2313

The single- and double-layer potential of the density function φ ∈ L2(∂�)d associated with
the Lamé parameters (λ, µ) are defined by

S�[φ](x) :=
∫

∂�

�(x − y)φ(y) dσ(y), x ∈ R
d , (2.6)

D�[φ](x) :=
∫

∂�

∂

∂νy

�(x − y)φ(y) dσ(y), x ∈ R
d\∂�, (2.7)

where ∂
∂νy

denotes the conormal derivative defined in (2.4) with respect to y-variables.
We now define the EMT associated with multiple inclusions. Let Ds, s = 1, . . . , m, be a

bounded Lipschitz simply connected domain whose closures are mutually disjoint. Suppose
that the Lamé parameters of Ds are (λs, µs) for s = 1, . . . , m. Let D := ∪m

s=1Ds . Let (λ, µ)

be the Lamé parameters of the background matrix so that the elasticity tensor in this case is
given by

Cijkl =
{

λχ(Rd\D) +
m∑

s=1

λsχ(Ds)

}
δij δkl +

{
µχ(Rd\D) +

m∑
s=1

µsχ(Ds)

}
(δikδjl + δilδjk).

It is assumed that µs > 0 and dλs + 2µs > 0 for s = 1, . . . , m. For a given function h
satisfying Lλ,µh = 0 in R

d , consider the following elastostatic system in R
d :{

∇ · (CE(u)) = 0, in R
d ,

u(x) − h(x) = O(|x|1−d) as |x| → ∞.
(2.8)

One can easily see that (2.8) is equivalent to the following problem:

Lλ,µu = 0 in R
d\D,

Lλs ,µs
u = 0 in Ds, s = 1, . . . , m,

u|+ = u|− on ∂Ds, s = 1, . . . , m,

∂u
∂ν

∣∣∣∣
+

= ∂u
∂νs

∣∣∣∣
−

on ∂Ds, s = 1, . . . , m,

u(x) − h(x) = O(|x|1−d) as |x| → ∞,

(2.9)

where Lλs ,µs
and ∂

∂νs
denote, respectively, the Lamé system and the conormal derivative with

respect to the parameter (λs, µs).
In view of the transmission conditions (the third and fourth equations in (2.9)) along ∂Ds , it

is natural to represent the solution u to (2.8) using the single-layer potentials. For s = 1, . . . , m,
let Ss

Ds
[φ] be the single-layer potential on ∂Ds defined using the Lamé parameters (λs, µs).

Then the solution u of (2.9) can be represented as

u(x) =

h(x) +
m∑

s=1

SDs
[gs](x), x ∈ R

d \ D̄,

Ss
Ds

[fs](x), x ∈ Ds, s = 1, . . . , m,

(2.10)

where (f1, . . . , fm, g1, . . . , gm) ∈ L2(∂D1)
d ×· · ·×L2(∂Dm)d ×L2

�(∂D1)×L2
�(∂Dm) is the

unique solution to
Ss

Ds
[fs] − SDs

[gs] −
∑
t �=s

SDt
[gt ] = h,

∂
(
Ss

Ds
[fs]

)
∂νs

∣∣∣∣
−

− ∂
(
SDs

[gs]
)

∂ν

∣∣∣∣
+

−
∑
t �=s

∂
(
SDt

[gt ]
)

∂ν

∣∣∣∣
∂Ds

= ∂h
∂ν

,

on ∂Ds, (2.11)
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for s = 1, . . . , m. Here L2
�(∂Ds) is defined by

L2
�(∂Ds) :=

{
f ∈ L2(∂Ds)

d

∣∣∣∣ ∫
∂Ds

f · ψ dσ = 0

for all linear functions ψ satisfying ∂iψj + ∂jψi = 0, 1 � i, j � d

}
.

