
A parallel Poisson solver using the fast multipole method

on networks of workstations

June-Yub Lee∗(jylee@math.ewha.ac.kr, jylee@cims.nyu.edu)
Dept. of Math, Ewha Womans University, Seoul 120-750, KOREA,

Karpjoo Jeong (jeong@mail.lns.cornell.edu, jeong@cs.nyu.edu)
Laboratory for Nuclear Studies, Cornell University, Ithaca, NY14853

December 19, 1997

Abstract

We present a parallel Poisson solver on distributed computing environments. In the solver,
the parallel implementation of the Fast Multipole Method (FMM) is designed to minimize
amount of data communication and the number of data transfers and synchronizations. The
experimental results show linear speedup, good load balancing, and reasonable performance
under failure and demonstrate the viability of loosely coupled heterogeneous workstations for
large scale scientific computations.

Keyword: Volume integral method, Fast direct Poissone solver, High order of accuracy, Adap-
tive quad-tree, Domain decomposition.

1 Introduction

A variety of problems in computational science and engineering require the solution of the Poisson
equation: ∆u = f . Solving the Poisson equation is generally computation-intensive and therefore,
parallel processing becomes inevitable as a problem grows in size. In the last few decades, a
great deal of effort has been directed at parallelizing numerical methods for the Poisson equation
[1, 2, 3, 4]. In this paper, we present a parallel Poisson solver which can be used to solve large scale
real world problems. The reason we chose the Poisson equation as our target problem is that it is
one of the most important partial differential equations (PDE) in scientific computation and also
a good model problem to test and validate numerical schemes for more general elliptic PDEs.

Among currently available methods for solving the Poisson equation, we have chosen the direct,
adaptive method [5] which solves the Poisson equation by directly evaluating the corresponding
volume integral where the right-hand side f is defined on the leaf nodes of an adaptive quad-
tree data structure. The method is based on a kind of domain decomposition or spectral element
approach [6, 7], in which local solutions are patched together using the Fast Multipole Method
[8]. It allows a substantial amount of parallelism among intermediate steps, but also contains
complicated data dependencies among them. Therefore, parallelizing the method requires clever
strategies for data distribution and scheduling; otherwise, communication and synchronization due
to the data dependency can dominate runtime overhead and result in poor performance.

∗This work was partially supported by Ewha womans university research grant, 1996 and by Korea Science and
Engineering Foundation, KOSEF:970701-01013.

1

2 J.-Y. Lee and K. Jeong

As our computing platform, we have targeted distributed computing environments which do not
support physical shared memory or high performance communication among processors. A typical
example is networks of workstations (NOW) with tens or even hundreds of powerful workstations.
It is quite common in many workplaces and most of workstations are idle even at the busiest time
of day. Therefore, there has been a great deal of interest in developing tools to harness the potential
of these under-utilized workstations. A common approach is to make workstations join and retreat
parallel computation when they become idle and busy, respectively. However, it is still considered
a significant challenge to solve real world large scale problems by parallel processing on NOW. Part
of the reason is due to the problems unique to this kind of distributed computing environment :

1. Communication overhead: Communication between computing elements is not only slower
than numeric computation but also orders of magnitude slower than that between processing
elements of a monolithic parallel computer.

2. Heterogeneity and likelihood of failure: NOW is in general heterogeneous and the load
on the individual machines or the delays on the communication links can be arbitrary and
unpredictable. Even worse, individual components may fail at any point (actual failure) and
the utilization of idle CPU cycles requires owner activity on each workstation to be treated
as failure (simulated failure).

Because of its slow communication speed, a set of distributed and heterogeneous computers
would not be a suitable platform for fine grained parallelization which spreads a small portion of
subroutine-level computation into many processing units. Though NOW has been proven to be an
effective tool for coarse grained parallel computation, there has been little research on the use of
NOW for medium grained parallel applications which allocate subroutine or small algorithm level
jobs to different computing units. Therefore, the suitability of NOW for such applications is not yet
clear. Hence, we are, by no means, claiming that NOW is a replacement for supercomputers, but
simply that large scale scientific problems can be solved by by medium grained parallel processing
on NOW. This requires 1. A numerical algorithm to minimize inter-process communication 2. A
parallelization tool to utilize widely spread workstations in a simple and reliable manner which
facilitates long running computation.

In this paper, we present a parallel algorithm for the Poisson equation and explain the im-
plementation issues of a numerical algorithm on a distributed computing environment focusing
on parallelization of the Fast Multipole Method [9, 8]. We address issues relevant to paralleliza-
tion such as efficient data distribution, scheduling, and reliability which become more critical and
challenging for distributed computing environments.

The rest of this paper is organized as follows. In section 2, we present a sequential algorithm for
the Poisson problem based on the fast multipole method (FMM) where its hierarchical structure
provides an opportunity for data and computation decomposition. Mathematical preliminaries,
data structures, data dependency, and parallelism of the FMM are discussed and we then outline
a parallel version of the Poisson solver. In section 3, we discuss data distribution, load balancing,
and fault tolerance which are important for parallelization under NOW. Brief overviews of Linda
and PLinda, a fault-tolerant extension of Linda, are given. We also discuss implementation issues
related to optimizing communication costs between subcomputations of the Poisson solver under
the Linda environment. In section 4, we experimentally demonstrate the viability of NOW for large
scale, complex numerical computations by showing performance results of our prototype system.
Section 5 concludes this paper.

