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ABSTRACT. The Allen–Cahn equation is solved numerically by operator splitting Fourier
spectral methods. The basic idea of the operator splitting method is to decompose the orig-
inal problem into sub-equations and compose the approximate solution of the original equation
using the solutions of the subproblems. The purpose of this paper is to characterize higher order
operator splitting schemes and propose several higher order methods. Unlike the first and the
second order methods, each of the heat and the free-energy evolution operators has at least one
backward evaluation in higher order methods. We investigate the effect of negative time steps
on a general form of third order schemes and suggest three third order methods for better sta-
bility and accuracy. Two fourth order methods are also presented. The traveling wave solution
and a spinodal decomposition problem are used to demonstrate numerical properties and the
order of convergence of the proposed methods.

1. INTRODUCTION

The Allen–Cahn (AC) equation was originally introduced as a phenomenological model for
antiphase domain coarsening in a binary alloy [1]:

∂φ(x, t)

∂t
= −F

′(φ(x, t))

ε2
+ ∆φ(x, t), x ∈ Ω, 0 < t ≤ T, (1.1)

where Ω is a domain in Rd (d = 1, 2, 3). The quantity φ(x, t) is defined as the difference
between the concentrations of two components in a mixture, for example, φ(x, t) = (mα −
mβ)/(mα +mβ) where mα and mβ are the masses of phases α and β. The function F (φ) =
0.25(φ2 − 1)2 is the Helmholtz free-energy density for φ, which has a double-well form, and
ε > 0 is the gradient energy coefficient. The system is completed by taking an initial condition
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φ(x, 0) = φ0(x) and a homogeneous Neumann boundary condition ∇φ · n = 0, where n is
normal to the boundary ∂Ω.

The AC equation and its various modified forms have been applied in addressing a range of
problems, such as phase transitions [1], image analysis [2,3], motion by mean curvature [4–6],
and crystal growth [7–9]. Therefore, many researchers have studied numerical methods for
solving the AC type equation to improve stability and accuracy and to have a better under-
standing of its dynamics.

Stable time step size of explicit schemes is severely restricted due to the second order spatial
differential term ∆φ and the nonlinear term F ′(φ). There have been many attempts to over-
come the time step restriction. The semi-implicit method proposed by Eyre [10] is first order
accurate in time and unconditionally gradient stable. To obtain accurate numerical solutions
of the AC equation, many researchers have proposed high-order approximations in time. The
authors in [11] propose a linearized compact ADI method which is second order accurate in
time. The authors in [12] investigate the first and second order implicit-explicit schemes. For
higher than second order accuracy in time, authors in [13, 14] study the multistep methods.

Another numerical method employed for solving the AC equation is the operator splitting
method [15, 16]. Operator splitting schemes have been applied for many types of evolution
equations [17–23]. The basic idea of the operator splitting method is to decompose the original
problem into subproblems which are simpler than the original problem and then to compose the
approximate solution of the original problem by using the exact or approximate solutions of the
subproblems in a given sequential order. Operator splitting methods are simple to implement
and computationally efficient to achieve higher order accuracy while semi-implicit schemes
are hard to improve the order of convergence. The first and the second order operator splitting
methods for the AC equation is quite well-known [15, 16], however, the higher order (more
than two) operator splitting method for the AC equation is less well-known.

The purpose of this paper is to characterize higher order operator splitting schemes and pro-
pose several higher order methods to solve the AC equation with a Fourier spectral method. We
decompose the AC equation into heat and free-energy evolution equations, which have closed-
form solutions in the Fourier and physical spaces, respectively. Because the first and second
operator splitting methods have only forward time steps, the boundedness of the solution is
guaranteed regardless of the time step size [15]. However, we could not guarantee the stability
with large time step size since each operator has at least one backward time step with third
and higher order of accuracy [17, 18]. Because a backward time marching affects numerical
stability on both sub-equations, we consider ways of minimizing the effect of negative time
steps and introduce a cut-off function to limit the exponential amplification of high-frequency
modes in solving the heat evolution equation.

