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1. Introduction

A number of problems in computational physics require the solution of the Helmholtz equation in domains where multi-
ple media meet at a single point. Examples include acoustic and electromagnetic scattering from structures such as diffrac-
tion gratings and complex antennas [6,8,22,25,26].

The geometry of a typical scattering problem is shown in Fig. 1.
We assume that the Helmholtz parameter k(x) is constant in each of the subdomains X0–X4 and that our task is to solve
r2UtotðxÞ þ k2ðxÞUtotðxÞ ¼ 0 for x 2 R2; ð1Þ
where
UtotðxÞ ¼ UinðxÞ þUðxÞ; ð2Þ
Uin(x) is a known incoming field, and U(x) is an unknown scattered field. At material interfaces,
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where m denotes the normal direction, [f] denotes the jump in the quantity f across an interface, and the choice of (b,c) is
determined by the governing physical model.
. All rights reserved.
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Fig. 1. A progression of singular geometries. We will consider smooth inclusions (left), then corners (center) and finally triple points (right). Triple points
are points where three different materials meet, such as A, D.
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In electromagnetics, kðxÞ ¼ x
ffiffiffiffiffiffi
�lp , where � and l are the permittivity and permeability, respectively, with x the fre-

quency of interest. In the two-dimensional setting there are two scalar partial differential equations which arise [7,17]. If
U is the (out-of-plane) z-component of the electric field, then the standard continuity conditions on the tangential compo-
nents of the electric field require that b = c = 1 in (3), (4). If U is the (out-of-plane) z-component of the magnetic field, then
the continuity conditions require that b = 1, c = �. The latter set of conditions also applies to acoustics with U denoting the
pressure, in which case b = 1 and c is the fluid density. For simplicity of presentation, we will assume b = 1, since the diffi-
culties we address below stems from the continuity condition (4) on the normal derivative.

In the general case, we assume that the plane R2 consists of an exterior region X0 in which are embedded some number M
of subdomains Xi, i = 1, . . . ,M. We will progress through successively more singular problems, beginning with smooth inclu-
sions, then adding corners, and finally triple points (as shown in Fig. 1). The boundary of the i-th domain will be denoted by
oXi for i = 0, . . . ,M. The total interface will be denoted by @X ¼ [M

i¼0@Xi.
We will restrict our attention here to boundary integral equation approaches since they require a discretization of the

interface alone and satisfy the exact Sommerfeld radiation condition for the scattered field. In this short note, we do not seek
to review the background potential theory, referring to the texts [11,19,21].

The relevant integral operators are the single and double layer potentials Sk, Dk with source densities r, l defined on some
(piecewise-smooth) boundary curve C:
SkðC;r; xÞ ¼
Z

C
Gkðkx� ykÞrðyÞdsy; DkðC;l;xÞ ¼

Z
C

@Gk

@my
ðkx� ykÞlðyÞdsy: ð5Þ
We will also require the normal derivatives of Sk and Dk at a point x 2C.
S0kðC;r; xÞ ¼
Z

C

@Gk

@mx
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Here, GkðrÞ ¼ 1
4i H0ðkrÞ is the Green’s function for the Helmholtz equation that satisfies the outgoing radiation condition,

where H0 denotes the Hankel function of the first kind. Sk is weakly singular as x ? C, and the integral is well-defined.
The limiting value of Dk depends on the side of C from which x approaches the curve. For x 2C, we assume Dk is defined
in the principal value sense. Note that S0k is the adjoint of Dk and should also be interpreted in a principal value sense.
The operator D0k, on the other hand, is hypersingular and unbounded as a map from the space of smooth functions on C to
itself. It should be interpreted in the Hadamard finite part sense.