Parallel Poisson Solver 3

2 A Parallel Poisson Solver using FMM

In this section, we briefly describe a direct, adaptive numerical method for the Poisson equation
based on local polynomial solutions which are globally patched together using the FMM. We then
discuss adaptive data structures and their dependencies along with the issues of communication
and synchronization involved in parallelizing the sequential method.

2.1 Mathematical Preliminaries

To simplify the discussion, we restrict our attention to the Poisson equation

∆u = f in R2 (1)

in the absence of physical boundaries, where the source distribution f has bounded support.
Mathematically a Poisson solver is a mapping from a source distribution f(x), which might have

complicated structures such as oscillations or internal layers, into the solution u(x) of the Poisson
equation in a given domain D. Thus, a numerical algorithm for this problem provides the value of
u(x) at each of a set of discretization points from a description of the source distribution f and a
desired accuracy.

There are quite a few approaches to this problem. The most standard of which are finite
difference, finite element and spectral methods, but fast direct solvers[10], relying on cyclic reduction
or the fast Fourier transform (FFT), are limited to regular, tensor-product meshes. For more
complex discretizations, using finite difference or finite element methods, it is common to rely
on iterative solution procedures, including multigrid and additive domain decomposition [11, 12],
which can easily be implemented on a parallel machine [13, 14]. Since the Laplacian is a (local)
differential operator, a discretization point using such standard methods is coupled only to its
nearest neighbors. This locality property has a two fold advantage in an iterative context. First, at
each iteration, updating of a variable needs only information from a finite number of neighboring
points, and the total cost of each sweep is linear in the number of grid points. Second, if a
particular subregion has been allocated to a single processor, then only the interface points need
inter-processor communication. Unfortunately, these standard methods are not completely robust
when the source distribution has a complex structure, the grid is highly non-uniform, and high
accuracy is required.

In order to overcome these difficulties, we solve the Poisson problem using a rather new approach
which evaluates the solution u in the form of a volume integral

u(x) =
1
2π

∫
R2

log |x− y|f(y) dy. (2)

There are many advantages to this approach and readers interested in a complete discussion of
the sequential algorithm are referred to the paper by L. Greengard and J.-Y. Lee [5]. At first
glance, this integral approach seems to be less attractive in terms of computational cost and spatial
parallelism since direct evaluation of an integral operator with global dependency is quite expensive
(O(N2) work, where N is the number of points in the domain, vs. O(N) or O(N logN) for domain
decomposition or multigrid) and the parallelism induced by local dependency is not obvious. Before
describing the sequential method, we just remark that once the integral equation is discretized using
our hierarchical data structure, we will recover data and computational locality. Only a small
portion of interface data has to be transferred to neighbors. In fact, the present method shares
many features with other numerical schemes for PDEs, such as domain decomposition methods,
from the viewpoint of parallel computation.

4 J.-Y. Lee and K. Jeong

We now briefly outline mathematical results on which our parallel implementation is based.
Assume that the source distribution f is supported inside a square domain D embedded in a quad-
tree structure with M leaf nodes Di and f is smooth on the scale of each such small square Di.
The main result can be summarized in the following theorem :

Theorem 2.1 Let the source distribution f be given as a K-th order Chebyshev polynomial fi for
each leaf node Di for i = 1, . . . , M of the quad tree embedded on D. Then, for x ∈ Di, the solution
to the Poisson equation (1) is given by

u(x) = us
i (x) +

M∑
j=1

uh
j (x). (3)

where us
i (x) is a polynomial satisfying ∆us

i = fi locally (inside Di) and uh
j (x) is a harmonic

function in Di defined in terms of single and double layer potentials generated by the boundary
values of us

j(x) and ∂
∂nus

j(x) along the interfaces of subdomain Dj.

While us
i (x) depends only on fi, and is computed locally, the evaluation of the harmonic patches

by direct summation over M boxes requires order O(MN) work and communications (M source
boxes to N target points), which is very expensive. The sequential algorithm described below uses
the Fast Multipole Method (FMM) to achieve parallelism and to reduce the computation cost to
order O(N).

2.2 Adaptive Quad-tree Structure

Suppose a square box D contains the support of the right hand side f . Starting from S0,0 = D, a
quad-tree structure is obtained by dividing a square subdomain Sl,k into four equal size subdomains
Sl+1,4k+d, for d = 0, 1, 2, 3. In order to achieve adaptivity, this process continues until the source
term f is locally smooth enough on each of the leaf nodes Sl,k aliased as Di. We allow different
level l of refinement under one condition which we call the refinement ratio 2 condition. That is
two leaf nodes which share a boundary segment live at most one refinement level apart. This is
merely for easy programming and could be relaxed easily.

Definition 2.1 a) For each square Sl,k, the neighbors Nl,k consist of those squares at the same
(or coarser, if none) refinement level with which it shares a boundary point. b) For each square
Sl,k, the interaction region consists of the area covered by the neighbors of Sl,k’s parent, excluding
the neighbors of Sl,k. The interaction list Il,k consists of those squares in the interaction region
which are at the same (or coarser, if none) refinement level.

Using the notion we just defined, a domain D with respect to any node Sl,k could be represented
as a sum of itself, its neighbors, and the interaction list of ancestor starting from itself.

