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ABSTRACT. In this paper, we present an efficient numerical method for multiphase image
segmentation using a multiphase-field model. The method combines the vector-valued Allen–
Cahn phase-field equation with initial data fitting terms containing prescribed interface width
and fidelity constants. An efficient numerical solution is achieved using the recently developed
hybrid operator splitting method for the vector-valued Allen–Cahn phase-field equation. We
split the modified vector-valued Allen–Cahn equation into anonlinear equation and a linear
diffusion equation with a source term. The linear diffusionequation is discretized using an
implicit scheme and the resulting implicit discrete systemof equations is solved by a multi-
grid method. The nonlinear equation is solved semi-analytically using a closed-form solution.
And by treating the source term of the linear diffusion equation explicitly, we solve the mod-
ified vector-valued Allen–Cahn equation in a decoupled way.By decoupling the governing
equation, we can speed up the segmentation process with multiple phases. We perform some
characteristic numerical experiments for multiphase image segmentation.

1. INTRODUCTION

The Allen–Cahn (AC) equation [1] was originally introducedas a phenomenological model
for antiphase domain coarsening in a binary alloy. The AC equation and its modified forms have
been widely adapted to model problems such as phase transitions [1], crystal growth [2, 3, 4, 5],
grain growth [6, 7, 8, 9, 10], image segmentation [11, 12], motion by mean curvature [13, 14,
15, 16, 17, 18, 19], two-phase fluid flows [20], and vesicle membranes [21]. To solve the AC
equation and its modified forms numerically, various methods have been developed including
boundary integral [22, 23], cellular automata [24, 25], front-tracking [26, 27], level-set [28, 29,
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30], and phase-field [30, 31, 32, 33, 34, 35] methods. Among these various methods, the phase-
field method is popular and widely used. The most significant computational advantage of the
phase-field method is that an explicit tracking of the interface is unnecessary by introducing a
phase-field variable.

An important class of phase-field models are multiphase-field models [36, 37, 38, 39, 40,
41, 42, 43, 44] which represent a multiphase microstructureby a vector-valued phase-field
φ with K components(φ1, . . . , φK). Each component is called a phase-field variable and is
continuous in space and time. Inside a bulk phase, one componentφk takes the value one, while
the other phase-field variables assume the value zero. In accordance with [36], the condition is
imposed that the componentsφk must lie in the GibbsK-simplex

G :=

{

φ ∈ R
K

∣

∣

∣

∣

∣

φk ≥ 0,

K
∑

k=1

φk = 1

}

. (1.1)

Without loss of generality, we postulate that the Ginzburg–Landau total free energy of the
multiphase microstructure can be written as follows:

E(φ) =
∫

Ω

(

F (φ)

ǫ2
+

1

2

K
∑

k=1

|∇φk|2
)

dx, (1.2)

whereΩ ⊂ R
d (d = 1, 2, 3) is a polygonal (polyhedral) domain,F (φ) = 0.25

∑K
k=1

φ2k(1 −
φk)

2, andǫ > 0 is the gradient energy coefficient. The vector-valued AC equation [36, 38, 40,
41, 42, 43, 44] is theL2-gradient flow of the total free energyE(φ) defined in (1.2) under the
additional constraint (1.1), which has to hold everywhere at any time. It is natural to seek a law
of evolution in the form

∂φ

∂t
= −gradE(φ). (1.3)

The symbol “grad” here denotes the gradient on the manifold in L2 space. Letf(φ) =

(f(φ1), . . . , f(φK)) be the gradient ofF , ∂F
∂φ

=
(

∂F
∂φ1

, . . . , ∂F
∂φK

)

wheref(φ) = φ(φ −
0.5)(φ − 1) and we use a variable Lagrange multiplierβ(φ) = (−1/K)

∑K
k=1

f(φk) [36]
in order to ensure the constraint (1.1). Using a general smooth vector-valued functionξ, we set

ψ = (ψ1, . . . , ψK) = ξ − 1

K

K
∑

k=1

ξk1,

where1 = (1, . . . , 1) ∈ R
K and

∑K
k=1 ψk = 0. Then we have

(gradE(φ),ψ)L2 =
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E(φ + θψ)
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where we have used the zero Neumann boundary condition:∇φk · n = 0 on∂Ω, wheren is
the unit normal vector to∂Ω. We identify gradE(φ) ≡ (f(φ) + β(φ)1) /ǫ2 −∆φ, then (1.3)
becomes the vector-valued AC equation