This paper is organized as follows. In Section 2, we briefly review the operator splitting
methods which are studied by the authors in [18]. In Section 3, we present higher order op-
erator splitting Fourier spectral methods for solving the AC equation. We discuss the stability
issues for backward time marching and suggest the three third order operator splitting meth-
ods. We present numerical experiments demonstrating numerical properties and the order of
convergence of the proposed methods in Section 4. Conclusions are drawn in Section 5.
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2. A BRIEF REVIEW ON THE OPERATOR SPLITTING METHOD

In this section, we review some of the basic properties of the operator splitting methods for a
time evolution equation with two evolution terms in summarizing the work by D. Goldman and
T. Kapper [18]. LetAa∆t be the solution operator for the time evolution equation ∂φ

∂t = fA(φ),
that is (Aa∆tφ)(t) := φ(t + a∆t), and Bb∆t be the solution operator for fB(φ). Then the
operatorsA and B satisfy the semi-group properties. Suppose we want to minimize the number
of the operator evaluations ofAa∆t and Bb∆t in order to get a N -th order approximation of the
following ordinary differential equation consists of two evolution terms,

∂φ

∂t
= fA(φ) + fB(φ). (2.1)

It is well-known that the simplest form of the first order solution operator for (2.1) is given as

S(1) = B∆t A∆t, (2.2)

that is, (S(1)φ)(t) is a first order accurate approximation of φ(t + ∆t). Here the choice of A
and B (or fA and fB) is arbitrary thus we may assume that the first operator evaluated is always
Aa∆t without loss of generality.

We now consider a solution operator S(p) with 2p (or 2p−1 if bp = 0) evaluations of the
operators A and B in the following form,

S(p) = Bbp∆t Aap∆t · · · Bb1∆t Aa1∆t, (2.3)

where all of {aj}pj=1, {bj}p−1
j=1 are non-zeros. The coefficients a1, . . . , ap and b1, . . . , bp in S(p)

must satisfy certain conditions to make S(p) an N -th order approximation operator for (2.1). It
is well-known that there exists S(p) at least N -th order accurate when p ≥ N . (See [18] and
the references therein for the derivation of the following conditions.) For first-order accuracy,
{aj}, {bj} must satisfy

p∑
j=1

aj =

p∑
j=1

bj = 1. (2.4)

For second-order accuracy, {aj} and {bj} must satisfy (2.4) and the conditions
p∑
j=2

aj

(
j−1∑
k=1

bk

)
=

p∑
j=1

bj

(
j∑

k=1

ak

)
=

1

2
. (2.5)

For third-order accuracy, {aj} and {bj} must satisfy (2.4), (2.5), and the conditions

p∑
j=2

aj

(
j−1∑
k=1

bk

)2

=

p∑
j=1

bj

(
j∑

k=1

ak

)2

=
1

3
. (2.6)

For a second-order scheme of the form (2.3) with p = 2, S(2) = Bb2∆t Aa2∆t Bb1∆t Aa1∆t,
(2.4) and (2.5) give

a1 + a2 = 1, b1 + b2 = 1, a2b1 =
1

2
. (2.7)
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Since there are three equations for the four unknowns, let b1=ω (6= 0) be a free parameter,
then the solution of (2.7) gives a general form of a second order solution operator with up to 4
operator evaluations,

S(2)
ω = B(1−ω)∆t A

1
2ω

∆t Bω∆t A(1− 1
2ω

)∆t. (2.8)

Note that S(2)
ω = A

∆t
2 B∆t A

∆t
2 with ω = 1 is the simplest form (with only three evaluations)

among second order operators since two evaluations ofA and B is not enough to make it second
order accurate.

For a third-order scheme of the form

S(3) = Bb3∆t Aa3∆t Bb2∆t Aa2∆t Bb1∆t Aa1∆t, (2.9)

(2.4), (2.5), and (2.6) give

a1 + a2 + a3 = 1, b1 + b2 + b3 = 1, a2b1 + a3(b1 + b2) =
1

2
, (2.10)

a2b
2
1 + a3(b1 + b2)2 =

1

3
, b1a

2
1 + b2(a1 + a2)2 + b3 =

1

3
. (2.11)

Choosing b3 = ω to be a free parameter, we can obtain two branches of the solution for (2.10)
and (2.11),

b±1 =
1− ω

2
∓
√
D(ω)

2(4ω − 1)
, a2 =

4ω − 1

2(3ω − 1)
, a±3 =

1
2 − b

±
1 a2

1− ω
,

a±1 = 1− a2 − a±3 , b±2 = 1− b±1 − b3,
where

D(ω) = (ω − 1)2(4ω − 1)2 + 12(4ω − 1)

(
ω − 1

3

)2

.