D = Sl,k ∪ Nl,k ∪l−1
p=0 Il−p,floor(k/4p) (4)

where Sl−p,floor(k/4p) is the p-th parent box of Sl,k. Therefore, if possible, a summation using the
interaction list is cheaper than the direct summation over all leaf nodes, O(Nlog4N) versus O(N2)
for an optimally balanced quad-tree. However, data from far-away boxes (although few) is still
needed.

Parallel Poisson Solver 5

i

i i i
i+

i

i+

i

i

i

i x

i

i

i

i

i+

i+
i

i

i

i

i i

x

i+

i+i+

Figure 1: Adaptive subdivision of a square domain D. In the lefthand figure, all leaf nodes
are visible and the neighbors of the square marked by an x are indicated by shading. The elements of the
interaction list are indicated by an i or an i+, depending on whether they are at the same refinement level
or at a coarser one. Note that some of the neighbors at the same refinement level are further subdivided,
resulting in a somewhat complex local structure. In the righthand figure, the neighbors and interaction list
of the square marked by an x are again indicated by shading or by the labels i and i+. We have omitted
the refinements of some of the members of the interaction list on the right, since those refinements are of no
consequence to the marked square under consideration.

2.3 Data Dependency and Parallelism of FMM

In order to further reduce the computational cost to O(N) and simultaneously reduce the data
dependency from far away, we need to take a look at the mathematical structure of the summation
of harmonic patches

∑M
j=1 uh

j (x). Let us define a multipole expansion Φl,k and a local expansion
Ψl,k for each of the Sl,k,

Φl,k(x) =
∑

Dj⊂Sl,k

uh
j (x) for x ∈ N c

l,k, (5)

Ψl,k(x) =
∑

Dj⊂N c
l,k

uh
j (x) for x ∈ Sl,k. (6)

where N c
l,k denotes the outer region of Nl,k in R2. In the FMM based sequential method[5], there

are three kinds of data dependency among Φl,k, Ψl,k, and
∑M

j=1 uh
j :

1. The multipole expansion Φl,k of the node Sl,k depends on the multipole expansions of the
four children.

Φl,k =
3∑

d=0

Φl+1,4k+d (7)

2. The local expansion Ψl,k of the node Sl,k depends on the local expansion of the parent and
harmonic patches over the interaction list

∑
Dj⊂Il,k

uh
j (x) which can be written in the form

of the multipole expansions of all elements of the interaction list

Ψl,k = Ψl−1,f loor(k/4) +
∑

Sl,k⊂Il,k

Φl,k (8)

6 J.-Y. Lee and K. Jeong

3. The harmonic patches
∑M

j=1 uh
i (x) for x ∈ Di = Sl,k depends on uh

i ,
∑

Dj⊂Nl,k
uh

j , and Ψl,k

M∑
j=1

uh
j (x) = uh

i (x) +
∑

Dj⊂Nl,k

uh
j (x) + Ψl,k(x) for x ∈ Di = Sl,k (9)

If an intermediate step needs the results of another step, then the former step is called data-
dependent on the latter and can not start before the latter step finishes. Thus, data dependency
prohibits parallel computation and requires communication and synchronization. In our applica-
tion, dependency 1 forces us to compute multipole expansions of descendent nodes before those of
ancestors; this phase of computation is called the upward pass. Dependency 2 requires local expan-
sions of ancestor nodes to be computed before those of descendents; this phase of computation is
called the downward pass. The downward pass also requires multipole expansions in the interaction
list, thus, the upward pass must precede the downward pass; that is, there is no parallelism between
the two passes. Furthermore, dependency 3 for leaf nodes Di = Sl,k requires local expansions of its
parents, uh

j for all Dj in the neighbor list Nl,k and uh
i for Di.

In spite of these three dependencies, the method still allows a substantial amount of parallelism.
The major parallelism is that the multipole expansions in different subtrees can be computed con-
currently. Likewise, we can use parallel processing for local expansions. This approach is particu-
larly promising on networks of workstations because it allows coarse grained parallel computation.

2.4 The Numerical Method

We briefly summarize the implementation of the theorem which consists of four steps:

1. First local solve: Given any 2-dimensional Chebyshev polynomial fj(x), find a polynomial
us

j(x) such that ∆us
j(x) = fj(x) and then compute a multipole expansion Φj(x) at the center

yj representing the harmonic patch uh
j (x) for each of leaf node boxes Dj , j = 1, · · · , M .

2. FMM upward pass: Once the multipole expansion Φj for each leaf node is obtained, mul-
tipole expansions Φl,k for internal nodes Sl,k can be computed by collecting the information
from their four children Sl+1,4k+d, d = 0, 1, 2, 3. The multipole for Sl,k represents

∑
uh

j (x) of
all Dj inside of Sl,k for x �∈ Nl,k.

3. FMM downward pass: The local expansion Ψ0,0(x) for the root node is zero by defini-
tion since N c

0,0 is empty. The local expansion Ψl,k(x) of a descendent Sl,k at x ∈ Sl,k is
a combination of its parent’s Ψl−1,f loor(k/4)(x) and Φj(x) for all Dj ∈ Il,k since N c

l,k =
N c

l−1,f loor(k/4) ∪ Il,k. The hierarchical quad-tree data structure allows a recursive procedure
of the summation from top to bottom.

