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ABSTRACT. In this paper, we present an efficient numerical method faltiphase image
segmentation using a multiphase-field model. The methodowa the vector-valued Allen—
Cahn phase-field equation with initial data fitting termstearing prescribed interface width
and fidelity constants. An efficient numerical solution ikiaeed using the recently developed
hybrid operator splitting method for the vector-valuedei-Cahn phase-field equation. We
split the modified vector-valued Allen—Cahn equation intnaalinear equation and a linear
diffusion equation with a source term. The linear diffusenuation is discretized using an
implicit scheme and the resulting implicit discrete systehequations is solved by a multi-
grid method. The nonlinear equation is solved semi-areilti using a closed-form solution.
And by treating the source term of the linear diffusion etpraexplicitly, we solve the mod-
ified vector-valued Allen—Cahn equation in a decoupled wRBy. decoupling the governing
equation, we can speed up the segmentation process witiplayhases. We perform some
characteristic numerical experiments for multiphase iensegmentation.

1. INTRODUCTION

The Allen—Cahn (AC) equation [1] was originally introducasla phenomenological model
for antiphase domain coarsening in a binary alloy. The AGéqga and its modified forms have
been widely adapted to model problems such as phase toensdffi], crystal growth [2, 3, 4, 5],
grain growth [6, 7, 8, 9, 10], image segmentation [11, 12]tiamoby mean curvature [13, 14,
15, 16, 17, 18, 19], two-phase fluid flows [20], and vesicle emes [21]. To solve the AC
equation and its modified forms numerically, various meghibave been developed including
boundary integral [22, 23], cellular automata [24, 25]nfrtracking [26, 27], level-set [28, 29,
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30], and phase-field [30, 31, 32, 33, 34, 35] methods. Amoesglvarious methods, the phase-
field method is popular and widely used. The most significantgutational advantage of the
phase-field method is that an explicit tracking of the irgtegfis unnecessary by introducing a
phase-field variable.

An important class of phase-field models are multiphasd-fiebdels [36, 37, 38, 39, 40,
41, 42, 43, 44] which represent a multiphase microstruchyr& vector-valued phase-field
¢ with K componentg¢1,...,¢x). Each component is called a phase-field variable and is
continuous in space and time. Inside a bulk phase, one canpontakes the value one, while
the other phase-field variables assume the value zero. émdetce with [36], the condition is
imposed that the componentg must lie in the Gibbd<-simplex

K
={¢€RK mzo,Zm:l}. (L.1)

Without loss of generality, we postulate that the Ginzbuegeau total free energy of the
multiphase microstructure can be written as follows:

cio- [ (112

whereQ) ¢ R? (d = 1,2,3) is a polygonal (polyhedral) domait,(¢) = 0.25 Zszl Pr(1—
#1)?, ande > 0 is the gradient energy coefficient. The vector-valued ACatiqu [36, 38, 40,
41, 42, 43, 44] is thd.?-gradient flow of the total free energl(¢) defined in (1.2) under the
additional constraint (1.1), which has to hold everywher@ng time. It is natural to seek a law
of evolution in the form

k ) dx, (1.2)

oo
5 = —grad&(¢). (1.3)

The symbol “grad” here denotes the gradient on the manifold?3 space. Letf(¢) =

(f(¢1),---, f(¢x)) be the gradient of", 5k = <%""’£T€<) where f(¢) = ¢(¢p —

0.5)(¢ — 1) and we use a variable Lagrange multipligf¢) = (—1/K) ZkK:lf(gbk) [36]
in order to ensure the constraint (1.1). Using a general #martor-valued functiog, we set

Y= (1,..., %K) 5——Z§k
wherel = (1,...,1) € RK andY_p_, ¢ = 0. Then we have

(Gr2E (@), )12 = E( + 09)
[ [forpen
Q

€2

0=0

A¢} ) dx =
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where we have used the zero Neumann boundary condRign:- n = 0 on9f2, wheren is
the unit normal vector t&). We identify gradS(¢) = (f(¢) + 5(¢)1) /€2 — A¢, then (1.3)
becomes the vector-valued AC equation

ot €

Until recent years, only explicit discretization schemasgehbeen used to solve the multiphase-
field model numerically [36, 38, 39]. Unfortunately, thesscdetization methods suffer from
a severe time step restriction. To avoid the strong stghbilitndition of traditional explicit
methods, Vanherpe et al. [43] employed a semi-implicit @iszation scheme that treats the
gradient energy part of the model implicitly and the potarpart explicitly. And Lee and Kim
[44] presented a hybrid operator splitting method for saivthe model, in which the linear
diffusion part of the model was solved using an implicit soeeand the nonlinear part was
solved semi-analytically.

