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ABSTRACT. In contrast to the well-developed convex splitting schemes for gradient flows of
two-component system, there were few efforts on applying the convex splitting idea to gradient
flows of multi-component system, such as the vector-valued Cahn–Hilliard (vCH) equation.
In the case of the vCH equation, one need to consider not only the convex splitting idea but
also a specific method to manage the partition of unity constraint to design an unconditionally
energy stable scheme. In this paper, we propose a constrained Convex Splitting (cCS) scheme
for the vCH equation, which is based on a convex splitting of the energy functional for the vCH
equation under the constraint. We show analytically that the cCS scheme is mass conserving
and unconditionally uniquely solvable. And it satisfies the constraint at the next time level
for any time step thus is unconditionally energy stable. Numerical experiments are presented
demonstrating the accuracy, energy stability, and efficiency of the proposed cCS scheme.

1. INTRODUCTION

The Cahn–Hilliard (CH) equation was originally introduced as a phenomenological model
of phase separation in a binary alloy [8] and has been applied to a wide range of problems [9].
The CH equation is derived from the Ginzburg–Landau (GL) energy functional:

E(c) :=

∫
Ω

(
F (c) +

ϵ2

2
|∇c|2

)
dx, (1.1)

Received by the editors January 10 2019; Accepted March 19 2019; Published online March 20 2019.
1991 Mathematics Subject Classification. 35Q99, 65M70.
Key words and phrases. Vector-valued Cahn–Hilliard equation, Constrained convex splitting, Unconditional

unique solvability, Unconditional energy stability.
† Corresponding author.
This research was supported by Basic Science Research Program through the National Research Foundation

(NRF) funded by the Korea government MSIP(2017R1D1A1B0-3032422,-3034619, 2017R1E1A1A0-3070161).

1



2 H.G. LEE, J.-Y. LEE, AND J. SHIN

where Ω is a domain in Rd (d = 1, 2, 3), c is the concentration field, F (c) is the free energy
density for c, and ϵ > 0 is the gradient energy coefficient. The CH equation is a gradient flow
for the GL energy functional (1.1) in the H−1 inner product thus the GL energy functional
is nonincreasing in time. Since the CH equation cannot be solved analytically in general,
numerical methods are commonly used to study the dynamics of the CH equation. Among
them, the convex splitting idea [2, 13, 14] has attracted considerable attention, in which the GL
energy functional is split into convex and concave parts:

E(c) = Ec(c)− Ee(c) =

∫
Ω

(
Fc(c) +

ϵ2

2
|∇c|2

)
dx−

∫
Ω
Fe(c) dx,

where Fc(c) and −Fe(c) are convex and concave parts of F (c), respectively. And Ec(c) and
Ee(c) are treated implicitly and explicitly, respectively. This idea has been applied to develop
uniquely solvable and unconditionally energy stable schemes for a wide class of gradient flows
[17, 24, 28, 29, 30, 36, 37, 38].

In order to model phase separation in multi-component systems, several generalizations of
the GL energy functional have been introduced and studied [5, 6, 7, 10, 11, 12, 15, 16, 18, 19,
20, 21, 22, 23, 25, 26, 27, 31, 32, 33, 34, 35]. However, there were few efforts on applying
the convex splitting idea to multi-component systems. There are two noteworthy related works
[21, 32]. In [21], a semi-implicit scheme partially using the convex splitting idea was presented
to solve multi-component systems. The semi-implicit scheme in [32] treats all the nonlinear
term of multi-component systems explicitly and adds an extra stabilizing term. It can be con-
sidered as applying the convex splitting idea when the magnitude of the extra stabilizing term
is sufficiently large thus the energy stability depends on the magnitude of the extra stabilizing
term.