4. Final local solve: Once the Ψi(x) for all leaf nodes Di are computed, the harmonic patches∑M
j=1 uh

j (x) of the leaf node Di is the sum of Ψi(x), uh
i (x), and

∑
uh

j (x) for Dj ∈ Ni. To save
computational time, instead of evaluating us

i and the harmonic patches at all of the desired
points x, we just evaluate them at the boundary points of Di containing x and then solve the
local Poisson equation again, but with the correct boundary data.

We end this section by estimating the CPU time required by the sequential method. Letting M be
the number of leaf nodes and K be the desired order of accuracy, we construct a (scaled) K × K
Chebyshev mesh on each leaf node Di for i = 1, . . . , M . The total number of discretization points is
given by N = MK2. The computational cost of the Poisson solver, to get the solution u(x) at the

Parallel Poisson Solver 7

N = MK2 grid points on M leaf nodes with K×K grid points each, is of order N
(
4K + 27p2

K2 + K2
)

where p is the number of terms in the multipole expansion (around 20 for single and 40 for double
precision computation). The first term is the cost for the first local solvers, the second term for
the multipole steps, and the third term for the final local solvers. For low order computation, the
multipole steps dominate the computational cost and for high order computation, the final solver
does. Break even points are at K = 10 for single precision computation with p = 20 and K = 14
for double precision with p = 40.

3 Parallel Implementation Issues

There are basically two approaches to parallel processing: shared memory and message passing[15].
The shared memory model is considered to be easier to use because of its intuitive approach, but
it is less efficient than the message passing model on distributed computing environments such as
NOW with no physical shared memory, because of an additional software layer required to simulate
shared memory by network communication. We have chosen the shared memory model because
the ease of programming issue is very important for developing software tools such as a Poisson
solver since development of such a tool usually goes through a number of upgrade or modification
phases.

Although our parallel solver is based on the shared memory model, its design focus is on reducing
the use of shared memory as much as possible, in order to address the runtime performance issue.
The runtime overhead due to shared memory is proportional to how much data shared memory
maintains and how frequently shared memory is accessed and needs to be synchronized.

3.1 Data Distribution and Task Allocation

The sequential method maintains all of the data Φl,k, Ψl,k, (and in addition us
i for each leaf node)

in a simple and uniform quad-tree structure. The data sizes are p ∗ 16, p ∗ 16 and 8K ∗ 8 bytes,
respectively. In our test example with 1M discretization points using K = 8, a single precision
multipole method with p = 20 takes 32MB memory for the whole tree or 1.5KB for each of 16K
boxes and spends 250 seconds for the full solve, averaging 16 mseconds per box. To handle real
world problems that require large quad-trees and frequent access, the efficient management of the
tree is very important for runtime performance. In this section, we discuss how to distribute and
share the quad-tree data among processes participating in parallel computation.

We treat a multipole or local expansion of each node as a unit of data and a unit of computa-
tion, thus, the quad-tree distribution and task allocation are directly related. We considered two
approaches to how to distribute the quad-tree in the parallel method:

• Completely Shared quad-tree, Completely Dynamic task allocation (CSCD). The whole tree is
maintained as shared data. During execution, a process repeatedly grabs a node (or a tiny
subtree) which is not computed yet, reads intermediate data required for the node or subtree,
executes the computation, and then stores results back into shared memory.

• Almost No Shared quad tree, almost Completely Static task allocation (NSCS). At the be-
ginning, the quad-tree is partitioned into some number of processes. During execution, the
process performs computation only for the nodes in its partition. However, this strategy also
requires processes to exchange boundary data with neighbor processes to make progress. For
example, the multipole downward sweep needs data from the interaction list which might be
allocated to other processes. They maintain in shared memory only the minimum interface
data attached to nodes on boundaries between adjacent partitions.

8 J.-Y. Lee and K. Jeong

We compare these two approaches with respect to ease of programming, load balancing, and
shared memory access or network communication. First, CSCD allows the design of parallel code to
be relatively simple because processes can access the entire tree in an uniform way whereas NSCS
requires each process to be aware of the location of all the required data. CSCD also allows better
load balancing because the faster the workstation a process runs on, the more work it performs.
The strategy can handle the problem of dynamically changing load. By contrast, addressing this
problem in NSCS is usually difficult because extra code is required. However, CSCD requires much
more frequent access to shared memory because it accesses shared memory to read necessary data
and to store a result for each node. By contrast, NSCS accesses shared memory to read and store
only interface data.

Reducing data transfer among processes is crucial for the runtime performance of our Poisson
solver, where over a couple of kilobytes of data are required for each box whose computation takes
only a few mili-seconds. We have chosen the NSCS approach for runtime performance.

Let us now discuss how a process shares interface data. In figure 2, the outermost box represents
a subtree whose adjacent subtrees have been allocated to other processes and we show only uniform
refinements of the subtree for the sake of simplicity. The interface boxes illustrated by shading have
to transfer their multipole expansions to the boxes allocated to other processes.

Level 2 Level 3 Level 4

Figure 2: Interface boxes of a subtree with various levels of uniform refinements. In
the leftmost figure, a subtree is uniformly refined up to level 2. All 16 leaves have parents which touch the
subtree boundary. In the middle figure, the inner 4 parent boxes do not touch the subtree boundary, so that
their 16 children nodes out of 64 leaf nodes on level 3 are not interface boxes. In the rightmost figure, only
112 boxes out of 256 leaf boxes are interface boxes.