Let us briefly explain the unique solvability of (2.11). Since Ds is mutually disjoint,
SDt

[f ] is smooth in a neighborhood of ∂Ds for any f ∈ L2(∂Dt) if t �= s. Therefore, the
system of integral equations (2.11) is a compact perturbation of the system
Ss

Ds
[fs] − SDs

[gs] = h,

∂
(
Ss

Ds
[fs]

)
∂νs

∣∣∣∣
−

− ∂
(
SDs

[gs]
)

∂ν

∣∣∣∣
+

= ∂h
∂ν

,
on ∂Ds, s = 1, . . . , m. (2.12)

It was proved in [15] that (2.12) is uniquely solvable for each s under the assumption that
both (λ − λs) and (µ − µs) are either positive or negative. Thus to prove the solvability
of (2.11) it suffices to show its injectivity by the Fredholm alternative, which can be proved in
a way similar to that for the conductivity equation in [7]. A detailed proof of the solvability
of (2.11) can be found in [17].

In particular, let h(x) = xiej where ej , j = 1, . . . , d, is the standard basis for R
d . Let(

fij

1 , . . . , fij
m , gij

1 , . . . , gij
m

)
be the solution to (2.11) with h = xiej . It then follows from (2.10)

and the expansion

�(x − y) = �(x) +
d∑

k=1

∂k�(x)yk + O(|x|−d) (2.13)

for y in a bounded set and |x| → ∞ that the solution u to (2.9) with h = xiej satisfies

u(x) = xiej +
d∑

p=1

∂p�(x)

m∑
s=1

∫
∂Ds

ypgij
s (y) dσ(y) + O(|x|−d), |x| → ∞. (2.14)

The EMT for the multiple inclusion D = ∪m
s=1Ds is defined by

Mij
pq =

m∑
s=1

∫
∂Ds

(xpeq) · gij
s dσ, i, j, p, q = 1, . . . , d. (2.15)

Using the EMT, (2.14) takes the form

uk(x) = xiδjk +
d∑

p,q=1

∂p�kq(x)Mij
pq + O(|x|−d), k = 1, . . . , d, (2.16)

where uk is the kth component of u. In other words, the first-order term of the perturbation of
the displacement vector observed at ∞ is completely determined by the EMT.

The following theorem is obtained in [17] using arguments similar to those in [7].

Theorem 2.1.

(i) (Symmetry) For p, q, i, j = 1, . . . , d, the following hold:

Mij
pq = Mij

qp, Mij
pq = Mji

pq and Mij
pq = M

pq

ij . (2.17)
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(ii) (Positivity) Suppose that all the Lamé parameters of the inclusions are the same, i.e.,
λs = λ̃ and µs = µ̃ for all s = 1, . . . , m. If µ > µ̃ and λ > λ̃ (µ < µ̃, λ < λ̃), then
M is positive (negative, resp.) definite on the space of symmetric matrices. Let κ be an
eigenvalue of M. Then there are constants C1 and C2 depending on λ,µ, λ̃, µ̃ such that

C1|D| � |κ| � C2|D|. (2.18)

(iii) (Size estimation) Suppose i �= j . Under the same condition as (ii), there exists a constant
C depending on λ,µ, λ̃, µ̃ such that

µ

∣∣∣∣ µ + µ̃

µ − µ̃

∣∣∣∣ |D| �
∣∣Mij

ij

∣∣ � C|D|. (2.19)

3. Asymptotic expansions and the reconstruction algorithm

We now briefly explain the asymptotic expansion of the displacement perturbation due to
the presence of a cluster of small inclusions. Let D denote the (single) cluster of inclusions
contained in an elastic body �. More precisely, D can be modeled as D = ε

(∪m
s=1 Bs

)
+ z,

where Bs are mutually disjoint bounded domains such that the volume of ∪m
s=1Bs is 1 and the

center of mass of ∪m
s=1Bs is the origin, ε is small and represents the order of magnitude of the

inclusion D and z represents the location of the inclusion. If we put Ds = εBs, s = 1, . . . , m,
then the distance among Ds is of order ε and hence D represents a collection of closely spaced
multiple small inclusions. We suppose that each Ds is an isotropic elastic material with the
Lamé parameters (µs, λs) and the background D0 := �\D is also isotropic with different
Lamé parameters µ and λ. So the elasticity tensor of C = (Cijkl) of � is given by