In this paper, we extend the vector-valued AC model (1.4) sntnodified vector-valued AC
model with initial data fitting terms containing prescritiatkrface width and fidelity constants
to solve multiphase image segmentation problem [35, 4544648]. The objective of this
paper is to present an efficient numerical method for mudigghimage segmentation. We
employ the recently developed hybrid operator splittinghrod for the vector-valued AC model
[44]. We split the modified vector-valued AC model into a noear part and a linear diffusion
part with a source term (the initial data fitting terms and t¢bastraint terms). The linear
diffusion part is discretized using an implicit scheme amlresulting implicit discrete system
of equations is solved by a fast solver, such as a multigrithate[49, 50]. The nonlinear part
is solved semi-analytically using a closed-form solutidnd by treating the source term of the
linear diffusion part explicitly, we solve the modified vectalued AC model in a decoupled
way, i.e., we only solve the modified scalar AC equatfgr-1 times to solve the modified
vector-valued AC equation singg; = 1 — ZkK:’ll ¢i. By decoupling the governing equation,
we can speed up the segmentation process with multiple phase

This paper is organized as follows. In Section 2, the progpasedel for multiphase im-
age segmentation is given. In Section 3, we describe anegfficiumerical method which is
based on an operator splitting method. In Section 4, we parfmme characteristic numerical
experiments for multiphase image segmentation. Finadligcltisions are given in Section 5.

2. MODIFIED ALLEN—CAHN PHASE-FIELD MODEL FOR IMAGE SEGMENTATION

Image segmentation is one of the most important tasks in a@npision. Its goal is to
partition a given image into several regions so that eaclomelgas uniform characteristics
such as edges, intensities, color, and texture. Varidtineshods have been increasingly used
as powerful methods for image segmentation. In variatiforahulation, image segmentation
is achieved by solving an energy minimization problem. Magasiational models for image
segmentation have been proposed in the past two decades2[533, 54]. One of the most
successful models is the Mumford—Shah model [51], whichh@pmates an image by a piece-
wise smooth function with regular boundaries: Given a gralgsimage! : 0 — R, where the
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image domair? is a bounded and open subsetRof such that? = Ufil Q; (Q; are several
subdomains witl§2; (N ©2; = 0 when: # j), the Mumford—Shah functional is given by

Eus(onT) = | Ivoraxtp o [ (=2,

whereT' = [J 09, is the union of boundaries d?;, ¢ is a piecewise smooth approximate
function of imagel, and i, A are positive constants. The first term minimizes the vanmati
of ¢ and promotes its smoothness, the second term minimizeetigghl of interfaces and
determines the boundaries betwégnand the third term, sometimes referred to as the fidelity
or fitting term, minimizes the variation betweegnand I. In particular, Mumford and Shah
considered the special case where the funcatisémchosen to be a piecewise constant function.
The piecewise constant Mumford—Shah functional was redesed by Chan and Vese with a
level set formulation [55].

A phase-field approximation for minimizing the piecewisenstant Mumford—-Shah func-
tional is given by the following functional:

F Vo2 A
e0) = [[(FL RSP ar s a-oru-ar))an @D
where we have added two fitting terms to the Ginzburg—Landeugy, F(¢) = ¢*(1 — ¢)?

is a double well potential, ang andc, are averages df in the regions in which is one and
zero, respectively:

_fQqude . _fQI(l—gb)dx

[y ¢ dx 2T A —¢)dx
Variation of energy (2.1) with respect tpyields the following gradient descent equation (the
modified scalar AC equation):

br = —%f) +A¢—A[p(I —c1)® — (1= @) —c2)?].