Note that real solutions of (2.10) and (2.11) are only possible for ω > 1
4 and ω ≤ ω∗, where

ω∗ ≈ −1.217 · · · is the real root of D(ω)/(4ω − 1) = 0.
Figure 1 shows the positive branch solutions, a+

1 , b
+
1 , a

+
2 , b

+
2 , a

+
3 , b

+
3 as a function of b+3 = ω

for the third order operator S(3)
ω+ and Figure 2 shows the negative branch solutions for S(3)

ω− . In
any case, there exists exactly one negative value among a1, a2, a3 and also only one nega-
tive value among b1, b2, b3. There are three special cases when the solutions may blow up.
As ω → 1

4

+, S(3)
ω± with a2 = 0, b±2 + b±1 = 3

4 degenerates into a second order operator,

B
1
4

∆t A
2
3

∆t B
3
4

∆t A
1
3

∆t. As ω → 1
3 , S(3)

ω± with b+1 = 0, a+
1 + a+

2 = 1
4 or b−2 = 0,

a−2 + a−3 = 3
4 degenerates into a second order operator, B

1
3

∆t A
3
4

∆t B
2
3

∆t A
1
4

∆t. As

ω → 1, the negative branch solutions have removable singularities and S(3)
ω− converges to

B∆t A
−1
24

∆t B
−2
3

∆t A
3
4

∆t B
2
3

∆t A
7
24

∆t whereas the positive branch solution does not provide
a convergent operator.

We remark that a symmetric S(3) with b3 = 0, a1 = a3, and b1 = b2 satisfying (2.4), (2.5)
has only a second-order accuracy, that is, a1 = 1

6 , b1 = 1
2 , and a2 = 2

3 does not satisfy (2.6).
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FIGURE 1. Positive branch solutions, a+
1 , b

+
1 , a

+
2 , b

+
2 , a

+
3 , b

+
3 as a function of

b+3 = ω

However, a symmetric S(4) with b4 = 0, a1 = a4, a2 = a3, and b1 = b3 satisfying only (2.4),
(2.5), and (2.6),

S(4)
U := A

ω
2

∆t Bω∆t A
1−ω

2
∆t B(1−2ω)∆t A

1−ω
2

∆t Bω∆t A
ω
2

∆t (2.12)

happens to be a fourth-order accuracy with ω = ωU=1/(2−21/3) ≈ 1.3512, 1−ω
2 ≈ −0.1756,

and 1− 2ω ≈ −1.7024. This is the simplest form of fourth order operator with only 7 operator
evaluations and this can be derived as a symmetric combination of a second order operator
T ∆t := A

∆t
2 B∆t A

∆t
2 ,

S(4)
U := T ω∆t T (1−2ω)∆t T ω∆t, ω = ωU .

Another a well-known fourth order operator splitting method [24] can be also derived as a
symmetric combination of the second order operator T ∆t,

S(6)
V := T ω∆t T ω∆t T (1−4ω)∆t T ω∆t T ω∆t (2.13)

= A
ω
2

∆tBω∆tAω∆tBω∆tA
1−3ω

2
∆tB(1−4ω)∆tA

1−3ω
2

∆tBω∆tAω∆tBω∆tA
ω
2

∆t
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FIGURE 2. Negative branch solutions, a−1 , b
−
1 , a

−
2 , b
−
2 , a

−
3 , b
−
3 as a function of

b−3 = ω

with ω = ωV =1/(4 − 41/3) ≈ 0.4145. The S(6)
V method is computationally less efficient (11

operator evaluations compared to minimum of 7 evaluations) but has better stability condition
(1−3ω

2 ≈ −0.1217, 1− 4ω ≈ −0.6580) than the method defined in (2.12).
We close this section with a remark that not just the third and the fourth order methods

mentioned above but any operator splitting methods of third or higher order contains at least
one negative time steps for each of the operators,A, B. (See [17,18] for the proof of the general
theorem.)