Unlike the CH equation, designing an unconditionally energy stable scheme for multi-
component systems requires not only the convex splitting idea but also a specific method to
manage the partition of unity constraint (the sum of concentration fields must be unity). Note
that the importance of the constraint becomes obvious in proving theorem 3.6 in section 3 and
some of numerical schemes add the constraint as a part of explicit equations to be solved not as
a consequence of the numerical scheme. The authors in [21] solved multi-component systems
only for c1, , cN−1, where ci is the concentration field of the phase i and N is the number of

phases, and enforced cN = 1−
N−1∑
i=1

ci to satisfy the constraint at the next time level. The author

in [32] used the Schur complement method to solve multi-component systems for c1, . . . , cN−1

and the constraint c1 + · · ·+ cN = 1 together.
In this paper, we propose a constrained Convex Splitting (cCS) scheme for the multi–

component system used in [5, 10, 12, 18, 19, 20, 21, 22, 23, 27, 31, 32, 33, 34], referred to
as the vector-valued Cahn–Hilliard (vCH) equation. This scheme is based on a convex splitting
of the energy functional for the vCH equation under the constraint. We show analytically that
the cCS scheme is mass conserving and unconditionally uniquely solvable. And it satisfies the
constraint at the next time level for any time step thus is unconditionally energy stable. The
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proposed cCS scheme is a first attempt to achieve unconditional energy stability by applying
the convex splitting idea to multi-component systems.

This paper is organized as follows. In Section 2, we briefly review the vCH equation. We
propose the cCS scheme for the vCH equation in Section 3. In Sections 4 and 5, we present
numerical experiments with various free energies. Finally, conclusions are drawn in Section 6.

2. VECTOR-VALUED CAHN–HILLIARD EQUATION

Let c = (c1, . . . , cN )T be the vector-valued concentration field. Clearly the concentration
fields satisfy the partition of unity constraint,

c1 + · · ·+ cN = 1. (2.1)

Hence admissible states belong to Gibbs N -simplex G :=

{
c ∈ RN

∣∣ N∑
i=1

ci = 1, 0 ≤ ci ≤ 1

}
.

There are several generalizations of the GL energy functional (1.1) to multi-component sys-
tems. In this paper, we adopt the approach used in [5, 10, 12, 18, 19, 20, 21, 22, 23, 27, 31, 32,
33, 34], where the energy functional is defined as follows:

E(c) :=
∫
Ω

(
F(c) +

ϵ2

2

N∑
i=1

|∇ci|2
)
dx, (2.2)

referred to as the vGL the energy functional. There are two typical choices for F(c): the
polynomial free energy [20, 21, 22, 23, 27, 31, 32, 33, 34]

F(c) =
1

4

N∑
i=1

c2i (ci − 1)2

and logarithmic free energy [5, 10, 12, 18, 19, 32]

F(c) = θ

N∑
i=1

ci ln ci + θc

N∑
i=1

N∑
j=i+1

cicj = θ

N∑
i=1

ci ln ci +
θc
2

N∑
i=1

ci(1− ci),

where θ and θc are the absolute and critical temperatures, respectively. The vCH equation is a
gradient flow for the vGL energy functional (2.2) in the H−1 inner product under the constraint
(2.1). In order to ensure (2.1), we use a Lagrange multiplier α(c) [6, 16, 18, 19, 21, 22, 23, 26,
35]. Then, the vCH equation becomes

∂c

∂t
= ∆µ, µ :=

δE
δc

= f(c)− ϵ2∆c+ α(c)1, x ∈ Ω, 0 < t ≤ T,

ci(x, 0) = c0i (x), ∇ci · n = ∇µi · n = 0 on ∂Ω, for i = 1, . . . , N ,
(2.3)

where µ = (µ1, . . . , µN )T is the vector-valued chemical potential, µi is the chemical po-
tential of the phase i, δ

δc denotes the variational derivative with respect to c, f(c) = ∂F
∂c =
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∂F
∂c1

, . . . , ∂F
∂cN

)T
= (f(c1), . . . , f(cN ))T , 1 = (1, . . . , 1)T ∈ RN , n is a unit normal vector

to ∂Ω, and

α(c) = − 1

N

N∑
i=1

f(ci).