For reasons that will become clear below, we will investigate three possible representations of the scattered field U in
subdomain Xi:
ðAÞ UiðxÞ ¼ Ski
ð@Xi;ri;xÞ ð7Þ

ðBÞ UiðxÞ ¼ Ski
ð@Xi;r;xÞ þ ciDki

ð@Xi;l;xÞ ð8Þ
ðCÞ UiðxÞ ¼ Ski

ð@X;r;xÞ þ ciDki
ð@X;l;xÞ: ð9Þ
A few words of explanation are in order. In (A), we assume each (nonsingular) boundary point y lies at the interface of two
subdomains, say Xi� and Xiþ and that it supports two unknown density values: a ‘‘charge’’ density ri� which is used to rep-
resent the field in Xi� and a ‘‘charge’’ density riþ which is used to represent the field in Xiþ . In (B), we assume each (nonsin-
gular) boundary point supports an unknown ‘‘charge’’ density r and an unknown ‘‘dipole’’ density l which are used to
represent the field in both domains Xi� and Xiþ for which y is a boundary point. In (C), the densities r(y), l(y) are used
to represent the field in every subdomain, whether y is on the boundary of that region or not. This difference will turn
out to be essential.

2. The classical integral equations and their discretization

Each of our representations leads to an integral equation. For x 2 oX, we assume the normal vector mx points from region
Xi� to region Xiþ . Substituting the representation (A) in (7) into the interface conditions yields the system of integral
equations
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for the unknowns [r0,r1, . . . ,rM].
Substituting the representation (B) in (8) into the interface conditions and taking the appropriate limits yields the system

of integral equations
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for the unknowns [r,l].
The Eqs. (10a), (10b) form a mixed system of first and second kind Fredholm equations, which are reasonably effective for

smooth domains, although the formal theory of existence and uniqueness is not trivial. We will study their performance in
Section 4.

The Eqs. (11a), (11b) are a bit more involved. The important aspect of the equations is that, while D0 itself is hypersingular,
the difference of hypersingular kernels
D0kiþ
ð@Xiþ ;l;xÞ � D0ki�

ð@Xi� ;l;xÞ
yields a compact operator on smooth domains. In the absence of multi–material junctions, it is only such difference kernels
that appear in the Eqs. (11a), (11b). As a result, they form a system of Fredholm equations of the second kind, for which the
formal theory is classical [12,19] and the solution is easily shown to be unique. The idea of using the difference of hypersin-
gular terms in this manner is standard in electromagnetics [20], acoustics [23], and photonics [13]. We will refer to it as the
Müller/Rokhlin scheme, following [20,23].

On smooth domains, major progress has been made in quadrature over the last two decades so that high order accuracy is
straightforward to achieve [1,3,18]. The generalized Gaussian quadrature method of [3], in particular, permits the use of
composite quadrature rules that take into account the singularity of the Green’s function. With K points per subinterval, they
achieve K-th order accuracy. In domains with corners (but no multi-material junctions), high-order accurate quadratures
that employ exponentially adaptive grids have also been developed, such as [5,15]. (The corner point itself is not part of
the discretization.) The basic idea is illustrated in Fig. 2. In the simplest case, suppose that each (piecewise smooth) boundary
segment has been subdivided into equal size subintervals of length, say D with a K-th order generalized Gaussian quadrature
used on each. The first and last subintervals are the ones that impinge on a corner point, and only these are subdivided using
a dyadically refined mesh creating log2� additional subintervals. The same K-th order rule is used on the refined subintervals
as well. It is straightforward to show that the resulting rule is ‘‘spectrally accurate’’ in K, with an accumulation of error from
each of the log2� refined subintervals, so that the net error is of the order O(e�Klog2�). It is, perhaps, worth noting that the
purpose of dyadic refinement is simply to resolve the densities r or l which develop singularities at the corner points. For
� = 10�14 and K = 16, the net corner error is about 10�14. For K = 8, it is about 10�8. High-order accuracy can also be obtained
through the careful use of asymptotic expansions [2].