3. HIGHER-ORDER OPERATOR SPLITTING FOURIER SPECTRAL METHODS

We consider the AC equation (1.1) in one-dimensional space Ω = (0, L). Two- and three-
dimensional spaces can be analogously defined. For simplicity of notation, we sometimes
abuse the notation φ = φ(t) referring φ(·, t) and define the “free-energy evolution operator”
F∆t as follows

F∆t(φ(tn)) := φ(tn + ∆t), (3.1)
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where φ(tn + ∆t) is a solution of the first order differential equation

∂φ

∂t
= −F

′(φ)

ε2

with an initial condition φ(tn). For given F ′(φ) = φ3 − φ, we have an analytical formula
(See [15, 16]) for the evolution operator F∆t in the physical space

F∆t(φ) =
φ√

φ2 + (1− φ2)e−
2∆t
ε2

. (3.2)

We also define the “heat evolution operator”H∆t as follows

H∆t(φ(tn)) := φ(tn + ∆t), (3.3)

where φ(tn + ∆t) is a solution of the first order differential equation

∂φ

∂t
= ∆φ

with an initial condition φ(tn). In this paper, we employ the discrete cosine transform [25] to
solve the AC equation with the zero Neumann boundary condition: for k = 0, . . . ,M−1,

φ̂k = αk

M−1∑
l=0

φl cos

[
π

M
k

(
l+

1

2

)]
,

where φl = φ
(
L
M

(
l+1

2

))
and α0 =

√
1/M , αk =

√
2/M for k ≥ 1. Then, we have a

semi-analytical formula for the evolution operatorH∆t in the discrete cosine space

H∆t(φ) = C−1
[
eAk∆tC [φ]

]
, (3.4)

where Ak = −
(
πk
L

)2
and C denotes the discrete cosine transform.

For the first order operator splitting scheme S(1) in (2.2) and the second order scheme S(2)
ω

in (2.8) with 0 < ω ≤ 1, the evaluations are all forward time marching, that is, all of {aj}pj=1

and {bj}pj=1 are positive. We can easily show that both schemes are unconditionally stable, in
the sense that |φ(tn + ∆t)| ≤ 1 if |φ(tn)| ≤ 1 regardless of the time step size. (See [15] for
the proof.) However, in the case of third or higher order, each of operators F , H has at least
one backward evaluation as mentioned in section 2. For this reason, we need to investigate the
stability of the operators F−∆t andH−∆t especially for large ∆t.

The stability issue for backward time heat equation is well-known. Even though H±∆t

H∓∆t (without noise) is always an identity operator regardless of the size of ∆t, the numerical
composition of the operators (even with small error) is far away from the identity operator
when ∆t becomes large since H−∆t is exponentially big for ∆t � 1. The stability of the
numerical composition of the free energy evolution operators is less well-known and we want
to explain why the numerical composition of the operators F±∆t F∓∆t (even with small error)
is far away from the identity operator when ∆t becomes large using the following figure.
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FIGURE 3. φ(∆t) = F∆t(φ(0)) with various initial values, φ(0) = −1.6,−1.4, · · · , 1.6

Figure 3 plots F∆t(φ) as a function of ∆t with various initial values of φ between −1.6 to
1.6. As you can see, F∆t(φ) with |φ| < 1 converges to ±1 as ∆t � 1, however, the solution
with |φ| > 1 as a result of small perturbation may blow up when ∆t � −1. Therefore,
composition of two operators F∆t followed by F−∆t even with small evaluation error near 1
is no longer bounded as ∆t is getting bigger. And F−∆t(φ) with |φ| < 1 converges to 0 for
∆t � 1 thus F−∆t followed by F∆t for ∆t � 1 may change the sign of result even with
small perturbation near 0. This non-linear stability effect is basically a consequence of the fact
that the solution of the free-energy evolution operator F∆t(φ) is exponentially close to 1 or 0
as ∆t→ ±∞.
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X

FIGURE 4. Minimum and maximum of {a+
i }3i=1 and {b+j }3j=1 as a function

of b+3 = ω. The region where values are bounded by [−1, 1] is shaded in
yellow.