Because the vCH equation (2.3) is of gradient type, the vGL energy functional is nonin-
creasing in time as the partition of unity constraint holds:

dE
dt

=

∫
Ω

N∑
i=1

(
∂F
∂ci

∂ci
∂t

+ ϵ2∇ci · ∇
∂ci
∂t

)
dx =

∫
Ω

N∑
i=1

(
f(ci)− ϵ2∆ci

) ∂ci
∂t

dx

=

∫
Ω

N∑
i=1

(µi − α(c))
∂ci
∂t

dx =

∫
Ω

N∑
i=1

µi∆µi dx−
∫
Ω
α(c)

∂

∂t

N∑
i=1

ci dx

= −
∫
Ω

N∑
i=1

|∇µi|2 dx ≤ 0.

3. CONSTRAINED CONVEX SPLITTING SCHEME FOR THE VECTOR-VALUED
CAHN–HILLIARD EQUATION

In this section, we propose an unconditionally energy stable scheme for the vCH equation
(2.3). The scheme is based on the observation that the vGL energy functional (2.2) can be split
into convex and concave parts:

E(c) = Ec(c)− Ee(c) =
∫
Ω

(
Fc(c) +

ϵ2

2

N∑
i=1

|∇ci|2
)
dx−

∫
Ω
Fe(c) dx,

where Fc(c) and −Fe(c) are convex and concave parts of F(c), respectively. Treating Ec(c)
implicitly and Ee(c) explicitly, the constrained Convex Splitting (cCS) scheme is obtained:

cn+1 − cn

∆t
=∆µn+1, (3.1)

µn+1 :=
δEc(cn+1)

δc
− δEe(cn)

δc

= fc(c
n+1)− ϵ2∆cn+1 + αc(c

n+1)1− fe(c
n)− αe(c

n)1, (3.2)

where fc(c) =
∂Fc
∂c = (fc(c1), . . . , fc(cN ))T , fe(c) = ∂Fe

∂c = (fe(c1), . . . , fe(cN ))T ,

αc(c) = − 1

N

N∑
i=1

fc(ci), and αe(c) = − 1

N

N∑
i=1

fe(ci).

Remark 3.1. The choices of αc(c
n+1) and αe(c

n) in the cCS scheme (3.1) and (3.2) are
critical factors to satisfy the partition of unity constraint (2.1) and have the unconditional energy
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stability. αc(c
n+1) and αe(c

n) are obtained by taking the variational derivative of Ec(cn+1)

and Ee(cn) with respect to c under the constraints
N∑
i=1

cn+1
i = 1 and

N∑
i=1

cni = 1, respectively.

Lemma 3.2. The cCS scheme is mass conserving.

Proof. Let cn+1
i (i = 1, . . . , N ) be a solution of the cCS scheme. From Eq. (3.1), we have

1

∆t

∫
Ω
(cn+1

i − cni ) dx =

∫
Ω
∆µn+1

i dx =

∫
∂Ω

∇µn+1
i · n ds = 0, for i = 1, . . . , N ,

where we used the zero Neumann boundary condition for µn+1
i . It follows that

∫
Ω
cn+1
i dx =∫

Ω
cni dx for each i. □

Lemma 3.3. The cCS scheme satisfies the constraint (2.1) at any time tn, i.e.,
N∑
i=1

cni = 1 if an

initial condition satisfies
N∑
i=1

c0i = 1.

Proof. Since
N∑
i=1

fc(c
n+1
i ) +Nαc(c

n+1) = 0 and
N∑
i=1

fe(c
n
i ) +Nαe(c

n) = 0, we have from

Eqs. (3.1) and (3.2)

1

∆t

N∑
i=1

(
cn+1
i − cni

)
= −ϵ2∆2

N∑
i=1

cn+1
i ,

i.e., (I +∆t ϵ2∆2)

N∑
i=1

cn+1
i =

N∑
i=1

cni , (3.3)

where I denotes the identity operator. Since I + ∆t ϵ2∆2 with a zero Neumann boundary
condition for ci is an invertible operator, Eq. (3.3) has a unique solution. Thus, Eq. (3.3)

ensures that
N∑
i=1

cn+1
i = 1 for all n ≥ 0 with the initial condition satisfying

N∑
i=1

c0i = 1. □
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Theorem 3.4. The cCS scheme is uniquely solvable for any time step ∆t > 0.