Cijkl =
{

λχ(�\D) +
m∑

s=1

λsχ(Ds)

}
δij δkl +

{
µχ(�\D) +

m∑
s=1

µsχ(Ds)

}
(δikδjl + δilδjk),

This paper is concerned with reconstruction of the inclusions D by means of measurements
of the displacement occurred by the traction applied on the boundary of �. Mathematically,
the displacement vector u is the solution to the problem

∇ · (CE(u)) = 0 in �,

∂u
∂ν

= g on ∂�,
(3.1)

where g represents the traction on ∂�. The measurement for the reconstruction is u|∂�, which
is the displacement on ∂�.

Note that since the inclusions Ds are very closely located, it is unlikely that the individual
inclusion can be reconstructed. However, as we will see in the following section, we can
reconstruct an ellipse which represents the cluster of inclusions (and the Lamé parameters) as
a whole. This ellipse is called an equivalent ellipse and is approximately an effective property
of the cluster of inclusions as an elastic body.

The algorithm for the reconstruction is based on the asymptotic expansion of the
perturbation of the displacement which can be derived in a way which is almost parallel
to that in [19]. So, we simply mention the formula without the detail of derivation. The
algorithm itself is identical to that in [19], so we refer the reader to that paper.

For a given traction g, let u be the solution of the problem (3.1). Define the function H[g]
by

H[g](x) = −S�[g](x) + D�[u|∂�](x), x ∈ R
d\∂�. (3.2)

The following asymptotic formula for H[g] can be obtained in the same manner as in [19].
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Theorem 3.1. Let Hk[g], k = 1, . . . , d, be the component of H[g]. For x ∈ R
d\�,

Hk[g](x) = εd

d∑
i,j,p,q=1

(∂iUj )(z)∂p�kq(x − z)Mij
pq + O

(
εd

|x|d
)

+ O

(
εd+1

|x|d−1

)
,

|x| → ∞, (3.3)

where U = (U1, . . . , Ud) is the solution to the Lamé system without the inclusion, i.e., the
solution to 

∇ · (C0E(u)) = 0 in �,

∂u
∂ν

= g on ∂�,
(3.4)

with C0
ijkl = λδij δkl + µ(δikδjl + δilδjk),M

ij
pq are the elastic moment tensors associated with

∪m
s=1Bs and � is the Kelvin matrix of fundamental solutions corresponding to the Lamé

parameters (λ, µ).

Observe that the function H[g] can be computed using the boundary measurement u|∂�.
Formula (3.3) says that H[g](x) is approximately

εd

d∑
i,j,p,q=1

(∂iUj )(z)∂p�kq(x − z)Mij
pq (3.5)

when |x| is large. So we can recover the location z and the EMT εdM
ij
pq by H[g](x).

The equivalent ellipse, which represents the overall (or effective) property of the cluster
of inclusions, can be computed from the detected EMT. The details of the reconstruction
algorithm and computing the equivalent ellipse from the EMT can be found in [19].

4. Numerical experiments

In this section, we show some numerical experiments illustrating computational usability of
the theoretical results in the previous sections. We developed a forward integral equation
solver for the elastic inclusion problem (3.1) with multiple inclusions in the two-dimensional
space. Our solver achieves fourth-order accuracy and provides about four digits of accuracy
for the elastic moment tensor when each of inclusion interfaces has been discritized with
N = 256 points.

We observe in the second example that M12
12 component of the EMT is proportional to the

total size of inclusions and the proportional constant strongly depends on the Lamé constant
µ̃ when all inclusions have the same constant µs = µ̃. Example 3 further investigates the
cases where the Lamé constants of inclusions are different from each other. If all inclusions
have either larger or smaller µs than µ, it is easy to estimate the total inclusion size from the
measurement M12

12 . However, M12
12 may be pretty small if some of inclusions are stiffer and

some are softer than the background medium.
Example 4 shows the results of disc and ellipse reconstruction algorithms with the aid of

a quadratic center finding method for inclusions with the same Lamé constant. The ellipse
reconstruction algorithm requires the Lamé constants µ̃ of inclusions and it gives better
performance than the disc algorithm which is applicable without knowledge on the Lamé
constants of the inclusions. The last example presents the results of reconstruction algorithms
for a domain with inclusions having different Lamé constants. We developed a concept of
µ-area, area of an inclusion weighted by a factor depending on µ, Ds