Multiphase segmentation is a more challenging problemtivarphase segmentation. Main
difficulty is in finding effective representations of the i@ys and their boundaries. Several
recent works are related to the multiphase Mumford—Shaleijd8, 46, 45, 47, 48]. Vese and
Chan [45] generalized the two-phase model [55] to multiptssgmentation by using multiple
level set functions. Both piecewise constant and piecesliseoth cases are studied. Their
model can segment an image irt phases withK level-set functions. Thus, their model
evolves more regions than necessary whenever the numbegiohs is not a power of two. In
this case, the redundant regions are empty. Samson et phrplsed another level set based
multiphase segmentation model by adding a penalty termetetiel set functions to penalize
the vacuum and overlap. Lie et al. [47] introduced a piecew@nstant level set function and
used each constant value to represent a unique phase ineavjieaonstant segmentation
model. Jung et al. [48] proposed a phase field method to hamakiphase piecewise constant
segmentation. The method is based on the phase transitidel midModica and Mortola with
a sinusoidal potential. Li and Kim [35] modified the sinusdigotential in the model of Jung et

and
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al. to a periodic quartic polynomial potential and presérae efficient and accurate numerical
scheme by using the polynomial potential.

In this paper, to achieve a simultaneous segmentatidnirmt arbitrarily many pieces, we
refer to the vector-valued formulation of the AC equatioimifar to (2.1), we add initial data
fitting terms to the Ginzburg—Landau energy (1.2) and theainb

K K
s - | (F O S e+ 3> - cm) x 22)
a\ ¢ k=1 k=1
where
_ JoTon dx

Cr fork=1,..., K.

 Jo ok dx
Variation of energy (2.2) with respect tbyields the following gradient descent equation (the
modified vector-valued AC equation):

99 94 ap - 2G(9) + BloN. (2.3)

whereG (o) = (¢1(I — ¢1)?,...,¢x (I — cx)?) and

K
B(8) = %kZ 9 - a2
=1

is a variable Lagrangian multiplier. We note that in [35] alac phase-field withK'—1) level
was used to represeit phases and a periodic quartic polynomial was used as a @btdnt
our model, a vector-valued phase-field withcomponents is used to represénphases and a
double well potential is used, which is typically used in @&hn—Hilliard and the Allen—Cahn
equations.

3. AN OPERATOR SPLITTING METHOD FOR VECTOR/ALUED AC EQUATIONS

In this section, we describe an operator splitting methads@dving the modified vector-

valued AC equation (2.3). Sinegx = 1 — ¢1 — ¢2 — ... — dx_1, We only need to solve
equations withpy, ¢o, ..., 01, ande = (¢1,¢2,...,¢x-1) can be redefined with only
K—1 variables. Similarly we redefing(¢), G(¢), and1 to f(¢) = (%""’Bfil)’

G(o) = (01(I —c1)?,..., ¢ 1(I —cx_1)?),andl = (1,...,1) € RE-1,

LetQ = (a,b) x (c,d) be the computational domain in 2V, and N, be positive even
integers,h = (b — a)/N, = (d — ¢)/N, be a uniform mesh size, atth, = {(z;,y;) : x; =
(t—=0.5)h, yj = (j —0.5)h, 1 <i < N,, 1 <j < N,} be the set of cell-centers. Léﬁj be
the approximations ofp(z;, y;, nAt), whereAt = T'/N; is the time step] is the final time,
and NV; is the total number of time steps. We define the discreterdifitéation operators by

1 1
Dm¢i+%7j = E(¢i+1,j —¢;;) and Dy¢i,j+% = E((pz‘,j-i-l — ;j)-
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and the discrete Laplacian by

1
Ad¢ij = E <D€E¢i+%,j - qubif%,j + qubi,]#% - qubid*%) ’

We discretize (2.3) in time by an operator splitting aldurit

oL — % * o
f = Dadi; — AG(9i5) + B(#))1, (3.1)
nt+l _ px f n+1
Uid)” = — (d)w )’ (3.2)
At €2
wherec;! is defined as follows:
Ny Ny N, Ny
=3 Lol ) DD (60
i=1j=1 i=1 j=1

fork=1,..., K—1.