Proof. We consider the following functional on H̃ =

{
c
∣∣ N∑

i=1

ci = 1,

∫
Ω
ci dx =

∫
Ω
cni dx

for i = 1, . . . , N

}
:

G(c) =
1

2∆t
∥c− cn∥2H−1 + Ec(c)−

(
δEe(cn)

δc
, c

)
L2

,

where (c,d)L2 =

∫
Ω
c · d dx =

∫
Ω

N∑
i=1

cidi dx.

It may be shown that cn+1 ∈ H̃ is the unique minimizer of G(c) if and only if it solves,

for any d ∈ H0 =

{
d
∣∣ N∑

i=1

di = 0,

∫
Ω
di dx = 0 for i = 1, . . . , N

}
,

dG(c+ sd)

ds

∣∣∣∣
s=0

=

(
c− cn

∆t
,d

)
H−1

+

(
δEc(c)
δc

− δEe(cn)
δc

,d

)
L2

(3.4)

=

(
c− cn

∆t
−∆

(
δEc(c)
δc

− δEe(cn)
δc

)
,d

)
H−1

= 0, (3.5)

because G(c) is strictly convex by

d2G(c+ sd)

ds2

∣∣∣∣
s=0

=
1

∆t
∥d∥2H−1 +

∫
Ω

N∑
i=1

(
f ′
c(ci)d

2
i + ϵ2|∇di|2

)
dx ≥ 0.

Here, the second term on the right-hand side of Eq. (3.4) is obtained as follows:

d

ds

∫
Ω

(
Fc(c+ sd) +

ϵ2

2

N∑
i=1

|∇(ci + sdi)|2
)
dx

∣∣∣∣∣
s=0

=

∫
Ω

(
fc(c) · d+ ϵ2

N∑
i=1

∇ci · ∇di

)
dx =

∫
Ω

(
fc(c)− ϵ2∆c

)
· d dx

=

∫
Ω

(
fc(c)− ϵ2∆c+ αc(c)1

)
· d dx−

∫
Ω
αc(c)1 · d dx =

(
δEc(c)
δc

,d

)
L2

.

And, Eq. (3.5) is true for any d ∈ H0 if and only if the given equation holds

cn+1 − cn

∆t
= ∆

(
δEc(cn+1)

δc
− δEe(cn)

δc

)
.

Hence, minimizing the strictly convex functional G(c) is equivalent to solving Eqs. (3.1) and
(3.2). □



A CONSTRAINED CONVEX SPLITTING SCHEME FOR THE VCH EQUATION 7

Lemma 3.5. Consider the following convex splitting of the GL energy functional (1.1):

E(c) = Ec(c)−Ee(c) =

∫
Ω

(
Fc(c) +

ϵ2

2
|∇c|2

)
dx−

∫
Ω
Fe(c)dx, where F ′

c(c) = fc(c) and

F ′
e(c) = fe(c). Then, the convexity of Ec(c) and Ee(c) yields the following inequality:

E(cn+1)− E(cn) ≤
∫
Ω

(
δEc(c

n+1)

δc
− δEe(c

n)

δc

)
(cn+1 − cn) dx

=

∫
Ω

(
fc(c

n+1)− ϵ2∆cn+1 − fe(c
n)
)
(cn+1 − cn) dx.

Proof. We refer to [37]. □

Theorem 3.6. The cCS scheme with an initial condition satisfying
N∑
i=1

c0i = 1 is uncondition-

ally energy stable, meaning that for any ∆t > 0,

E(cn+1) ≤ E(cn).