∂φ

∂t
= − f(φ) + β(φ)1

ǫ2
+∆φ. (1.4)

Until recent years, only explicit discretization schemes have been used to solve the multiphase-
field model numerically [36, 38, 39]. Unfortunately, these discretization methods suffer from
a severe time step restriction. To avoid the strong stability condition of traditional explicit
methods, Vanherpe et al. [43] employed a semi-implicit discretization scheme that treats the
gradient energy part of the model implicitly and the potential part explicitly. And Lee and Kim
[44] presented a hybrid operator splitting method for solving the model, in which the linear
diffusion part of the model was solved using an implicit scheme and the nonlinear part was
solved semi-analytically.

In this paper, we extend the vector-valued AC model (1.4) into a modified vector-valued AC
model with initial data fitting terms containing prescribedinterface width and fidelity constants
to solve multiphase image segmentation problem [35, 45, 46,47, 48]. The objective of this
paper is to present an efficient numerical method for multiphase image segmentation. We
employ the recently developed hybrid operator splitting method for the vector-valued AC model
[44]. We split the modified vector-valued AC model into a nonlinear part and a linear diffusion
part with a source term (the initial data fitting terms and theconstraint terms). The linear
diffusion part is discretized using an implicit scheme and the resulting implicit discrete system
of equations is solved by a fast solver, such as a multigrid method [49, 50]. The nonlinear part
is solved semi-analytically using a closed-form solution.And by treating the source term of the
linear diffusion part explicitly, we solve the modified vector-valued AC model in a decoupled
way, i.e., we only solve the modified scalar AC equationK−1 times to solve the modified
vector-valued AC equation sinceφK = 1−∑K−1

k=1
φk. By decoupling the governing equation,

we can speed up the segmentation process with multiple phases.
This paper is organized as follows. In Section 2, the proposed model for multiphase im-

age segmentation is given. In Section 3, we describe an efficient numerical method which is
based on an operator splitting method. In Section 4, we perform some characteristic numerical
experiments for multiphase image segmentation. Finally, conclusions are given in Section 5.

2. MODIFIED ALLEN–CAHN PHASE-FIELD MODEL FOR IMAGE SEGMENTATION

Image segmentation is one of the most important tasks in computer vision. Its goal is to
partition a given image into several regions so that each region has uniform characteristics
such as edges, intensities, color, and texture. Variational methods have been increasingly used
as powerful methods for image segmentation. In variationalformulation, image segmentation
is achieved by solving an energy minimization problem. Manyvariational models for image
segmentation have been proposed in the past two decades [51,52, 53, 54]. One of the most
successful models is the Mumford–Shah model [51], which approximates an image by a piece-
wise smooth function with regular boundaries: Given a grayscale imageI : Ω → R, where the
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image domainΩ is a bounded and open subset ofR
2 such thatΩ =

⋃K
i=1

Ωi (Ωi are several
subdomains withΩi

⋂

Ωj = ∅ wheni 6= j), the Mumford–Shah functional is given by

EMS(φ,Γ) =

∫

Ω\Γ
|∇φ|2dx+ µ

∫

Γ

dσ + λ

∫

Ω

(φ− I)2dx,

whereΓ =
⋃

∂Ωi is the union of boundaries ofΩi, φ is a piecewise smooth approximate
function of imageI, andµ, λ are positive constants. The first term minimizes the variation
of φ and promotes its smoothness, the second term minimizes the length of interfaces and
determines the boundaries betweenΩi, and the third term, sometimes referred to as the fidelity
or fitting term, minimizes the variation betweenφ and I. In particular, Mumford and Shah
considered the special case where the functionφ is chosen to be a piecewise constant function.
The piecewise constant Mumford–Shah functional was rediscovered by Chan and Vese with a
level set formulation [55].

A phase-field approximation for minimizing the piecewise constant Mumford–Shah func-
tional is given by the following functional:

E(φ) =
∫

Ω

(

F (φ)

ǫ2
+

|∇φ|2
2

+
λ

2

[

φ2(I − c1)
2 + (1− φ)2(I − c2)

2
]

)

dx, (2.1)

where we have added two fitting terms to the Ginzburg–Landau energy,F (φ) = φ2(1 − φ)2

is a double well potential, andc1 andc2 are averages ofI in the regions in whichφ is one and
zero, respectively:

c1 =

∫

Ω
Iφ dx

∫

Ω
φ dx

and c2 =

∫

Ω
I(1 − φ) dx

∫

Ω
(1− φ) dx

.