Equation (3.1) is an implicit Euler’s method fgr, = A¢ — A\G(¢) + 5(¢)1 with an initial
conditiong™. The resulting implicit discrete system of equations casdieed by a fast solver,
such as a multigrid method [49, 50]. Also, a pointwise Ga8s#del relaxation scheme is used
as the smoother in the multigrid method. Equation (3.2) @aodnsidered as an approximation
of the equation

6 =5 (3.3)

by an implicit Euler's method with an initial conditiop™. We can solve (3.3) semi-analytically
using a closed-form solution. The solution is given as fefio

" (¢r)7; — 0.5
((bk)i;rl = 0.5+ At - At
Ve 4 @on); - 1201 - )
fork =1,..., K—1. The numerical algorithm is shown schematically in Figure 1

n+1

- f(¢)

Ve ¢y = a2

- (analytic method)

" = ¢

¢, = Ap — AG(9) + B()1
(multigrid method)

FIGURE 1. Schemetic diagram of operator splitting method.
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In (3.1), the variable Lagrange multipliéX(¢) is determined by the solutions at time level
n. By treating3(¢) explicitly, there is no relation between the solutions mugtilevelx. Thus
the modified vector-valued AC equation can be solved in aujfged way,

At

(G5 = 0.5+

= Nalor)y; — Mow)is(Lij — i) + B(]), (3.4)
(¢r)5; — 0.5
Vet 4 @005 - 120 -5

fork = 1,..., K—1. This means that we only solve the modified scalar AC equdtionl
times to solve the modified vector-valued AC equation.

(3.5)

4. NUMERICAL EXPERIMENTS FOR IMAGE SEGMENTATION

In this section, we demonstrate numerical efficiency anbilgtaof the operator splitting
method (3.4)—(3.5) described in the previous section flwirsgp the modified vector-valued AC
equation (2.3). A steady state solution of (2.3) is condablby two tuning parameters:for
image sharpness (interface thickness) amar image fidelity (closeness to the original image).
For given fixed value ok, interface width parameteiplays an important role of the final image
sharpness. We want to set the phase-field variable variessaan interfacial region froh05
to 0.95 over a distance of abouty/2¢ tanh_1(0.9). Therefore, if we want this value to be
approximatelym grid points, the: value needs to be taken as = hmn/(4v/2 tanh~1(0.9)).

In this paper, we chose variousalues which are suitable for each problem, however, differ

e values make little differences in the results. In all the rtigal experiments, a given image

is normalized ad = ﬁ wherelnax andIyin are the maximum and minimum values of
the given image, respectively. Note that we use the same wiatigmal domairf2 = (0, 1) x

(0, 1) for the sake of simplicity.

We provide 3 examples in this section: one for testing comtprial speed of the numerical
algorithm with multiple phase components, one for checkingerical stability of the mul-
tiphase image segmentation method with noisy data, andasmgemonstrating suitability of
the algorithm for real world images. We give the CPU time incsels for our calculations,
performed on a workstation with a 3.2 GHz Intel Core i5 CPU 4B of RAM.

Example 1. (Computational efficiency with multi-componens) Synthetic image

The first example, Figure 2, shows a complex synthetic imakgntfrom [48] that contains
several generic visual structures, such as an internal botdusion and stacked objects, T-
junctions, singular junctions. The parameter values aos@m ash = 1/256, At = 5E-6,
e = €5, and\ = 10. For segmentation, it took onyiterations and).594 seconds, while the
previous method in [48] tookS iterations and7.109 seconds. The results witki = 5 phase-
field components in Figure 2 show that our method can captutiée objects simultaneously
for multiple geometries.