Proof. Using Lemma 3.5, we have

E(cn+1)− E(cn) =

N∑
i=1

(
E(cn+1

i )− E(cni )
)

≤
N∑
i=1

∫
Ω

(
fc(c

n+1
i )− ϵ2∆cn+1

i − fe(c
n
i )
) (

cn+1
i − cni

)
dx.

And we obtain from Lemma 3.3

E(cn+1)− E(cn) ≤
N∑
i=1

∫
Ω

(
µn+1
i − αc(c

n+1) + αe(c
n)
) (

cn+1
i − cni

)
dx

= ∆t

N∑
i=1

∫
Ω
µn+1
i ∆µn+1

i dx

−
∫
Ω

(
αc(c

n+1)− αe(c
n)
) N∑

i=1

(
cn+1
i − cni

)
dx

= −∆t
N∑
i=1

∫
Ω

∣∣∇µn+1
i

∣∣2 dx ≤ 0.

□
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4. NUMERICAL EXPERIMENTS WITH THE POLYNOMIAL FREE ENERGY

For numerical tests, we consider the polynomial free energy F(c) = 1
4

N∑
i=1

c2i (ci − 1)2 and

following splitting:

Fc(c) =
1

4

N∑
i=1

c2i , Fe(c) =
N∑
i=1

Ψ(ci), Ψ(c) :=


0, c < 0
1
4

(
2c3 − c4

)
, c ∈ [0, 1]

1
4(−1 + 2c), c > 1

(4.1)

to have both convexity of Fc(c) and Fe(c) for the extended range of c and easiness of imple-
mentation. Then, fc(c) = 1

2c and fe(c) = Ψ′(c), and the cCS scheme with Fc(c) and Fe(c) in
(4.1) becomes

cn+1 − cn

∆t
= ∆

(
1

2
cn+1 − ϵ2∆cn+1 − 1

2N

N∑
i=1

cn+1
i 1− fe(c

n)− αe(c
n)1

)
. (4.2)

By Lemma 3.3, Eq. (4.2) can be rewritten as follows:

cn+1 − cn

∆t
= ∆

(
1

2
cn+1 − ϵ2∆cn+1 − fe(c

n)− αe(c
n)1

)
.

Since fc(c) is linear with respect to c, the scheme allows to solve the vCH equation component-
wisely,

Dcn+1
i = bni , i.e., cn+1

i = D−1bni , for i = 1, . . . , N ,

where D := I −∆t∆(12 − ϵ2∆) is invertible with a zero Neumann boundary condition for ci
and bni := cni −∆t∆

(
fe(c

n
i ) + αe(c

n)
)

is given explicitly.
We here use the Fourier spectral method for the spatial discretization and the discrete co-

sine transform in MATLAB is applied for the whole numerical simulations to solve the vCH
equation with the zero Neumann boundary condition.

4.1. Convergence test. We demonstrate the convergence of the proposed scheme with the
initial conditions

c1(x, 0) =
1

3
+ 0.01 cos

3

2
x, c2(x, 0) =

1

3
+ 0.02 cosx,

c3(x, 0) = 1− c1(x, 0)− c2(x, 0)

on Ω = [0, 2π]. We set ϵ = 0.25 and compute c(x, t) for 0 < t ≤ 280. The grid size is fixed to
h = 2π/128 which provides enough spatial accuracy. In order to estimate the convergence rate
with respect to ∆t, simulations are performed by varying ∆t = 2−10, 2−9, . . . , 22. We take
the quadruply over-resolved numerical solution as the reference solution. Figures 1 (a) and
(b) show the evolution of E(t) for the reference solution and the relative l2-errors of c(x, 120)
(this time is indicated by a dashed line in Fig. 1 (a)) for various time steps, respectively. It is
observed that the scheme is first-order accurate in time.



A CONSTRAINED CONVEX SPLITTING SCHEME FOR THE VCH EQUATION 9

0 40 80 120 160 200 240 280
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

time t

en
er
g
y
E
(t
)

(a)

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

time step ∆t

re
la
ti
v
e
l 2
-e
rr
o
r

(b)

FIGURE 1. (a) Evolution of E(t) for the reference solution with ϵ = 0.25 and
h = 2π/128. (b) Relative l2-errors of c(x, 120) for various time steps.