In short, interface data are generated by boxes whose parents share a boundary point with a
subtree allocated to different processes. This kind of simple data communication structure allows us
to pack and ship all the interface data as a single message to its neighboring processes just after the
upward pass. We create eight tuples, named as <interface>, on a share memory space. These
tuples contains interface data for north, east, west, south and four diagonal direction neighbors,
respectively. As shown in figure 2, a subtree with 2 level of uniform refinements has 16 leaf nodes, 4
parents, and 1 grandparent, in total 21 nodes and all of them are interface boxes. However, starting
from refinement level 3, some nodes become excluded. As further refinements are undertaken, the
number of interface boxes increases only as the square root of the total number of boxes. Table 3.1
summarizes the ratio of interface boxes to total boxes as a function of refinement level. As we can
see, a subtree with many levels of refinement has a lower interface box ratio, therefore it is more
efficient in terms of communication.

For runtime performance, load balancing is also crucial. Consider the case where a single process

Parallel Poisson Solver 9

Refinement level 1 2 3 4 5 6 7 8 9 10
Leaf nodes 4 16 64 256 1024 4K 16K 64K 256K 1M
Total nodes 5 21 85 341 1365 5461 21845 87381 349525 1398101

Interface nodes 5 21 69 181 421 917 1925 3957 8737 16213
Interface ratio(%) 100 100 81.2 53.1 30.8 16.8 8.8 4.5 2.3 1.2

Table 1: Number of leaf, total, and interface nodes, and ratios of interface to total nodes for a
uniformly refined subtree.

holds a big portion of the tree. In that case, there is not much interface data, but the resulting
performance will be poor. In order to address the problem, we modify the NSCS strategy as
follows. The quad-tree is partitioned into subtrees that outnumber processes. Processes repeatedly
grab a subtree and perform first local solves on the subtree until all the subtrees are taken and
then each process computes only on the trees grabbed in the first stage. This scheme works fairly
well even with machines with different computing capabilities (static difference). In section 4,
we experimented with overall performance by varying the number of tasks for a given number of
processes. A more challenging problem is how to deal with the situations where workload changes
after the partitioning is finished (dynamic difference), or a machine stops after certain computations
and communications with other processing units. This situation is discussed in subsection 3.3 and
in our last example in section 4.

3.2 Parallel Algorithm

In this subsection, we present the algorithm underlying our parallel Poisson solver, based on a
parallel programming technique called the master/worker model . In this model, there is one master
process and multiple identical worker processes. The master creates tasks and workers repeatedly
acquire tasks from the master and execute them. The programming model is effective for load
balancing on distributed computing environments where workstations have different computing
power and their workload can change dynamically.

The algorithm of the parallel Poisson solver is designed as follows:

1. Quad-tree and task generation [Master] • The master builds a skeleton quad-tree which does
not contain multipole and local expansions. • Then, it partitions the tree into subtrees and
stores each subtree as a single tuple named <subtree>.

2. Local solve and FMM upward pass [Workers] • Each worker destructively retrieves a tuple
<subtree> for the first local solve. • Once all tuples are exhausted, a worker starts the up-
ward pass for each subtree allocated. For each subtree, it generates the interface data of nodes
on boundaries <interface> and the multipole coefficients of the top box <multipole>.
To minimize both the frequency and the amount of communication, each set of interface data
to eight neighbors is packed into a single tuple.

3. Final upward pass and first downward pass [Master] • The master collects all multipoles
<multipole> of the top nodes of the subtrees from workers and finalizes the FMM upward
pass for the upper quad-tree. • Then it starts the FMM downward pass to generate local
expansions <taylor> of each of the top boxes of the subtrees for the workers.

4. FMM downward pass and second local solve [Workers] • Workers perform the downward pass
computation using <taylor> from the master and <interface> on subtrees allocated to

10 J.-Y. Lee and K. Jeong

other workers. • For each leaf node, they perform the final local solve using the correct
boundary conditions and report the <results> for each allocated subtree to the master.

5. Termination [Master] • The program terminates when the master gets the <results> from
all subtrees.

The parallel method executes these steps sequentially, but uses parallel processing for the second
and fourth steps, which involve most of computation.

3.3 A Fault Tolerant Computing System using PLinda

Fault tolerance is very important for parallel processing on NOW, not just because a system with
many computing units has higher chances of computer or network failure (hard failure) but also
because a computer may become very slow during a computation (soft failure) or a job may be
stopped when the owner of a private computer touches a mouse or a keyboard (policy failure).
However, designing a fault tolerant scheme for arbitrary programs is challenging because a failure
may happen at any point and even a very minor fault can stop the execution of computation. Even
worse, the whole process may continue and result in incorrect outputs without any warning, since
centralized management or monitoring of parallel computation is very difficult.

In this subsection, we explain how to extend the parallel algorithm in subsection 3.2. Since
it is not easy to support fault tolerance through application code alone, we use a fault-tolerant
computing system called “Persistent Linda” or PLinda[16, 17, 18] developed at New York University.
PLinda is based on the shared memory Linda model[19, 15] and guarantees that shared memory
called tuple space survives failure1. In the PLinda model, each process executes a series of steps
(each step called an atomic action or transaction) that are guaranteed to run in the “all or nothing”
manner. The process saves critical data which needs to survive failure to shared memory at the
end of each step. On failure, the PLinda runtime system automatically restarts the failed process,
called the “backup” process. The backup process retrieves critical data from shared memory and
resumes execution from the completion point of the last step.