µ−µs

µ+µs
|Ds | and show that

the computed center is close to the geometric mean of centers of the inclusions weighted by
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Figure 1. Convergence error of the forward solver with N = 20–160 for the domain with five
inclusions Ds whose Lamé constants are (λs , µs). Four broken lines represent the convergence
errors of u1,1, u1,2, u2,2 and uquad. The solid line does that of M

ij
pq .

the µ-area. Also we demonstrate that the concept of effective Lamé constant µ∗ related to
µ-area is useful for the disc and the ellipse reconstruction algorithm.

It is also worth remarking that these numerical experiments are generalization of our
previous work [19] for the cases of multiple inclusions with different Lamé constants and the
reconstruction algorithms for single and multiple inclusions show many similarities. Thus we
do not repeat some of the interesting and important validation experiments in this paper; for
example, the ellipse reconstruction algorithm is linearly stable with respect to random noise
which was shown in the second example in [19].

Example 1 (convergence of a forward solver). We implement an integral equation solver in
order to generate forward solutions of the Neumann-type elastic inclusion problem (3.1). A
generalized minimum residual (GMRES) method has been used to solve the system of integral
equations (2.10)–(2.11) and the single- and double-layer potential defined in (2.6) and (2.7)
have been numerically evaluated using the trapezoidal rule with equally spaced discretization
points along the interfaces ∂Ds . The integrable singularities of the integral kernels (2.5) have
been removed using a delta-trigonometric-type method [9] in order to achieve at least fourth-
order accuracy. The procedure is implemented in Fortran for two-dimensional problems with
multiple inclusions.

We demonstrate the convergence error of the forward solver using the four computed
inhomogeneous solutions u1,1, u1,2, u2,2 and uquad which denote the inhomogeneous solutions
with the same boundary values (traction) of the corresponding homogeneous solutions,
U 1,1 = (2x, 0), U 1,2 = (y, x), U 2,2 = (0, y), U quad = (2xy, x2 −y2), respectively. There are
five inclusions D1, . . . , D5 with the various Lamé constants (λs, µs) for s = 1, . . . , 5 while the
background Lamé constant is fixed to (λ, µ) = (6, 4) as shown in the left diagram of figure 1.
We compute coarse grid solutions with N = 20–160 equispaced points on each of the five
interfaces ∂Ds and compare them with the corresponding forward solutions on the finer grid
with N = 480. The four broken lines in the right diagram represent the convergence errors
of u1,1, u1,2, u2,2 and uquad in the root-mean-square norm. The solid line with circles draws
the convergence error of M

ij
pq in a component-wise l2 sense. The numerical experiment shows

that the forward integral equation solver achieves fourth-order convergence and provides about
five digits of accuracy for the forward solutions and four digits for M

ij
pq when N = 256.
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12 |
µ

relative to the inclusion size |Dp |.

Example 2 (EMT as a function of λ̃ and µ̃). The elastic moment tensor M defined in
section 2 is symmetric (2.17) and its eigenvalues κ are bounded by the size of inclusions
(theorem 2.1 (ii)). We numerically investigate how the components and the eigenvalues of the
EMT depend on the Lamé constants of the inclusions.

We compute M12
12 , and the second and third eigenvalues κ2, κ3 of the EMT for the domain

shown in figure 2 as a function of λs and µs while (λ, µ) are fixed as (6, 4). The upper three
plots show κ2, κ3 and M12

12 as functions of 7 � λ1 � 12 and 7 � λ2 � 12 for five different
cases where µ1 = µ2 = µ̃ = 6, 7, 8, 9, 10. The lower three plots show the same values but
in different view points, that is, as functions of µ̃. It is easy to find that these three values are
strongly dependent on µ̃ but almost independent of λs .