Remark 2.1. Bremer [4] and Helsing [14] have shown both theoretically and experimentally that the condition number of a
properly discretized system of equations is very well controlled and that large scale problems in singular geometries are
easily handled by coupling iterative solution methods such as GMRES [24] with these high order discretization and fast
multipole acceleration. The formal analysis is more complicated since operators that are compact on smooth domains are not
compact (but bounded) on domains with corners. Part of the point of [4,14] is that when carefully discretized, the level of
difficulty is not, in fact, much greater.
For geometric singularities, we use a progression of dyadic intervals to discretize the unknown charge/dipole densities on each boundary segment
ets at the singular point. Each dyadically refined interval is separated from the endpoint by its length.
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Remark 2.2. Related recent work [5,15] has shown that one can dramatically reduce the number of degrees of freedom in
the vicinity of the corner by the use of compression. We are primarily interested here in robustness and accuracy (rather than
speed) and omit any discussion of either compression or fast algorithms in the present note.
3. Extending the Müller/Rokhlin scheme to multi-material junctions

In the case of triple junctions, the Eqs. (11a), (11b) fail to converge. The reason for this is simple. Consider the interface
condition (10b) for x lying on the segment CD in Fig. 1. Writing out the detailed contributions from just the segments imping-
ing on the corner point D, we have
Fig. 3.
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Both the terms D0k0
ðDE;l; xÞ and D0k4

ðDA;l;xÞ involve hypersingular contributions at the junction D without forming part of a
difference kernel. As we shall see, this destroys the high-order accuracy of the scheme.

By using the global integral representation (C) in (9), we eliminate such terms from the integral equation. Only difference
kernels appear in the resulting system. For x 2 @R, we have
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Remark 3.1. Recently, several groups have addressed the issue of deriving well-conditioned integral equations for multi-
material junctions using Dirichlet and Neumann data as unknowns rather than abstract layer potentials. In [16], a first kind
equation was derived that is suitable for Calderon-type preconditioning, and in [9,10] a second kind equation was derived
and shown to be effective without preconditioning.
4. Numerical results

The algorithms discussed above have been implemented in Fortran, using 8th order generalized Gaussian quadrature
rules [3]. For discretization, we divide each boundary segment (in the piecewise smooth boundary) into M equal subinter-
vals. The first and last intervals are subdivided dyadically into Mdyadic subintervals. As a result, the total number of points on
each boundary segment (each side) is 8 � (M � 2) + 16 �Mdyadic. The corner truncation error from dyadic refinement (when the
scheme is convergent) is approximately 2�Mdyadic . We solve the integral Eqs. (10a), (10b), (11a), (11b), (13a), (13b) iteratively
using GMRES with a tolerance of 10�8.

Example 1 (Comparing representations (A) and (B)). In the first example (Fig. 3), we consider a domain with corners but no
triple points. x = 1 with � = 1, k = 1 in the exterior region and � = 20, k = 10 in the inclusion. The incoming field is defined to
be a plane wave at incident angle 120o with respect to the +x-axis. The object is approximately two wavelengths in size (in
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terms of the interior Helmholtz parameter). The left-hand plot shows Re[Utot]. The central plot shows the behavior of GMRES
(residual vs. iteration number) using representations (A) and (B) with either M = 22, Mdyadic = 20 which corresponds to
N = 480 points per side or M = 4, Mdyadic = 2 which corresponds to N = 48 points per side. The integral Eqs. (11a), (11b) from
representation (B) required 40 iterations, yielding the rapidly converging curve (solid line with superimposed dots). The
integral Eqs. (10a), (10b) from representation (A) yields the dash-dotted curve for N = 48 and the dashed curve for N = 960.
211 iterations were required in the former case, and more than 1200 iterations in the latter. Note that the second kind
equation from representation (B) is well conditioned (from the GMRES behavior) and high order accurate (from the right-
hand plot). Moreover, there is no loss of precision from overresolution.
Example 2 (Comparing representations (B) and (C)). Since the representation (A) leading to a mixed system of first and sec-
ond kind equations has been shown not to be robust when simple corners are present, we compare only representations (B)
and (C) in the presence of triple points. In Fig. 4, we again set x = 1, with � = 1, k = 1 in the exterior region, � = 9, k = 6 in the
trapezoidal subdomain, and � = 20, k = 10 in the rectangular subdomain (shown in the left-hand plot). The incoming field is a
plane wave at incident angle 120o with respect to the +x-axis. On the left, we also plot Re[Utot]. The central plot shows the
solution to the integral equation as one traverses the boundary oX from vertex to vertex in the indicated order. The upper
curves in each plot show the single layer density r and the lower curves in each plot the double layer density l. The top
center figure correspond to representation (B) and the bottom center figure to representation (C). Note the singular behavior
of r at the triple junctions in the former case and the well-behaved nature of the solution in the latter case (the solution is
still weakly singular but no longer diverges.)