Since the parallel algorithm maintains all the computation results in a quad-tree, protecting
the quad-tree from failure is most crucial for fault tolerance of the algorithm. In the algorithm, the
quad-tree is distributed over processes’ local states: data of the top portion on the master and data
of each of the subtrees on the workers. Although local data allocated to a failed process would be
lost, the PLinda system guarantees that data in fault-tolerant tuple space would be safely recovered
back at the beginning of the failed step.

There are two extreme approaches to failure recovery. One is saving the image of all local states
at the end of each transaction, which allows a failed process to recover quickly but requires saving
data to the memory space of other machines or local stable storage such as disks. The other one
is saving only the minimal information needed for recovery, where the backup process restores the
local status of the failed process by restarting the computation from scratch. In many scientific
computations such as our Poisson solver, a small portion of initial data generates huge amounts
of intermediate data, which is explicitly reproducible. We have taken the latter approach because
this approach incurs less overhead during normal execution, and accept the relatively high cost of
failure which is in fact rare.

In the algorithm described in subsection 3.2, a master performs steps 1, 3, 5 and workers
perform steps 2, 4. The master generates a quad-tree and task tuples <subtree> in step 1

1In fact, tuple space itself may loses data on failure, but PLinda maintains the global consistency among processes
and tuple space regardless of failure.

Parallel Poisson Solver 11

and failure in step 1 results in automatic restarting at the very beginning. Workers start step
2 by grabbing <subtree> and solving local equations after successful completion of step 1 and
generate <interface> and <multipole> after the FMM upward pass. The Master starts the
final upward pass and the first downward pass once all multipole moments <multipole> of subtree
top boxes are received and generates <taylor> for workers. If the master fails in step 3, it can
safely resume its computation at the beginning of step 3 instead of going back to step 1, assuming it
is saved at the end of step 1. Workers need not just <taylor> from the master and <interface>
from the other workers to successfully pass step 2 through tuple space but also local data which
have been generated in step 2. A failed worker recomputes local solutions to regenerate the local
data and restarts step 4, but other successful workers can continue their jobs to make <results>
since <interface> even from the failed process is safely stored in tuple space. In step 5, the
master just collects <results> so any previous local status is not needed.

4 Experimental Results

The algorithm described in section 3.2 has been implemented in double precision floating point
arithmetic using C/C++ with aid of mathematical subroutines written in Fortran and has been
ported for machines running on various operating systems such as SunOS 4, Solaris, IRIX, and
HPUX. Most parallel implementation codes are identical with that of the sequential version except
for two main control programs: one for the master and one for the workers, thus provide the identical
results on adaptive grids. We demonstrate only the case of a uniform grid on Sun workstations in
our examples below for the sake of clarity.

Example 1 (Speedup) We first consider a Poisson equation on a uniform quad-tree to test
speedup using 8 identical Sun SPARC 5 workstations with 85MHz CPU clock speed, 32 MB memory,
128 MB swap space, and one shared 1GB NFS hard disk attached to our PLinda server. We did
not run the master on a separate machine, therefore, one machine runs both the master and a
worker. However, the computations of the master and workers do not overlap so that does not
cause a problem except for swapping.

Box K Points p Sequential W1 W2 W4 W6 W8
16K 8 1M 22 336.4 367.0 152.7 71.4 62.9 41.6
16K 8 1M 45 571.7 601.9 275.4 118.2 91.9 66.6
16K 16 4M 22 1223.0 1248.8 591.9 282.7 210.8 151.3
16K 16 4M 45 1453.7 1461.1 719.6 332.3 247.5 191.1
64K 8 4M 22 N. A. N. A. 861.6 432.2 292.2 212.5
64K 8 4M 45 N. A. N. A. 1258.5 629.6 464.8 335.8
64K 16 16M 22 N. A. N. A. 2574.4 1280.6 957.4 654.8

Table 2: Wall clock run time in seconds (Example 1). The data in the column marked W1 corre-
spond to 1 worker, the data in the column marked W2 correspond to 2 workers, etc.

We tested various combinations of parameters: number of Boxes (16384 boxes at 7 levels of
uniform refinment, 65536 boxes at 8 levels), discretization order for local solves (K = 8 for 8 by 8
points per box, K = 16 for 16 by 16), total number of discretization Points (Box * K2), and FMM
accuracy (p = 22 for single precision, p = 45 for double precision) and partitioned the quad-tree
into 16 equal subtrees to various number of workers.

To check the speedup, we normalize computational time of the parallel implementation based

12 J.-Y. Lee and K. Jeong

on that of a sequential one with the same input parameters. The plotted values in the left graph
in Figure 3 are the ratio between sequential time and parallel time for the four examples with 16K
boxes. However, we cannot run the examples with 65536 boxes for 4M or 16M discretization points
using our sequential solver (or our parallel solver with 1 worker) because of memory limitations, so
we use the time for 2 workers for normalization.

Figure 3 shows almost linear speedup, with occasional superlinear performance due to a reduc-
tion in memory swapping.