4.2. Energy stability of the proposed scheme. In order to investigate the energy stability of
the proposed scheme, we consider the phase separation of a ternary system with the initial
conditions

c1(x, y, 0) =
1

3
+ rand(x, y), c2(x, y, 0) =

1

3
+ rand(x, y),

c3(x, y, 0) = 1− c1(x, y, 0)− c2(x, y, 0)

on Ω = [0, 2π]× [0, 2π]. Here, rand(x, y) is a random number between −0.1 and 0.1, and we
use ϵ = 0.1 and h = 2π/128.

Figure 2 shows the evolution of E(t) using the explicit Euler’s and the proposed scheme
with different time steps. The energy curves for the explicit Euler scheme with ∆t = 2−20 and
2−19 are nonincreasing until t = 2−14, whereas the energy curve with ∆t = 2−18 increases
rapidly after t = 2−16. As we can see this figure, the explicit Euler’s scheme has a severe
time step restriction for energy stability. All the energy curves using the proposed scheme are
nonincreasing in time even for sufficiently large time steps. Figure 3 shows the evolution of
c(x, y, t) with ∆t = 2−10.

4.3. Efficiency of the proposed scheme. In order to show the efficiency of the proposed
scheme, we consider the phase separation of 3, . . . , 10 components (N = 3, . . . , 10). For each
N , the initial conditions are chosen as follows: the domain Ω = [0, 2π]× [0, 2π] is partitioned
into 40 Voronoi cells and ci is set to 1 on randomly selected Voronoi cells for i = 1, . . . , N .
ϵ = 0.05, h = 2π/128, and ∆t = 1/4 are used. Simulations are run until T = 512 and
Fig. 4 shows the evolution of c(x, y, t) at t = 0 and 512. Figure 5 presents the CPU time (in
seconds, averaged over 10 trials performed on Intel Core i5-7500 CPU at 3.40GHz with 8GB
RAM) consumed for N = 3, . . . , 10. The results suggest that the CPU time is almost linear
with respect to the number of components N .
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The explicit Euler scheme
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FIGURE 2. Evolution of E(t) using the explicit Euler’s and the proposed
scheme with different time steps.

t = 64 t = 192 t = 320 t = 512

FIGURE 3. Evolution of c(x, y, t) with ϵ = 0.1, h = 2π/128, and ∆t = 2−10.
In each snapshots, the yellow, green, and blue regions indicate c1, c2, and c3,
respectively, and contour lines represent ci = 0.5.

4.4. Phase separation of a four-component mixture in 3D. We solve the vCH equation on
Ω = [0, 2π]× [0, 2π]× [0, 2π] with ϵ = 0.1, h = 2π/64, and ∆t = 1/4. The initial conditions
are

ci(x, y, z, 0) =
1

4
+ i · rand(x, y, z), for i = 1, 2, 3,

c4(x, y, z, 0) = 1−
3∑

i=1

ci(x, y, z, 0),

where rand(x, y, z) is a random number between −0.01 and 0.01 at the grid points. Figures
6 and 7 show the evolution of c(x, y, z, t) and its energy, respectively. We observe that the
randomly perturbed constant concentration fields evolve to many small structures and then to
single-interface structures as the energy is dissipated in time.
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N = 3 N = 5 N = 8 N = 10

FIGURE 4. Evolution of c(x, y, t) at t = 0 (top) and 512 (bottom) with ϵ =
0.05, h = 2π/128, and ∆t = 1/4. Columns 1–4 correspond to N = 3, 5,
8, and 10, respectively. In the top, the 40 Voronoi cells are represented by red
dotted lines.
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FIGURE 5. CPU time versus the number of components. Each simulation is
run until T = 512. Each line segment is obtained by least squares fitting of all
points.