The following numerical experiment demonstrates that M12
12 is a function of µ̃ and

the size of inclusions can be easily estimated from the elastic moment tensor M12
12 and µ̃.

We first select 50 random values for 0.5 � λp � 20 and another 50 random values for
0.5 � µp � 20, p = 1, . . . , 50. Then we choose up to 20 inclusions among 40 ellipses shown
in figure 3 in order to generate a computation domain Dp for each p = 1, . . . , 50 and set the
same Lamé constants for all inclusions, λs = λ̃ = λp and µs = µ̃ = µp for Ds ⊂ Dp while
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the background Lamé constants are fixed to (λ, µ) = (6, 4). The 50 star marks ∗ in figure 3
indicate the absolute values of 1

µ

∣∣M12
12

∣∣ normalized with |Dp|. The numerical result shows that

the estimated size 1
µ

∣∣M12
12

∣∣ is only twice the theoretical lower bound
∣∣µ−µp

µ+µp

∣∣|Dp| which has
been written in theorem 2.1 (iii). The estimated size is near zero if µ̃ is pretty close to µ and
it is larger than the actual size if µ̃ is much smaller than or much larger than µ, say µ̃ < 1

2µ

or 4µ < µ̃.

Example 3 (area reconstruction of multiple inclusions). We observed in the previous example
that the moment tensor 1

µ

∣∣M12
12

∣∣ is proportional to the size of inclusions and the proportional

constant is a function of µ−µ̃

µ+µ̃
when all inclusions have the same Lamé constants µ̃. We

now investigate domains in which inclusions of various shapes have different Lamé constants.
Figure 4 shows three domains containing nine inclusions each and the reconstructed size
1
µ

∣∣M12
12

∣∣. The first domain has nine inclusions which are stiffer than the background medium
λs > λ,µs > µ, the second domain contains nine soft inclusions λs < λ,µs < µ. The third
domain incorporates five stiff (marked by �), three soft (marked by ©) inclusions and one
inclusion with λs �= λ,µs = µ.

For each of the three cases, we performed nine experiments for a domain with m-
inclusions, Dm := ∪m

s=1Ds . The dash-dotted lines with the stars (∗) in the rightmost figures
show the actual size of the inclusions, |Dm| = ∑m

s=1 |Ds |. The solid lines plot the computed
size 1

µ

∣∣M12
12

∣∣ and the triangle marks on the solid lines indicate the sign of M12
12 ,� for positive and

∇ for negative. The dotted lines are for the lower bounds of the estimated size
∣∣∑L

s=1
µ−µ̃

µ+µ̃
|Ds |

∣∣
and � or © marker indicates whether the mth inclusion is stiff or soft.

In the top plot in figure 4 where the inclusions are stiffer than the background medium,
(µ = 4) < 6 � µs � 12, the reconstructed size is between the actual size and the lower bound.
More precisely, it is about twice as large as the lower bound but just a little larger than half
of the actual size, which can be easily guessed from figure 3 of the previous experimentation
with µ̃ around 5–10. The reconstructed size for the middle case where 1 � µs � 8 < (µ = 9)

is pretty close to the actual size. It is sometimes bigger than the actual size; in particular it is
more than double for the first experimentation with D1 = D1 and µ1 = 1 � µ = 9.

The third case with mixed inclusion is little more complex than the previous cases. The
first inclusion (marked by ©) is soft (µ1 = 1) compared to the background (µ = 4), so the
sign of M12

12 for D1 is positive (marked by �). The second inclusion, however, is stiff and
its contribution to M12

12 is negative, thus the reconstruction size 1
µ

∣∣M12
12

∣∣ is decreasing. We

can define the concept of effective stiffness using the sign of M12
12 , then D1, . . . , D3 contains

effectively stiff inclusions and D4, . . . , D9 does effectively soft inclusions. The effect of
adding one more stiff inclusion to a domain with effectively soft inclusions is negative to the
reconstructed size, as we can see for the cases m = 2,m = 3. Also the reconstructed size
is also decreasing for the cases m = 7,m = 9 and no effect when µ8 = µ. Therefore, the
reconstructed size may be much smaller than the actual size if the effects of stiff and soft
inclusions cancel each other as seen in the bottom case.