0 2 4 6 8
0

2

4

6

8

10
Uniform tree with 16K Boxes

Number of Workers

S
pp

ed
 U

p

0 2 4 6 8
0

2

4

6

8

10
Uniform tree with 64K Boxes

Number of Workers

S
pp

ed
 U

p

Figure 3: Speedup using multiple workers (Example 1)
In the lefthand figure, we plot four results with 16K boxes and in the righthand figure, three results
with 64K boxes. The results for K = 8/p = 22, K = 8/p = 45, K = 16/p = 22, and K = 16/p = 45
are plotted using solid, dash, dotted, and dashdot lines, respectively.

Example 2 (Scalability) We perform the identical experiments as in the first four cases in
Example 1 with 16384 boxes but examine the memory requirements instead of run time. The
sequential code using about 34.7 to 64.0 MB memory works fairly well on a machine with 32MB
memory and 128MB swap space but fails to solve bigger problems with 65536 boxes. By contrast,
the parallel code distributes memory requirements over worker processes (in other words, the more
machines the less memory requirement for each worker) and the memory requirements for the
master increase slowly with the number of boxes.

Box K Points p Sequential Master W1 W2 W4 W6 W8
16K 8 1M 22 34.7 5.6 37.1 21.1 12.8 8.6 7.8
16K 8 1M 45 50.5 5.6 52.7 29.1 17.1 14.0 10.7
16K 16 4M 22 48.3 8.1 50.6 28.7 17.3 11.9 11.4
16K 16 4M 45 64.0 8.1 66.3 37.0 21.6 14.4 13.6

Table 3: Memory used by sequential solver, master, and worker in Mbytes (Example 2)

Our major concern is how much memory is required for the master and for each worker and how
much additional memory is, overall, required for the parallel code. As it can be seen in Table 3,
the parallel code requires only a modest amount of additional memory which is well distributed
over workers. For example, the overall memory requirement with a master and 8 workers for the
parallel code is only twice as big as that for the sequential code. Also, the memory requirements

Parallel Poisson Solver 13

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Number of Workers

W
or

ke
r

M
em

or
y

0 2 4 6 8
1

1.2

1.4

1.6

1.8

2

Number of Workers

T
ot

al
 M

em
or

y

Figure 4: Memory usage by each worker and by all (Example 2)
In the leftmost figure, we normalize memory requirements of workers by memory used by the
sequential solver. The one worker case is more expensive than that for the sequential one but less
memory is used for more workers. In the rightmost figure, total memory used by a master and the
workers used is plotted which is also relative ratio to the sequential solver. Four different line styles
used here represent the four examples as in the Figure 3.

for the master increase slowly with the number of boxes. Therefore, we conclude that the parallel
code is scalable with respect to memory requirements.

Example 3 (Load balancing and data partitioning) In this example, we fix the problem
size to 7 level uniform refinement with K = 16 and p = 22 and change the subtree size and the
way we distribute subtrees over the workstations. We used either 16 or 64 subtrees, with workers
getting subtrees at random locations versus workers trying to get subtrees in a clustered fashion.
Table 4 summarizes the run time on identical Sun SPARC 5 workstations.

Subtree Clustering W1 W2 W4 W6 W10
16 YES 1248.8 591.9 282.7 210.8 154.8
64 YES 1250.7 606.9 280.3 197.5 140.7
16 NO N. A. 614.3 289.1 217.2 163.5
64 NO N. A. 631.6 302.6 214.5 149.5

Table 4: Wall clock run time for different task allocation (Example 3)

The results with clustering are a little bit better, except in the one worker case in which
clustering makes no difference, but not significantly better. Note also that 16 subtree partitioning
shows slightly better performance for 1 to 4 workstations, while 64 subtree partitioning is better
for around 10 workstations.

For our next experiments, we use machines with different computing power to reflect the real
world situation where machines are heterogeneous. We choose 4 types of workstations: SUN SPARC
station 1 (SS-1) to SUN Ultra station 2 (Ultra-2) which is about 20 times faster than SS-1. One of
the six workers is our department server and has a relatively heavy load (average work load 2.5),
so it could perform only 1 job while idle machines of the same type finished 3.5 jobs. The results
are listed in Table 5 and show the effectiveness of our scheme using master-worker models for load
balancing even with significant differences in computing power. Note that the ratio of run time is

14 J.-Y. Lee and K. Jeong

1.4 to 1.5 which indicates that load balancing worked pretty well.

Machine Type SS-5 SS-1 SS-2 SS-2 SS-5 SS-5 Ultra-2
Operating System SunOS SunOS SunOS SunOS SunOS Solaris Solaris
CPU clock speed (MHz) 85 20 40 40 85 85 400∗

Work Load (last 5 min) 1.48 0.05 0.32 0.02 2.59 0.02 0.03
Subtree allocated master 2 3 4 4 10 41
Upward time 195.9 173.5 120.8 169.1 136.8 146.4 158.1
Downward time 721.5 721.4 483.9 561.5 582.1 668.3 500.1

Table 5: Performance result of various machines (Example 3)
∗A Ultra has a different CPU architecture so the clock speed is scaled relative to the SS.