Variation of energy (2.1) with respect toφ yields the following gradient descent equation (the
modified scalar AC equation):

φt = −f(φ)
ǫ2

+∆φ− λ
[

φ(I − c1)
2 − (1− φ)(I − c2)

2
]

.

Multiphase segmentation is a more challenging problem thantwo-phase segmentation. Main
difficulty is in finding effective representations of the regions and their boundaries. Several
recent works are related to the multiphase Mumford–Shah model [35, 46, 45, 47, 48]. Vese and
Chan [45] generalized the two-phase model [55] to multiphase segmentation by using multiple
level set functions. Both piecewise constant and piecewisesmooth cases are studied. Their
model can segment an image into2K phases withK level-set functions. Thus, their model
evolves more regions than necessary whenever the number of regions is not a power of two. In
this case, the redundant regions are empty. Samson et al. [46] proposed another level set based
multiphase segmentation model by adding a penalty term on the level set functions to penalize
the vacuum and overlap. Lie et al. [47] introduced a piecewise constant level set function and
used each constant value to represent a unique phase in a piecewise constant segmentation
model. Jung et al. [48] proposed a phase field method to handlemultiphase piecewise constant
segmentation. The method is based on the phase transition model of Modica and Mortola with
a sinusoidal potential. Li and Kim [35] modified the sinusoidal potential in the model of Jung et
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al. to a periodic quartic polynomial potential and presented an efficient and accurate numerical
scheme by using the polynomial potential.

In this paper, to achieve a simultaneous segmentation ofI into arbitrarily many pieces, we
refer to the vector-valued formulation of the AC equation. Similar to (2.1), we add initial data
fitting terms to the Ginzburg–Landau energy (1.2) and then obtain

E(φ) =
∫

Ω

(

F (φ)

ǫ2
+

1

2

K
∑

k=1

|∇φk|2 +
λ

2

K
∑

k=1

φ2k(I − ck)
2

)

dx, (2.2)

where

ck =

∫

Ω
Iφk dx

∫

Ω
φk dx

for k = 1, . . . ,K.

Variation of energy (2.2) with respect toφ yields the following gradient descent equation (the
modified vector-valued AC equation):

∂φ

∂t
= − f(φ)

ǫ2
+∆φ− λG(φ) + β(φ)1, (2.3)

whereG(φ) = (φ1(I − c1)
2, . . . , φK(I − cK)2) and

β(φ) =
1

K

K
∑

k=1

[

f(φk)

ǫ2
+ λφk(I − ck)

2

]

is a variable Lagrangian multiplier. We note that in [35] a scalar phase-field with(K−1) level
was used to representK phases and a periodic quartic polynomial was used as a potential. In
our model, a vector-valued phase-field withK components is used to representK phases and a
double well potential is used, which is typically used in theCahn–Hilliard and the Allen–Cahn
equations.

3. AN OPERATOR SPLITTING METHOD FOR VECTOR-VALUED AC EQUATIONS

In this section, we describe an operator splitting method for solving the modified vector-
valued AC equation (2.3). SinceφK = 1 − φ1 − φ2 − . . . − φK−1, we only need to solve
equations withφ1, φ2, . . . , φK−1, andφ = (φ1, φ2, . . . , φK−1) can be redefined with only

K−1 variables. Similarly we redefinef(φ), G(φ), and1 to f(φ) =
(

∂F
∂φ1

, . . . , ∂F
∂φK−1

)

,

G(φ) = (φ1(I − c1)
2, . . . , φK−1(I − cK−1)

2), and1 = (1, . . . , 1) ∈ R
K−1.