One of the drawbacks for any method based on the AC equatitimaisthe numberk
of components otp must presently be specified from the start, and we did notidenshe
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i B ®

Original image o1, c1 = 0.0243 o2, co = 0.2490

4
] o

b3, c3 = 0.4977 ¢bu, ca = 0.7521 b5, c5 = 0.9967

FIGURE 2. Original imagel with multiple objects of size256 x 256 and
steady stater( > 2) solutions,¢y, cx, k = 1,...,5for e = e5 and\ = 10.

k=9
0.4;
8¢ k=8 1 k=5
o R
6/8 k=17 k=1
0.3}
sied F TS O
n k=5
cp 48
foap=s 64] 02
JBQ T @ ] k=17 g
k=3 FRIUN
218 R G T 0.3 k=9
k=2 e
ugp k=3
N
_ k=12,4,6,8
ob—k=1 Roym o 59
0 2 0

1 1
Number of iterations Number of iterations

FIGURE 3. Segmentation of the image in Figure 2 with= 9.

feasibility or implications of adding or removing compotgduring the computation. Thus, to
segment a multiphase image successfully, we need a suffiziember of phase-field variables.
Figure 3 shows the convergence result for the same imagensimotie previous figure with
K = 9 phase-field components which is larger than the require énbengels, K = 5. The
algorithm successfully finds the 5 components (marked i $ioks in the figure) and the rest
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4 components (with zero size} | ~ 0, marked with dotted lines) do not disturb convergence
of the iterations.

In general, the computing time increases nonlinearly withumber of phase-field vari-
ablesK. However, with our method, the computing time increasesdlily with the number
of phase-field variables, since we can solve the modifiecoveetiued AC equation in a de-
coupled way. In order to show the efficiency of our method, wesaer the same problem
in Figure 2 withK' = 5, 9, 13, 17, and21. Figure 4 shows the computing time for the seg-
mentation as a function of phase-variablés The result suggests that the convergence rate of
computing time is linear with respect to number of composehtpy ~ Cr(K—1), where
Cr = 0.166.

35

O CPU time
3/l —Linear

CPU time
N

5 9 13 17 21
Number of components

FIGURE 4. CPU time versus number of components.

To show the effect of interface width parameten the segmentation result, we consider the
same problem in Figure 2 with= e3. Figure 5 shows)}, k = 1,...,5 aftern = 2 iterations.
In contrast to the result in Figure &; in Figure 5 still contains the noise of the original image.
In the case ot = ¢3, the noise is completely eliminated after= 4 iterations. From this
result, we observe that the segmentation result dependseadnterface width parameter

e o

gbl, Cc1 = 0.0198 gbz, Cy = 0.2484 ¢3, C3 = 0.4978 ¢4, Cq = 0.7524 ¢5, Cy = 0.9969

FIGURE 5. Solutions after 2 iterationsgj,cx, kK = 1,...,5 for e = €3 and
A =10.
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Example 2. (Stability for the phase-field component numbel) Synthetic noisy image

To show the effectiveness and stability of our method for-®ampled phase-field compo-
nents, we choose a typical example from [47]. A noisy syithetage containg stars ord
different backgrounds (see Figure 6). The star in the uggfecdrner belongs to same phase as
the background in the upper right corner. Further, the sténé upper right corner belongs to
the same phase as the background in the lower left cornetharsdar in this corner belongs to
the same phase as the background in the lower right cornerpditameter values are chosen
ash = 1/256, At = 4E-6, ¢ = €3, and\ = 10. As we can see in Figure 6, our method gives
clear results with the five phase-field variables afteiterations an®.97 seconds.

* *
B | «E | o~
Original image 1 b2 o3 o ®5

FIGURE 6. Original imagel of size 256 x 256 with noise and segmented
images fork = 5, € = €3, andA = 10.

We now increase the number of componekitbigger than 5 to check the stability of the nu-
merical algorithm with respect th'. Figure 7 shows, k = 1,...,6 aftern = 10 iterations.
Although the second component is still not well separatechfthe third after 10 iterations,
we can observe that the resulting phase-field functionsareetging even with over-sampled
phase-field components.

T [ ¥
Bl | x| ¥

®1 P2 ¢3 o o5 o

FIGURE 7. Segmented images fé&f = 6, ¢ = €3, and\ = 10.