The right-hand plot shows the error in using representations (B) (upper curve) and (C) (lower curve) as the number of
discretization points is increased. Representation (C) behaves just like the classical approach on domains with corners but no
triple points. When using representation (C), only 38–42 iterations were required for each value of N indicated. For
representation (B), the iteration count grew with N from 37 to 117 in order to achieve a residual of 10�8. The actual error is
visibly much worse.
Example 3 (High contrast case). Our final example involves a more difficult problem, with a dielectric contrast of 104. The
computational domain is shown at the left of Fig. 5 with (�i,ki) = (1,10), (8,40) and (104,103) in the exterior, the large circle
and the small circle, respectively. The incoming field is a plane wave at incident angle 120o with respect to the +x-axis. Not
only is there a large impedance mismatch between the small circle and the two other subdomains, the Helmholtz coefficient
is so large that the circle is about 100 wavelengths across, and it functions as a nearly resonant cavity. The image is marked
void on the left and in the center, because the wavelength is so small it is below the available resolution. The center figure is
a zoom in on the rectangle indicated in the left-hand figure. Zooming in again on the rectangle shown in the center figure
Fig. 5. A high frequency, high contrast, scattering calculation with triple points. (See text for explanation.)
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yields the image on the right. At that scale, the wavelength is large enough to be visible. It is important to note that 700
GMRES iterations were required to achieve a tolerance of 10�9 here, and that the solution was correct to between 6 and
7 digits, with M = 180 and Mdyadic = 30. Both the iteration count and the loss of 2–3 digits in accuracy are to be expected, since
the condition number of the physical problem grows linearly with k.
Remark 4.1. We have used a simple and robust test for estimating the accuracy of each method. Rather than solve the true
scattering problem, we can define interior and exterior fields due to fictitious sources. That is, for x 2Xi, we assume the field
is due to known sources located in each of the other domains. These sources give rise to fields with artificial jumps in 1

b U; 1
c
@U
@m

and we can solve for r, l to annihilate those jumps. The fields induced by r, l can then be compared to the known analytic
solution at any target. We have also used standard self-consistent error estimation. Both approaches yield errors of the mag-
nitude listed above.
5. Conclusions

We have described a simple modification of the classical Müller/Rokhlin integral equation for the calculation of scattering
from composite structures with multi-material junctions. The resulting linear system is well-conditioned and the combina-
tion of high-order quadratures for smooth densities with adaptive corner refinement yields rapid convergence. The novel
feature of our scheme is the use of all boundary components to represent the field in each subdomain, rather than just
the boundary of the subdomain itself. One could improve efficiency somewhat, while achieving similar results, by using rep-
resentation (B) for each subdomain, supplemented only by the boundary segments that happen to impinge on any multi-
material junction points that are present. We have used the fully global representation in our experiments above for the sake
of simplicity.

Extension of our method to three dimensions and to the elastic and full electromagnetic cases are underway, as is the
coupling of the scheme to suitable fast algorithms. These developments will be reported at a later date.
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