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Abstract

The nonequispaced or nonuniform fast Fourier transform (NUFFT) arises in a variety of application areas, includ-

ing imaging processing and the numerical solution of partial differential equations. In its most general form, it takes as

input an irregular sampling of a function and seeks to compute its Fourier transform at a nonuniform sampling of fre-

quency locations. This is sometimes referred to as the NUFFT of type 3. Like the fast Fourier transform, the amount of

work required is of the order O(N log N), where N denotes the number of sampling points in both the physical and

spectral domains. In this short note, we present the essential ideas underlying the algorithm in simple terms. We also

illustrate its utility with application to problems in magnetic resonance imagin and heat flow.

� 2005 Elsevier Inc. All rights reserved.

Keywords: Nonuniform fast Fourier transform; Fourier integral; Heat equation; Magnetic resonance imaging
1. Introduction

The nonuniform or unequispaced fast Fourier transform (NUFFT) arises in a variety of application

areas, including imaging processing and the numerical solution of partial differential equations. In its sim-

plest form, one is given an irregular sampling of a function at N data points and seeks to compute the coef-
ficients of the corresponding Fourier series. Following Dutt and Rokhlin [2], we refer to this as a type 1

transform. The adjoint of this procedure is that of evaluating a given Fourier series at a set of nonuniform

target points, which we refer to as a type 2 transform. Like the fast Fourier transform (FFT) for equispaced

data, the NUFFT reduces the cost of the computation from O(N2) operations to O(N log N) operations.

This short note is not intended as a review article, and we refer the reader to a sampling of the relevant
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literature in the papers [1,3,4,7,8]. Additional citations can be found in our earlier paper [5], where we

describe simple and efficient implementations of these NUFFTs.

Here, we consider the most general such transform, where both the ‘‘physical’’ and ‘‘Fourier’’ space sam-

pling are nonuniform and discuss some of its applications. More precisely, in d dimensions, we consider the

computation of
F k ¼
XN�1

j¼0

fje�isk �xj ; ð1Þ
at N locations sk. This is sometimes referred to as a type 3 version of the NUFFT. The algorithm is not new.

Descriptions can be found, for example, in [1,2,7,8]. Nevertheless, it is worth describing the essential fea-

tures of the method in simple terms. Moreover, the type 3 NUFFT has interesting applications which

do not appear to be widely appreciated.
2. The nonuniform FFT of type 3

We can think of (1) as a discretization of the continuous Fourier transform,
F ðsÞ ¼ 1

ð2pÞd
Z 1

�1
� � �

Z 1

�1
f ðxÞe�is�x dx ð2Þ
using nonuniformly sampled discretization points and evaluated at nonuniformly sampled frequencies.
All existing nonuniform FFTs are based, in essence, on combining a local interpolation scheme with the

standard FFT. The type 3 NUFFT is no exception. For the sake of simplicity, however, we limit the

detailed discussion to the one dimensional case.

Note first that Eq. (1) can be interpreted as the continuous Fourier transform of the function
f ðxÞ ¼
ffiffiffiffiffiffi
2p

p XN�1

j¼0

fjdðx� xjÞ ð3Þ
evaluated at the point s = sk. We obviously cannot sample the function f(x) on a uniform mesh, so we begin

by convolving f(x) with the (one-dimensional) Gaussian gsðxÞ ¼ e�x2=4s. Thus, we define fs(x) by
fsðxÞ ¼ f � gsðxÞ ¼
1ffiffiffiffiffiffi
2p

p
Z 1

�1
f ðyÞgsðx� yÞdy: ð4Þ
Since fs is now a smooth, infinitely differentiable function, it can be well-resolved by a uniform mesh in x

whose spacing is determined by the parameter s. For this, we assume that jxjj 6 X. We define the discrete

equispaced samples of fs by
fsðnDxÞ ¼
XN�1

j¼0

fjgsðnDx � xjÞ: ð5Þ
Let us now carry out a less intuitive anti-diffusion step, whose purpose will become clear shortly. For this,

we define the (continuous) Fourier transform of gs(x) by Gs(s). A straightforward calculation shows that

GsðsÞ ¼
ffiffiffiffiffi
2s

p
e�s2s. We let
f �r
s ðxÞ ¼ fsðxÞ

GrðxÞ
¼ 1ffiffiffiffiffiffi

2r
p erx

2

fsðxÞ: ð6Þ
The Fourier transform of f �r
s , namely
F �r
s ðsÞ ¼ 1ffiffiffiffiffiffi

2p
p

Z 1

�1
f �r
s ðxÞe�isx dx;
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can be computed with high accuracy on a uniform grid in s with spacing Ds using the standard FFT on a

sufficiently fine grid. That is,
F �r
s ðmDsÞ �

Dxffiffiffiffiffiffip
X

f �r
s ðnDxÞe�imnDxDs : ð7Þ
2p
 n

Remark 1. Here, we assume that jskj 6 S. Because of the rapid decay of the Gaussian in (5), we can ignore

contributions to fs (nDx) from points xj more than a certain distance away with an exponentially small

error. We will denote by msp the number of grid points to which we extend the influence of a point source in
each direction. Given msp, we choose Dx � p

S
1
R ; Ds � p

XþmspDx

1
R, and Mr ¼ 2p

DxDs
, where the oversampling

parameter R > 1. The actual values of R and msp can be optimized once the accuracy requirements are

known.