Example 4 (ellipse reconstruction algorithm). In this example, we find a disc or an ellipse
to reconstruct multiple inclusions with various shapes. The disc and ellipse reconstruction
algorithms presented in [19] have been developed for the single inclusion case. However, the
same algorithms work perfectly well for the cases of multiple inclusions.

The disc reconstruction simply estimates the size of inclusion as

|Ddisc| = 1

µ

∣∣M12
12

∣∣; (4.1)
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Figure 4. Geometric configurations with stiff(top), soft(middle), mixed(bottom) inclusions and
estimated area. Dash-dotted lines with the stars (∗) are for actual sizes |Dm := ∪m

i=sDs |, solid lines
for computed sizes 1

µ
|M12

12 | and dotted lines for the theoretical lower bounds |∑m
s=1

µ−µ̃
µ+µ̃

|Ds ||.
�(∇) marks on the solid lines indicate +(−) sign of M12

12 for Dm and �(©) marks on the dotted
lines indicate stiff(soft) inclusion.

therefore, it can be applicable without prior knowledge of the Lamé constants of the inclusions.
The ellipse reconstruction algorithm, which requires the estimated Lamé constants of the
inclusions, first determines the angle of rotation θ by solving the following equation:

M11
12 + M12

22

M11
11 − M22

22

= 1

2
tan 2θ, 0 � θ <

π

2
.

Then the algorithm finds the size |Dellipse| and the EMT m of an ellipse which satisfy the
following equations:

2
(
m̂11

22 + 2m̂12
12

) − (
m̂11

11 + m̂22
22

) = 2
(
M̂11

22 + 2M̂12
12

) − (
M̂11

11 + M̂22
22

)
, m̂12

12 = M̂12
12 , (4.2)
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(8, 10) (3, 5) 0.4826 0.3990 0.5269 ( 0.0849, 0.2353)
(7, 4) (12, 10) 0.3854 0.2823 0.3722 (-0.0238, 0.1575)

Figure 5. Reconstruction results. The thin solid lines represent the actual domains and the thick
line represents the reconstructed ellipse.

where m̂ and M̂ are the elastic moment tensors while m and M are those in the rotated
coordinate system by an angle θ .

Both reconstruction algorithms may use the linear or the quadratic method to find the
center of a disc or an ellipse [19]. In this example, we use U quad(x) = (

2x1x2, x
2
1 − x2

2

)
to

compute the location z using the following relations:

2∑
i,j=1

Mij
pq

(
∂iU

quad
j

)
(z) = 2πT −1(tHk[g](tel))pq (4.3)

as t → ∞ where

T (apq) := 1

2

2∑
p,q=1

(eklpq + eklqp)apq, eklpq := 2πt ∂p�kq(te
l).

It is worth mentioning that the numerical computation of tHk[g](tel) as t → ∞ is done by a
semi-analytic method, so there is no numerical truncation error in the limiting process.

Figure 5 shows the reconstructed ellipses as the number and the shape of inclusions varies.
The background Lamé constants (λ, µ), the constants of inclusions (λs, µs) = (λ̃, µ̃) and the
total size of the inclusions are given in the table. The areas of reconstructed disc and ellipse
are also summarized along with the reconstructed center (xc, yc) by the quadratic method.

We further investigate the behavior of the ellipse reconstruction algorithm using 1, 3,
5 and 7 identical ellipses whose centers are shifted along a straight line. Figure 6 shows
the placements of the ellipses and the reconstructed ellipse. The Lamé parameters of the
inclusions are (λ̃, µ̃) = (9, 6) while those of the background are (λ, µ) = (6, 4). The size
of a 45◦ slanted ellipse is two axis length times π , abπ = 0.2 × 0.05π and the center of the
nth ellipse is (0.6 − 0.1n,−0.6 + 0.1n). The computational results show that the area of the
reconstructed ellipse is the sum of all inclusions and the reconstructed center is the geometric
mean value of the inclusions as expected. One less expected observation is that the rotation
angle θellipse remains almost constant even when placement of the seven inclusions seems to
be stretched along the upper-left to lower-right direction.