5. NUMERICAL EXPERIMENTS WITH THE LOGARITHMIC FREE ENERGY

In this section, we consider the logarithmic free energy

F(c) = θ
N∑
i=1

ci ln ci + θc

N∑
i=1

N∑
j=i+1

cicj = θ
N∑
i=1

ci ln ci +
θc
2

N∑
i=1

ci(1− ci).
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t = 96 t = 192 t = 288 t = 512

FIGURE 6. Evolution of c(x, y, z, t) with ϵ = 0.1, h = 2π/64, and ∆t = 1/4.
In each snapshots, the red, green, blue, and yellow regions indicate c1, c2, c3,
and c4, respectively.
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FIGURE 7. Evolution of E(t).

Unlike the polynomial free energy, a nonlinear convex splitting is a natural choice for the
logarithmic free energy:

Fc(c) = θ
N∑
i=1

ci ln ci, Fe(c) = −θc
2

N∑
i=1

ci(1− ci).

Then, fc(c) = θ ln c and fe(c) = θcc. In the case of the logarithmic free energy, there is
a numerical difficulty associated with the singularity as each ci approaches zero. In order
to avoid this, we apply a regularization to the logarithmic function, i.e., for a small positive
number δ, we define

lnδ c :=

{
ln c, if c ≥ δ,
p(c) = − 1

2δ2
c2 + 2

δ c+ ln δ − 3
2 , otherwise,

where the quadratic polynomial p(c) matches the values of zeroth, first, and second derivatives
of the logarithmic function at c = δ [3, 4].
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The nonlinearity of the scheme comes from fc(c
n+1
i ) and αc(c

n+1) and these can be handled
using a Newton-type linearization [24, 28]

fc(c
n,m+1
i ) ≈ fc(c

n,m
i ) + f ′

c(c
n,m
i )(cn,m+1

i − cn,mi ),

αc(c
n,m+1) ≈ αc(c

n,m) +
∂αc(c

n,m)

∂c

T

(cn,m+1 − cn,m)

= − 1

N

N∑
i=1

(
fc(c

n,m
i ) + f ′

c(c
n,m
i )(cn,m+1

i − cn,mi )
)

for m = 0, 1, . . .. We then develop a Newton-type fixed point iteration method for the cCS
scheme as

D1 +A1 A2 · · · AN

A1 D2 +A2 · · · AN
...

...
. . .

...
A1 A2 · · · DN +AN




cn,m+1
1 − cn,m1

cn,m+1
2 − cn,m2

...
cn,m+1
N − cn,mN

 =


bn,m1
bn,m2

...
bn,mN

 , (5.1)

where cn,0 = cn,

Di = I −∆t∆
(
f ′
c(c

n,m
i )− ϵ2∆

)
, Ai = −∆t∆

(
− 1

N
f ′
c(c

n,m
i )

)
,

bn,mi = cni − cn,mi +∆t∆
(
fc(c

n,m
i )− ϵ2∆cn,mi + αc(c

n,m)− fe(c
n
i )− αe(c

n)
)
,

for i = 1, . . . , N , and we set
cn+1 = cn,m+1

if a relative l2-norm of the consecutive error
∥cn,m+1−cn,m∥

2
∥cn,m∥2

is less than a tolerance tol. In this
paper, the biconjugate gradient (BICG) method is used to solve the system (5.1) and we use the
following preconditioner P to accelerate the convergence speed of the BICG algorithm:

P =


D̄1 0 · · · 0
0 D̄2 · · · 0
...

...
. . .

...
0 0 · · · D̄N

 ,

where D̄i = I −∆t∆
(
f ′
c(c

n,m
i )− ϵ2∆

)
and f ′

c(c
n,m
i ) is the average value of f ′

c(c
n,m
i ). The

stopping criterion for the BICG iteration is that the relative residual norm is less than tol.