In order to achieve a better stability condition, we propose third order schemes with bounded
values of {aj , bj}pj=1. Figures 4 and 5 show the minimum and maximum values of {aj}3j=1
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FIGURE 5. Minimum and maximum of {a−i }3i=1 and {b−j }3j=1 as a function
of b−3 = ω. The region where values are bounded by [−1, 1] is shaded in
yellow.

and {bj}3j=1 for the positive and negative branches, respectively. Here, ωX is the value of ω
in the positive branch solutions when max(a) = max(b). In a similar manner, ωY and ωZ
are chosen in the negative branch solutions. It is worth noting that a+

1 , b
+
1 , a

+
2 , b

+
2 , a

+
3 , b

+
3 are

bounded by [−1, 1] when 0.26376 . . . ≤ ω+ ≤ 0.29167 . . . and a−1 , b
−
1 , a

−
2 , b
−
2 , a

−
3 , b
−
3 are

bounded by [−1, 1] when 0.26376 . . . ≤ ω− ≤ 0.27362 . . . or 1/2 ≤ ω− ≤ 1. Since there
is exactly one negative value among {aj}3j=1, max{aj}3j=1 ≥ −min{aj}3j=1 can be inferred
from (2.4) when |aj | ≤ 1. Similarly max{bj}3j=1 ≥ −min{bj}3j=1 when |bj | ≤ 1. In the
shaded regions on the figures where values of |aj |, |bj | are bounded by 1, there are three local
minima of max{|aj |, |bj |}3j=1. The values {a±j }3j=1 and {b±j }3j=1 at these three local minima
with ω± = ωX , ωY , ωZ can be found in Figs. 1–2 and are summarized on the following table.

TABLE 1. Solutions for S(3)
ω± , a±1 , b

±
1 , a

±
2 , b
±
2 , a

±
3 , b
±
3 at the local minima of

max{|aj |, |bj |}3j=1.

ω± Condition a1 b1 a2 b2 a3 b3
ωX a+

1 = b+2 0.78868.. -0.07189.. -0.44191.. 0.78868.. 0.65324.. 0.28322..
ωY b−1 = a−3 0.26833.. 0.91966.. -0.18799.. -0.18799.. 0.91966.. 0.26833..
ωZ a−2 = b−3 0.28322.. 0.65324.. 0.78868.. -0.44191.. -0.07189.. 0.78868..

It is worth to note that the sets of {a−j }3j=1 and {b−j }3j=1 are same for ω− = ωY . The set
{a+

j }3j=1 for ω+ = ωX is {b−j }3j=1 for ω− = ωZ and the set {b+j }3j=1 for ω+ = ωX is {a−j }3j=1

for ω− = ωZ . This symmetry gives us a freedom to choose the order of operator evaluations
and we define three third order operator splitting methods S(3)

X ,S(3)
Y ,S(3)

Z for the AC equation
as follows:

S(3)
X ,S(3)

Y ,S(3)
Z := Fb3∆t Ha3∆t Fb2∆t Ha2∆t Fb1∆t Ha1∆t (3.5)

where {aj}3j=1 and {bj}3j=1 are given in Table 1.
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Another issue raised with negative time step is that the heat evolution operatorHaj∆t, aj <
0 may amplify the high frequency modes exponentially big, eAkaj∆t � 1. This situation
−Ak∆t =

(
πk
L

)2
∆t � 1 happens when k2∆t � O(1). On the other hand, a physically

reasonable bound for ∆t in the AC equation is ∆t
ε2
≤ O(1), thus the blow-up may occur only for

physically too high frequency modes, k � L
ε . Thus, we introduce a cut-off function to bound

ofHaj∆t for high frequency modes where −Ak∆t� 1. We will numerically demonstrate the
effect of introducing the cut-off function in subsection 4.1.

4. NUMERICAL EXPERIMENTS

In this section, we numerically demonstrate the order of convergence of the proposed third
order schemes S(3)

X ,S(3)
Y ,S(3)

Z in (3.5) and the fourth order schemes S(4)
U in (2.12) and S(6)

V in
(2.13). Two examples are used for the test, one is the traveling wave solution with analytic
solution and the other is a three-dimensional spinodal decomposition problem with random
initial values.