We further increase the number of component&te- 9. Figure 8 shows the size of phase-
field function and average image intensjigyf|, ¢ for k = 1,..., K as functions of iteration.
And also phase-field functions after 10 iteratiaf}$ are visualized in the figure. We stopped
the algorithm after 10 iterations just for the demonstramd some of the components with
residual such ak = 2,4, 6 are still vanishing. This example experimentally suggdsas the
algorithm is numerically stable when initial number of campnts is over-sampled.
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oA iy

G2 + ¢3 ‘ ¢4 o5 ¢ + b7 ¢s + do

10— , ‘ =7 0.3
Qe @ O @ Qe Qe D
2180+ O O @@ QO e
k=7
6/ O @ @ @ O
oo k=6
580 k=5
CZ w8 O @ O QO Oy Oy
. k=3
318G
o R O ROP 0.1,
218 ‘ "g,, ‘
118G k=1 0
8 B O i@y
I TR RSP S ld;d@mu@{\%h}} i
0 1 2 3 4 5_ 6 i 7 8 9 10 0 1 2 3 4 5_ 6 i 7 8 9 10
Number of iterations Number of iterations

FIGURE 8. Convergence of the iteration and the segmented imagés fer9,
€ = €3, and\ = 10. [p1°] > [4L0] > |p10| > |pi| (marked with solid lines)
and|¢l®| > |40 > |pi0] > [¢0] > |41°| (marked with dotted lines).

Example 3. (Segmentation results for real life applicatioh landscape and brain images

Figure 9 shows the application of our method to a real lamusdmage. This example
is taken from [35]. The parameter values are choseh as 1/256, At = 4E-6, ¢ = e3,
and A = 10. Figure 9 shows steady state segmentation results &itk= 6 aftern = 5
iterations (takeri.938 seconds). We observe that different objects in the reablzaguk image
are correctly detected and the image is quickly segmented.

Original image (@) (b)

FIGURE 9. Segmentation of a real landscape image of 8 x 256 for
e = eg and )\ = 10. (a) 6 segmented regions filled with color intensity & =
1,...,6 (b) the same 6 regions overlayed with the original image.
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Figure 10 shows the application of our method to a MR brairgend his example is taken
from [48]. The parameter values are choserhas 1/256, At = 5E-6, ¢ = €3, and\ = 10.
Even though the intensities fluctuate severely and the larigslare complex, our method
separates satisfactorily the major different phases. 8tawtop of the original image are the
three small patches that are in practice easily superviged radiologist. For segmentation
with K = 3, ittook only 7 iterations and..156 seconds.

¢1, Cc1 — 0.0078

gbg, C3 = 0.9978

FIGURE 10. Original MR brain image of siz56 x 256 and steady state
(n > 7) solutions,¢y, ci, k = 1,2,3 for e = e and X = 10.

5. CONCLUSIONS

In this paper, we presented an efficient numerical methodnigitiphase image segmen-
tation using a multiphase-field model. The method combihesvector-valued Allen—Cahn
phase-field equation with initial data fitting terms coniagnprescribed interface width and
fidelity constants. An efficient numerical solution was &eeid using the recently developed
hybrid operator splitting method for the vector-valuedess-Cahn phase-field equation. We
split the modified vector-valued Allen—Cahn equation intmalinear equation and a linear dif-
fusion equation with a source term (the initial data fittiegrs and the constraint terms). The
linear diffusion equation was discretized using an impktheme and the resulting implicit
discrete system of equations was solved by a multigrid nektfidie nonlinear equation was
solved semi-analytically using a closed-form solution.dAwy treating the source term of the



MODIFIED VECTOR-VALUED ALLEN-CAHN MODEL AND ITS APPLICATION TO IMAGE SEGMENTATION 39

linear diffusion equation explicitly, we solved the modifieector-valued Allen—Cahn equation
in a decoupled way. By decoupling the governing equationcowed speed up the segmenta-
tion process with multiple phases. We performed some cteisiic numerical experiments
for multiphase image segmentation. The method is compuigty linear algorithm with re-
spect to the number of phase-field components and numegratalble even when the image is
over-sampled with phase-field components much more tharethered number. These two
characteristics make the algorithm to be a nice tool for veald image segmentation with
noisy and complicated structures.
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