Let Ω = (a, b) × (c, d) be the computational domain in 2D,Nx andNy be positive even
integers,h = (b − a)/Nx = (d − c)/Ny be a uniform mesh size, andΩh = {(xi, yj) : xi =
(i− 0.5)h, yj = (j − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be the set of cell-centers. Letφn

ij be
the approximations ofφ(xi, yj , n∆t), where∆t = T/Nt is the time step,T is the final time,
andNt is the total number of time steps. We define the discrete differentiation operators by

Dxφi+ 1

2
,j =

1

h
(φi+1,j −φij) and Dyφi,j+ 1

2

=
1

h
(φi,j+1 − φij).
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and the discrete Laplacian by

∆dφij =
1

h

(

Dxφi+ 1

2
,j −Dxφi− 1

2
,j +Dyφi,j+ 1

2

−Dyφi,j− 1

2

)

.

We discretize (2.3) in time by an operator splitting algorithm:

φ∗
ij − φn

ij

∆t
= ∆dφ

∗
ij − λG(φn

ij) + β(φn
ij)1, (3.1)

φn+1
ij − φ∗

ij

∆t
= −

f(φn+1
ij )

ǫ2
, (3.2)

wherecnk is defined as follows:

cnk =
Nx
∑

i=1

Ny
∑

j=1

Iij(φk)
n
ij

/

Nx
∑

i=1

Ny
∑

j=1

(φk)
n
ij

for k = 1, . . . ,K−1.
Equation (3.1) is an implicit Euler’s method forφt = ∆φ−λG(φ)+β(φ)1 with an initial

conditionφn. The resulting implicit discrete system of equations can besolved by a fast solver,
such as a multigrid method [49, 50]. Also, a pointwise Gauss–Seidel relaxation scheme is used
as the smoother in the multigrid method. Equation (3.2) can be considered as an approximation
of the equation

φt = − f(φ)

ǫ2
(3.3)

by an implicit Euler’s method with an initial conditionφ∗. We can solve (3.3) semi-analytically
using a closed-form solution. The solution is given as follows:

(φk)
n+1
ij = 0.5 +

(φk)
∗
ij − 0.5

√

e−
∆t

2ǫ2 + (2(φk)
∗
ij − 1)2(1− e−

∆t

2ǫ2 )

for k = 1, . . . ,K−1. The numerical algorithm is shown schematically in Figure 1.

φn+1

φn

φt = ∆φ− λG(φ) + β(φ)1
(multigrid method)

//

66
l
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l

l

l

l

l

l

l

l

φ∗

φt = − f(φ)

ǫ2
(analytic method)

OO

FIGURE 1. Schemetic diagram of operator splitting method.
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In (3.1), the variable Lagrange multiplierβ(φ) is determined by the solutions at time level
n. By treatingβ(φ) explicitly, there is no relation between the solutions at time level∗. Thus
the modified vector-valued AC equation can be solved in a decoupled way,

(φk)
∗
ij − (φk)

n
ij

∆t
= ∆d(φk)

∗
ij − λ(φk)

n
ij(Iij − cnk)

2 + β(φn
ij), (3.4)

(φk)
n+1
ij = 0.5 +

(φk)
∗
ij − 0.5

√

e−
∆t

2ǫ2 + (2(φk)
∗
ij − 1)2(1− e−

∆t

2ǫ2 )
(3.5)

for k = 1, . . . ,K−1. This means that we only solve the modified scalar AC equationK−1
times to solve the modified vector-valued AC equation.

4. NUMERICAL EXPERIMENTS FOR IMAGE SEGMENTATION

In this section, we demonstrate numerical efficiency and stability of the operator splitting
method (3.4)–(3.5) described in the previous section for solving the modified vector-valued AC
equation (2.3). A steady state solution of (2.3) is controlled by two tuning parameters:ǫ for
image sharpness (interface thickness) andλ for image fidelity (closeness to the original image).
For given fixed value ofλ, interface width parameterǫ plays an important role of the final image
sharpness. We want to set the phase-field variable varies across an interfacial region from0.05
to 0.95 over a distance of about4

√
2ǫ tanh−1(0.9). Therefore, if we want this value to be

approximatelym grid points, theǫ value needs to be taken asǫm = hm/(4
√
2 tanh−1(0.9)).

In this paper, we chose variousǫ values which are suitable for each problem, however, different
ǫ values make little differences in the results. In all the numerical experiments, a given imageI
is normalized asI = I−Imin

Imax−Imin
, whereImax andImin are the maximum and minimum values of

the given image, respectively. Note that we use the same computational domainΩ = (0, 1) ×
(0, 1) for the sake of simplicity.