One of the well-known traveling wave solutions of the Allen–Cahn equation is

φ(x, t) =
1

2

(
1− tanh

x− 0.5− st
2
√

2ε

)
, (4.1)

where s = 3/(
√

2ε) is the speed of the traveling wave. The leftmost plot in Figure 6 shows the
initial profile φ(x, 0) and the analytic solution φ(x, Tf ) at Tf = 1/s with ε = 0.03

√
2.
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FIGURE 6. Traveling wave solution φ(x, Tf ) at Tf = 1/s with ε = 0.03
√

2.
And relative l2 errors of φ(x, Tf ) by S(1),S(2) with h = 2−5 for various time
step sizes ∆t.

Using this traveling wave solution, we compare the first, second, third, and fourth order
operator splitting Fourier spectral methods described in section 3. The numerical solutions
φ(x, t), 0 < t ≤ Tf are obtained with various time step sizes ∆t but the spatial grid size is
fixed to h = 2−5 which provides enough spatial accuracy. The traveling wave solution with
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the same numerical parameters are used in the following two subsections to test the third and
the fourth order schemes.

The rightmost plot in Figure 6 shows the numerical error of the first order scheme S(1) in
(2.2) and the second order scheme S(2)

ω=1 in (2.8) compared to the analytic solution at t = Tf .
It is worth to remind that the first and the second order schemes apply only forward time steps
of F andH, thus the stability (or boundedness of the solution) regardless of the size ∆t can be
easily proven. (See our previous paper [15] for numerical properties of these first and second
order schemes.)

4.1. Cut-off function and stability of the third order methods. As mentioned in section
3, negative time steps of F and H are unavoidable in the third or higher order operator split-
ting methods. Especially a negative time step makes the heat evolution operator exponentially
big, therefore, we introduce the following cut-off function with a tolerance Ktol for the heat
evolution operatorH,

Haj∆t(φ) = C−1
[

min{eAkaj∆t,Ktol} C [φ]
]
. (4.2)

The choice of Ktol depends on the time step size aj∆t and highest frequency modes kmax
which are functions of desired computational accuracy. Following computational examples in
this subsection give a basic guideline for the choice of Ktol.

As mentioned in section 2, we have various coefficients {a±j }3j=1 and {b±j }2j=1 as a function

of b±3 = ω. To investigate the effect of ω in the third order method S(3)
ω , we consider the

traveling wave problem given in (4.1). We compute relative l2 errors for various ω values with
a fixed time step ∆t = 2−4/s and Figures 7 (a) and (b) show relative l2 errors of the traveling
wave solution φ(x, Tf ) by the third order methods S(3)

ω for positive and negative branches of
various ω, respectively. Here we set Ktol = 104 (blue solid line) or 109 (green dashed line).

The first noticeable point in Figure 7 might be that the error is relatively large at ω± → 1
4

+ or
ω± → 1

3 where the third order operator degenerates into a second order operator. Also a region
near ω+ = 1 in the positive branch case, the computation does not provide any accuracy at all.
As ω+ → 1, S(3)

ω contains a big negative time step of the heat evolution operator Haj∆t since
min{aj} → −∞. In these cases, the choice of cut-off parameter Ktol becomes important, and

small Ktol is recommended when −min{aj}∆t�
(

L
πkmax

)2
.

For 0.26376 . . . ≤ ω+ ≤ 0.29167 . . . in which {a+
j } and {b+j } are bounded by [−1, 1],

especially near ωX at which max{|aj |, |bj |} has a local minimum, the error is smaller than
that for other ω values. The similar phenomenon is observed the computation for the negative
branch. We choose three special values ω+ = ωX , ω− = ωY , and ω− = ωZ for S(3)

X , S(3)
Y , and

S(3)
Z , respectively. For these cases, all {aj} are bounded by [−1, 1] and the choice of cut-off

value Ktol does not play an important role in the computation.
We now investigate the effect of highest frequency kmax to Ktol. Plots in Figure 8 show

relative l2 errors of the traveling wave solution φ(x, Tf ) by the third order method S(3)
Y with

different spatial grid sizes h = L
M = 4

256 = 2−6 or h = 4
1024 = 2−8. If a cut-off function is not
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FIGURE 7. Relative l2 errors of the traveling wave solution φ(x, Tf = 1/s)

by the third order method S(3)
ω for various ω with ∆t = 2−4/s, ε = 0.03

√
2,

and h = 2−5.

used (labeled as Ktol = Inf), the computation provides no accuracy for relatively large time
step. The computation may even stop as two biggest ∆t cases for M = 1024 and the cases
happen more often as kmax = M becomes large. If ∆t is larger than ε2, Ktol must be properly
chosen in order to valence the accuracy loss while avoiding blow-up. However, the choice of
Ktol makes no significant difference of the solution when ∆t ≤ ε2 (which is physically valid
limit for the AC equation) since the high frequency modes φ̂k with k � L

ε is negligible for
the physically meaningful solution of the AC equation. So the simplest rule of thumb might be
setting Ktol around the desired accuracy of the computation.