Example 5 (reconstruction of inclusions with the variable Lamé parameters). In this example,
we repeat the disc and the ellipse reconstruction algorithms described in example 4. However,
all of inclusions have different Lamé parameters unlike the previous experiments. We randomly
choose three to five ellipses among the ellipses shown in figure 3 for each of 50 experiments
to make the computational domains Dp, p = 1, . . . , 50. We assign different random values
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Figure 6. Reconstructed ellipses for the domains with 1, 3, 5 and 7 identical inclusions.
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Figure 7. The leftmost and middle plots show the relative areas of reconstructed disc and ellipse
as a function of the effective Lamé parameter µ∗. The rightmost plot presents the relation between
the computed center (xc, yc) and the effective center (x∗, y∗) of the domain Dp

λs < λ,µs < µ for the Lamé constants of Ds ⊂ Dp in the first 20 experiments and randomly
select λs > λ,µs > µ for Ds ⊂ Dp, p = 21, . . . , 50. Figure 7 shows the results of
reconstructed area by the disc algorithm, by the ellipse algorithm, and the computed centers
(xc, yc) by the quadratic method defined in (4.3).

The leftmost plot in figure 7 gives the reconstructed area relative to the inclusion size,∣∣Dp

disc

∣∣/|Dp| = 1
µ

∣∣M12
12

∣∣/|Dp| of the disc reconstruction algorithm which does not require any
information on the Lamé constants of the inclusions. The result has been plotted as a function
of the effective Lamé constant µ

p
∗ defined by

µ − µ
p
∗

µ + µ
p
∗

∑
Ds⊂Dp

|Ds | =
∑

Ds⊂Dp

µ − µ
p
s

µ + µ
p
s

|Ds |. (4.4)

We noted that the result is almost identical to the result in figure 3 and it is a strong evidence
that the total inclusion size can be easily estimated using the component M12

12 of the EMT and
the effective Lamé constant µ∗ defined in (4.4).

The rightmost figure shows the computed center (xc, yc) by the quadratic method which
also does not require the Lamé parameters of the inclusions. This experiment shows that the
computed inclusion center is almost identical to the effective center (x

p
∗ , y

p
∗ ) of the inclusions

Dp defined as follows:

xp
∗

∑
Ds⊂Dp

µ − µ
p
s

µ + µ
p
s

|Ds | =
∑

Ds⊂Dp

xs

µ − µ
p
s

µ + µ
p
s

|Ds |,

yp
∗

∑
Ds⊂Dp

µ − µ
p
s

µ + µ
p
s

|Ds | =
∑

Ds⊂Dp

ys

µ − µ
p
s

µ + µ
p
s

|Ds |,



Numerical reconstruction of a cluster of small elastic inclusions 2323

where (xs, ys) is the center of the ellipse Ds . If we define ‘µ-area’ of an inclusion Ds as
µ−µ

p
s

µ+µ
p
s
|Ds |, then the effective center of inclusions is the geometric mean value of the centers of

inclusions weighted by µ-area and the effective Lamé constant µ
p
∗ is nothing but the µ-area

weighted mean value of µs .
The ellipse reconstruction algorithm requires a Lamé constant (λ̃, µ̃) for the reconstructing

ellipse. Although the selection of µ̃ is more critical than λ̃, the change on the value of λ̃p

makes easily ±20% changes of reconstructed area. It is natural to choose the effective µ
p
∗

for µ̃p but the choice of λ̃p is not clear. The middle figure shows the area of the computed
ellipse relative to the size of inclusions,

∣∣Dp

ellipse

∣∣/|Dp| when λ̃p is set to be the area-weighted
mean value of λs, λ̃

p|Dp| = ∑
Ds⊂Dp λs |Ds |. We have tried several other choices for λ̃p

such as µ-area weighted λs ; however, none of our choices is a clear winner compared to
others. Further theoretical research regarding the EMT dependence on λ would give a better
understanding on the ellipse reconstruction algorithm.
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