We provide 3 examples in this section: one for testing computational speed of the numerical
algorithm with multiple phase components, one for checkingnumerical stability of the mul-
tiphase image segmentation method with noisy data, and one for demonstrating suitability of
the algorithm for real world images. We give the CPU time in seconds for our calculations,
performed on a workstation with a 3.2 GHz Intel Core i5 CPU and4 GB of RAM.

Example 1. (Computational efficiency with multi-components) Synthetic image
The first example, Figure 2, shows a complex synthetic image taken from [48] that contains

several generic visual structures, such as an internal hole, occlusion and stacked objects, T-
junctions, singular junctions. The parameter values are chosen ash = 1/256, ∆t = 5E-6,
ǫ = ǫ5, andλ = 10. For segmentation, it took only2 iterations and0.594 seconds, while the
previous method in [48] took18 iterations and37.109 seconds. The results withK = 5 phase-
field components in Figure 2 show that our method can capture multiple objects simultaneously
for multiple geometries.

One of the drawbacks for any method based on the AC equation isthat the numberK
of components ofφ must presently be specified from the start, and we did not consider the
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Original image φ1, c1 = 0.0243 φ2, c2 = 0.2490

φ3, c3 = 0.4977 φ4, c4 = 0.7521 φ5, c5 = 0.9967

FIGURE 2. Original imageI with multiple objects of size256 × 256 and
steady state (n ≥ 2) solutions,φk, ck, k = 1, . . . , 5 for ǫ = ǫ5 andλ = 10.
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FIGURE 3. Segmentation of the image in Figure 2 withK = 9.

feasibility or implications of adding or removing components during the computation. Thus, to
segment a multiphase image successfully, we need a sufficient number of phase-field variables.
Figure 3 shows the convergence result for the same image shown in the previous figure with
K = 9 phase-field components which is larger than the require image levels,K = 5. The
algorithm successfully finds the 5 components (marked in solid lines in the figure) and the rest
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4 components (with zero size|φnk | ≈ 0, marked with dotted lines) do not disturb convergence
of the iterations.

In general, the computing time increases nonlinearly with the number of phase-field vari-
ablesK. However, with our method, the computing time increases linearly with the number
of phase-field variables, since we can solve the modified vector-valued AC equation in a de-
coupled way. In order to show the efficiency of our method, we consider the same problem
in Figure 2 withK = 5, 9, 13, 17, and21. Figure 4 shows the computing time for the seg-
mentation as a function of phase-variablesK. The result suggests that the convergence rate of
computing time is linear with respect to number of components, TCPU ≈ CT (K−1), where
CT = 0.166.

0 1 5 9 13 17 21
0

0.5

1

1.5

2

2.5

3

3.5

Number of components

C
P

U
 ti

m
e

 

 

CPU time
Linear

FIGURE 4. CPU time versus number of components.

To show the effect of interface width parameterǫ on the segmentation result, we consider the
same problem in Figure 2 withǫ = ǫ3. Figure 5 showsφnk , k = 1, . . . , 5 aftern = 2 iterations.
In contrast to the result in Figure 2,φ1 in Figure 5 still contains the noise of the original image.
In the case ofǫ = ǫ3, the noise is completely eliminated aftern = 4 iterations. From this
result, we observe that the segmentation result depends on the interface width parameterǫ.

φ1, c1 = 0.0198 φ2, c2 = 0.2484 φ3, c3 = 0.4978 φ4, c4 = 0.7524 φ5, c5 = 0.9969

FIGURE 5. Solutions after 2 iterations,φk, ck, k = 1, . . . , 5 for ǫ = ǫ3 and
λ = 10.
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Example 2. (Stability for the phase-field component numberK) Synthetic noisy image
To show the effectiveness and stability of our method for over-sampled phase-field compo-

nents, we choose a typical example from [47]. A noisy synthetic image contains4 stars on4
different backgrounds (see Figure 6). The star in the upper left corner belongs to same phase as
the background in the upper right corner. Further, the star in the upper right corner belongs to
the same phase as the background in the lower left corner, andthe star in this corner belongs to
the same phase as the background in the lower right corner. The parameter values are chosen
ash = 1/256, ∆t = 4E-6, ǫ = ǫ3, andλ = 10. As we can see in Figure 6, our method gives
clear results with the five phase-field variables after10 iterations and2.97 seconds.