5.1. Robustness of the nonlinear solver and convergence test. In order to show the robust-
ness of the nonlinear solver and the necessity of the preconditioner, we count the number of
nonlinear and BICG iterations with the initial conditions

c1(x, 0) =
1

3
+ 0.01 cos

3

2
x, c2(x, 0) =

1

3
+ 0.02 cosx,

c3(x, 0) = 1− c1(x, 0)− c2(x, 0)
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on Ω = [0, 2π], θ = 0.3, θc = 1, ϵ = 0.25, h = 2π/128, and tol = 10−10. Figure 8 shows
the number of BICG iterations without and with the preconditioner during the simulation time
0 < t = n∆t ≤ 280 for different time steps. As shown in Fig. 8, the BICG iterations
were remarkably reduced (about 100 times) by using the preconditioner. Figures 9 (a) and (b)
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FIGURE 8. Number of BICG iterations without and with the preconditioner
for different time steps.

show the number of nonlinear and BICG iterations (with the preconditioner) averaged over the
simulation time, respectively. 2–4 nonlinear iterations (on average) were involved in proceed-
ing to the next time level. We believe that such a fast iterative convergence can be achieved
since the successive iteration (5.1) is a Newton-type fixed point iteration method. And 6–42
BICG iterations (on average) were involved in proceeding to the next time level owing to the
preconditioner.
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FIGURE 9. Number of (a) nonlinear and (b) BICG iterations (with the precon-
ditioner) averaged over the simulation time.
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Next, we vary ∆t = 2−10, 2−9, . . . , 22 to estimate the convergence rate with respect to ∆t
for the logarithmic free energy. We take the quadruply over-resolved numerical solution as the
reference solution. Figures 10 (a) and (b) show the evolution of E(t) for the reference solution
and the relative l2-errors of c(x, 120) (this time is indicated by a dashed line in Fig. 10 (a))
for various time steps, respectively. It is observed that the scheme is also first-order accurate in
time for the logarithmic free energy.
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FIGURE 10. (a) Evolution of E(t) for the reference solution with θ = 0.3,
θc = 1, ϵ = 0.25, h = 2π/128. (b) Relative l2-errors of c(x, 120) for various
time steps.

5.2. Energy stability of the proposed scheme. In order to investigate the energy stability for
the logarithmic free energy, we take the initial conditions as

c1(x, y, 0) =
1

3
+ rand(x, y), c2(x, y, 0) =

1

3
+ rand(x, y),

c3(x, y, 0) = 1− c1(x, y, 0)− c2(x, y, 0)

on Ω = [0, 2π]× [0, 2π]. Here, rand(x, y) is a random number between −0.1 and 0.1, and we
use θ = 0.3, θc = 1, ϵ = 0.1, h = 2π/128, and tol = 10−6. Figure 11 shows the evolution
of E(t) with different time steps. All the energy curves are also nonincreasing in time for the
logarithmic free energy. Figure 12 shows the evolution of c(x, y, t) with ∆t = 2−2.
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FIGURE 11. Evolution of E(t) with different time steps.

t = 64 t = 128 t = 256 t = 512

FIGURE 12. Evolution of c(x, y, t) with θ = 0.3, θc = 1, ϵ = 0.1, h =
2π/128, and ∆t = 2−2. In each snapshots, the yellow, green, and blue regions
indicate c1, c2, and c3, respectively, and contour lines represent ci = 0.45, 0.5,
and 0.55.

6. CONCLUSIONS

In this paper, we proposed the cCS scheme for the vCH equation and proved its uncondi-
tional energy stability. For the polynomial free energy and linear convex splitting, we confirmed
that the scheme is first-order accurate in time and unconditionally energy stable. Owing to the
linear convex splitting, we solved the vCH equation efficiently (the CPU time was almost linear
with respect to the number of components N ). For the logarithmic free energy and nonlinear
convex splitting, we showed the robustness of the nonlinear solver and the necessity of the
preconditioner. And we also demonstrated that the scheme is first-order accurate in time and
unconditionally energy stable.

We note that order of time accuracy of the cCS scheme can be improved by various ap-
proaches. One of them is to combine with an s-stage implicit–explicit Runge–Kutta method
[1, 29, 30] and extension of the cCS scheme to high-order time accuracy can be considered as
the scope of future study.
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