4.2. Convergence of the third and the fourth order methods. We implement the proposed
third order schemes S(3)

X ,S(3)
Y ,S(3)

Z in (3.5) and the fourth order schemes S(4)
U in (2.12) and

S(6)
V in (2.13). We set the spectral grid size h = 2−5, the cut-off limit Ktol = 109 and compare

the numerical solutions for various time step sizes ∆t with the analytic solution (4.1) with
ε = 0.03

√
2.
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√
2.

Figure 9 numerically indicates that the proposed methods have the third and the fourth order
accuracy, respectively. Note that a higher order method gives much better results than a lower
order method for ∆t < ε2 whereas lower order results are sometimes better for ∆t > ε2.

4.3. Convergence of the spinodal decomposition problem in 3D. In this subsection, we
compute a spinodal decomposition problem satisfying the AC equation (1.1) in three-dimensional
space with ε = 0.015. The intervals (−1,−1/

√
3) and (1/

√
3, 1) where F ′′(φ) > 0 are called

metastable intervals and (−1/
√

3, 1/
√

3) where F ′′(φ) < 0 is called the spinodal interval [26].
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It is known that φ which lies in the spinodal interval is very unstable and the growth of insta-
bilities results in phase separation, which is called spinodal decomposition. In order to check
the numerical convergence, we integrate φ(x, y, z, t) up to time Tf = 0.01 by the proposed
numerical schemes with various time step sizes ∆t = 10−3/2, · · · , 10−3/27. The initial con-
dition is given on the computational grid with h = 2−6 in the domain Ω = [0, 1]× [0, 1]× [0, 1]
as φ(x, y, z, 0) = 0.005 · rand(x, y, z) where rand(x, y, z) is a random number between −1
and 1. Figure 10 shows the initial and the reference solutions at t = 10−3, 10−2 computed
by the fourth order numerical scheme S(6)

V with the numerical parameters Ktol = 109 and
∆t = 10−3/28.

t = 0 t = 10−3 t = 10−2

FIGURE 10. The reference solutions φ(x, y, z, t) by the fourth order method
S(6)
V with Ktol = 109, and ∆t = 10−3/28.

We also implement the first order scheme S(1) in (2.2), the second order scheme S(2)
ω=1 in

(2.8), the proposed third order schemes S(3)
X ,S(3)

Y ,S(3)
Z in (3.5), and the fourth order schemes

S(4)
U in (2.12) and S(6)

V in (2.13). The numerical results in Figure 11 show that the cut-off
valueKtol does not play a role when ∆t is smaller than ε2 while the computational results have
marginal difference when ∆t is greater than ε2. The accuracy results numerically demonstrate
the proposed schemes provide the expected order of convergence in time. Note that a higher
order method gives much better results than a lower order method for ∆t� ε2 whereas lower
order results are sometimes better for ∆t > ε2.

5. CONCLUSIONS

We proposed and studied the higher order operator splitting Fourier spectral methods for
solving the AC equation. The methods decompose the AC equation into the subequations with
the heat and the free-energy evolution terms. Unlike the first and the second order methods,
each of the heat and the free-energy evolution operators has at least one backward evalua-
tion in the higher order methods. For the third order method, we suggested the three values
ωX , ωY , ωZ at which max{|aj |, |bj |} have local minimums and we then obtained smaller error
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FIGURE 11. Relative l2 errors of φ(x, y, z, Tf = 0.01) by S(1), S(2)
ω=1,

S(3)
X ,S(3)
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V with various time step sizes ∆t =

10−3/2, · · · , 10−3/27.

than other ω values. For the fourth order method, we used two symmetric combinations of the
second order operators. And a simple cut-off function could limit exponential amplification of
the high frequency modes in the heat operator and it worked well with the proposed schemes.
We numerically demonstrated, using the traveling wave solution and the spinodal decompo-
sition problem with random initial values, that the proposed methods have the third and the
fourth order convergence as expected.
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