Original image φ1 φ2 φ3 φ4 φ5

FIGURE 6. Original imageI of size 256 × 256 with noise and segmented
images forK = 5, ǫ = ǫ3, andλ = 10.

We now increase the number of componentsK bigger than 5 to check the stability of the nu-
merical algorithm with respect toK. Figure 7 showsφnk , k = 1, . . . , 6 aftern = 10 iterations.
Although the second component is still not well separated from the third after 10 iterations,
we can observe that the resulting phase-field functions are converging even with over-sampled
phase-field components.

φ1 φ2 φ3 φ4 φ5 φ6

FIGURE 7. Segmented images forK = 6, ǫ = ǫ3, andλ = 10.

We further increase the number of components toK = 9. Figure 8 shows the size of phase-
field function and average image intensity|φnk |, cnk for k = 1, . . . ,K as functions of iteration.
And also phase-field functions after 10 iterationsφ10k are visualized in the figure. We stopped
the algorithm after 10 iterations just for the demonstration and some of the components with
residual such ask = 2, 4, 6 are still vanishing. This example experimentally suggeststhat the
algorithm is numerically stable when initial number of components is over-sampled.
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φ1 φ2 + φ3 φ4 φ5 φ6 + φ7 φ8 + φ9
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FIGURE 8. Convergence of the iteration and the segmented images forK = 9,
ǫ = ǫ3, andλ = 10. |φ101 | > |φ105 | > |φ107 | > |φ103 | (marked with solid lines)
and|φ102 | > |φ109 | > |φ108 | > |φ106 | > |φ104 | (marked with dotted lines).

Example 3. (Segmentation results for real life application) landscape and brain images
Figure 9 shows the application of our method to a real landscape image. This example

is taken from [35]. The parameter values are chosen ash = 1/256, ∆t = 4E-6, ǫ = ǫ3,
andλ = 10. Figure 9 shows steady state segmentation results withK = 6 after n = 5
iterations (taken1.938 seconds). We observe that different objects in the real landscape image
are correctly detected and the image is quickly segmented.

Original image (a) (b)

FIGURE 9. Segmentation of a real landscape image of size256 × 256 for
ǫ = ǫ3 andλ = 10. (a) 6 segmented regions filled with color intensityck, k =
1, . . . , 6 (b) the same 6 regions overlayed with the original image.
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Figure 10 shows the application of our method to a MR brain image. This example is taken
from [48]. The parameter values are chosen ash = 1/256, ∆t = 5E-6, ǫ = ǫ2, andλ = 10.
Even though the intensities fluctuate severely and the boundaries are complex, our method
separates satisfactorily the major different phases. Shown on top of the original image are the
three small patches that are in practice easily supervised by a radiologist. For segmentation
with K = 3, it took only7 iterations and1.156 seconds.

Original image φ1, c1 = 0.0078

φ2, c2 = 0.5205 φ3, c3 = 0.9978

FIGURE 10. Original MR brain image of size256 × 256 and steady state
(n ≥ 7) solutions,φk, ck, k = 1, 2, 3 for ǫ = ǫ2 andλ = 10.

5. CONCLUSIONS

In this paper, we presented an efficient numerical method formultiphase image segmen-
tation using a multiphase-field model. The method combines the vector-valued Allen–Cahn
phase-field equation with initial data fitting terms containing prescribed interface width and
fidelity constants. An efficient numerical solution was achieved using the recently developed
hybrid operator splitting method for the vector-valued Allen–Cahn phase-field equation. We
split the modified vector-valued Allen–Cahn equation into anonlinear equation and a linear dif-
fusion equation with a source term (the initial data fitting terms and the constraint terms). The
linear diffusion equation was discretized using an implicit scheme and the resulting implicit
discrete system of equations was solved by a multigrid method. The nonlinear equation was
solved semi-analytically using a closed-form solution. And by treating the source term of the
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linear diffusion equation explicitly, we solved the modified vector-valued Allen–Cahn equation
in a decoupled way. By decoupling the governing equation, wecould speed up the segmenta-
tion process with multiple phases. We performed some characteristic numerical experiments
for multiphase image segmentation. The method is computationally linear algorithm with re-
spect to the number of phase-field components and numerically stable even when the image is
over-sampled with phase-field components much more than therequired number. These two
characteristics make the algorithm to be a nice tool for realworld image segmentation with
noisy and complicated structures.
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