The next step is to recover the values Fs(sk) by convolving F �r
s ðsÞ with gr(s): i.e.,
F sðskÞ ¼ F �r
s � gr

� �
ðskÞ ¼

1ffiffiffiffiffiffi
2p

p
Z 1

�1
F �r

s ðsÞgrðsk � sÞds � Dsffiffiffiffiffiffi
2p

p
X
m

F �r
s ðmDsÞgrðsk � mDsÞ: ð8Þ
This follows from the convolution theorem and the fact that we already carried out the deconvolution step

in (6).

Once the values Fs(sk) are known, it remains only to correct for the initial smoothing to obtain the
desired values F(sk). An elementary calculation shows that
F ðskÞ ¼
1ffiffiffiffiffi
2s

p es
2
ksF sðskÞ: ð9Þ
This follows again from the convolution theorem. The actual implementation requires a complete specifi-

cation of all details. We do not repeat the analysis of [2] here, but summarize the relevant results as follows:

if we let
Dx �
p
S

1ffiffiffi
2

p ; Ds �
p

X þ mspDx

1ffiffiffi
2

p ; s ffi Dx

2p
mspffiffiffi

2
p

ð
ffiffiffi
2

p
� 1Þ

; r ffi Ds

2p
mspffiffiffi

2
p

ð
ffiffiffi
2

p
� 1Þ

; Mr ¼
2p
DxDs

;

ð10Þ

then carrying out the convolutions in (5) and (8) with msp = 9 yields about six digits of accuracy. Carrying

out the convolutions with msp = 18 yields about twelve digits of accuracy. Efficient implementation of these

steps can be carried out using the fast Gaussian gridding algorithm of [5]. The higher dimensional versions

involve more notation but are obvious extensions of the one-dimensional scheme. Appropriate values of

Mr, Dx and Ds can be chosen for each dimension separately.

Remark 2. Greater efficiency can be achieved by using convolution kernels other than Gaussians [1,3,7],

but at an increased storage cost compared to the scheme of [5].
3. Numerical examples

The NUFFT of types 1, 2 and 3 have been implemented (in Fortran) with fast gridding in one, two

and three dimensions. Detailed experiments were presented in [5] for the first two types in one and

two dimensions. Here, we illustrate the performance of the type 3 transforms in the context of two

applications.
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Fig. 1. The left-hand figure shows a set of sampling points for a function f(x) and the right-hand figure shows a set of discretization

points in Fourier space.
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Example 1. An important application of the type 3 NUFFT is to heat flow in exterior domains. We have

shown [6] that the free-space heat kernel is well-represented in the Fourier domain using a highly non-

uniform sampling – one that clusters exponentially to the origin (Fig. 1(b)). In order to project a function

onto these Fourier modes, one must evaluate sums of the form
F ðkjÞ �
XN
n¼1

wnf ðxnÞe�ikj�xn ;
where the points xn are the sampling points for f(x). (The tensor product discretization shown is easy to

construct but not entirely optimal. More sophisticated quadratures following the general approach of [6]

would achieve a modest reduction in the total number of nodes.) Suppose for example that f(x) is a singular

heat source concentrated on the curves depicted in Fig. 1(a). With N = 22,500 points and a spectral discret-

ization using 150 · 150 nodes, the type 3 NUFFT with six digits of accuracy requires 0.4 s while the direct
calculation requires about 110 s. If the data were uniformly spaced, the standard FFT would require only

about 0.01 s.

Example 2. A second important application of the nonuniform FFT is to magnetic resonance imaging
(MRI) [9]. Under the assumption of a perfectly homogeneous magnetic field, the MRI hardware is able to

acquire the Fourier transform of a particular tissue property at selected points in the frequency domain.

The signal produced during the ‘‘readout phase’’ at time t is given by
sðtÞ ¼
Z

qðxÞe�i2pkðtÞ�x dx;
where x = (x1, x2) is a point in the two-dimensional image plane. In other words, s(t) is precisely the value

of the Fourier transform q̂ at the location k(t) = (k1(t), k2(t)). In the presence of a (known or unknown) field

inhomogeneity given by /(x), however, we have
sðtÞ ¼
Z

qðxÞe�i2pkðtÞ�xe�i/ðxÞt dx: ð11Þ
Suppose now that one seeks to model the signal s(t) from known functions of space q(x) and /(x). This
requires the computation of
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sðtjÞ �
XN
n¼1

wnqðxnÞe�i2pkðtjÞ�xne�i/ðxnÞtj ¼
XN
n¼1

wnqðxnÞe�iKj�Xn ;
where Kj = (k1(tj), k2(tj), tj) and Xn ¼ ð2px1n; 2px2n; /ðxnÞÞ. Thus, by embedding the data points in a higher
dimensional space, one can carry out the transformation using a type 3 NUFFT. We cite one timing result,

for a case where the (x1, x2) variables are discretized using a regular 128 · 128 mesh on the unit box, and

k-space is traversed by a spiral trajectory similar to that shown in Fig. 1(a) up to a maximum frequency of

60. The time interval of the readout phase was scaled is to [0,1], and /(x) was allowed to vary in the interval

[�5p, 5p]. Under these conditions, direct evaluation required about 140 s, while the NUFFT required 3.8 s

to obtain six digits of accuracy.
4. Conclusions

We have presented a simple version of the type 3 nonuniform FFT. It can be used to approximate the

continuous Fourier transform when neither the spatial nor the Fourier domain spacing is regular. Further,

it allows for the evaluation of more general integral operators such as (11) by embedding them in a higher

dimensional space.
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