Example 4 (Idle workstation utilization) In these experiments, we examine not only
speedup but also the effectiveness of networks of workstations (NOW) in real world situations.
We performed our experiments at Wednesday 3 to 4 PM which is one of busiest time slots in the
department. The PLinda system automatically checked 40 listed workstations and found only 10
machines were busy2 in the last 60 seconds. We ran an example on 25 workers for 16M grid points
with K = 16 and p = 45 for double precision accuracy, which requires about 256 Mbytes memory
for a sequential solver. About half of the 25 workers we used are at the SS-1 to SS-2 level and half
at the SS-5 level or above. They include a mixture of machines for private use, public use, and a
department server. Figure 5 summarizes the results. It shows that two failures happened in the
subtree allocation stage, one in the upward pass, and four in the downward pass. The time plotted
of deleted process is time spent only by the successful pass, not the sum of the deleted and the
backup process.

5 10 15 20 25
0

5

10

15

20

Worker ID

S
ub

tr
ee

 n
um

be
r

Subtree allocation

#

#

5 10 15 20 25
0

100

200

300

400

500

Worker ID

T
im

e
(S

ec
)

Time in step 2

#

5 10 15 20 25
0

100

200

300

400

500

600

Worker ID

T
im

e
(S

ec
)

Time in step 4

#

#

Figure 5: Performance result using 25 workers (Example 4)
Worker ID of 25 workers is assigned in order of number of subtrees allocated. Machines which
failed at some stage are marked with #. In timing figures, top horizontal lines shows time spent
until the master collects all results.

It is interesting to note the big gap between the time spent by worker 24 (the slowest) and by
the master in the middle of Figure 5. The time spent by the master is counted from step 1 so

2The PLinda system are set to check only keyboard or mouse events

Parallel Poisson Solver 15

it takes more time than that used by the slowest worker for step 2; however, the gap is mainly
caused by the failure of worker 24. The PLinda system automatically allocates worker processes
to machines which respond faster. 25 faster machines participated in computation and 2 machines
failed in the subtree allocation step, therefore, 3 slower machines were not used. Failure of a worker
at the end of step 2 may double the overall run time of step 2. By contrast, the failed processes
in step 4 on slower machines cause less damage, since their remaining tasks are allocated to faster
machines which have already finished their own computation.

Overall we finished our job in 1050 seconds which is about 6 times (12 times) faster than
projected computational time on a dedicated SS-5 (SS-2) with 256 MB memory.

5 Conclusions and Future Work

Our parallel Poisson solver using FMM localizes most of the computation and memory usage to a
process in order to reduce the amount of data communication between adjacent processes. It also
minimizes the number of data transfers and synchronizations. Our examples show linear speedup
under a controlled environment with 8 workstations and demonstrate the effectiveness of NOW
for problems requiring intensive computation and large memory. The PLinda system allows us to
utilize more than half of the machines for our computation even in the busiest time slot of a week
by automatically detecting the idle status of each workstation and migrating processes in machines
which become in active use to idle machines.

We did not try to optimize the solver in our computing environment or use a clever strategy
for task allocation. There are many research questions concerning the effective use of NOW in a
general environment. These include a task allocation strategy using a statistical model to predict
which machines will be idle, a failure detection mechanism, a policy for setting priorities, and an
automatic job migration method for load balancing, where a fast idle machine which finished its
own tasks duplicates tasks for other machines as a backup.

Despite these unanswered questions, developing parallel algorithms which minimize the amount
and the frequency of data transfer is certainly one of the keys to obtaining good results with NOW.
We believe that NOW will be an effective platform for large scale scientific computation, and plan
to continue work on parallelization in this environment.

Acknowledgements: We thank Surendranath Talla for his PLinda coding help in
early stage of our work, and Frank Ethridge, Leslie Greengard, and Dennis Shasha for reading
our paper and giving many valuable comments. The experiments have been done at the Courant
Institute of Mathematical Sciences (CIMS) of New York University with the support of the Courant
Mathematics and Computing Laboratory (CMCL) and the Department of Computer Science.

References

[1] T. F. Chan and D. C. Resasco, A domain-decomposed fast poisson solver on a rectangle,
SIAM J. Sci. Stat. Comput. 8(1) S14–26, (1987).

[2] D. Lee, Fast parallel solution of the poisson equation on irregular domains, Numer. Algorithms
8(2-4) 347–362, (1994).

[3] U. Schumann and M. Strietzel, Parallel solution of tridiagonal systems for the poisson equation,
J. Sci. Comput. 10(2) 181–190, (1995).

16 J.-Y. Lee and K. Jeong

[4] P. N. Swarztrauber and R. A. Sweet, Vector and parallel methods for the direct solution of
poisson’s equation, J. Comput. Appl. Math. 27(1-2) 241–263, (1989).

[5] L. Greengard and J.-Y. Lee, A direct adaptive poisson solver of arbitrary order accuracy, J.
Comput. Phys. 125 415–424, (1996).

[6] Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods in Fluid Dynamics,
Society for Industrial and Applied Mathematics, Philadelphia, (1988).

[7] A. T. Patera, A spectral element method for fluid dynamics: laminar flow in a fluid expansion,
J. Comput. Phys. 54 468–488, (1984).

[8] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73
325–348, (1987).

[9] J. Carrier, L. Greegard, and V. Rokhlin, A fast adaptive multipole algorithm for particle
simulation, SIAM J. Sci. Stat. Comput. 9(4) 669-686 (1987).

[10] F. W. Dorr, The direct solution of the discrete poisson equation on a rectangle, SIAM Rev.
12 248–263, (1970).

[11] C. Anderson, Domain decomposition techniques and the solution of poisson’s equation in
infinite domains, In the Second International Symposium on Domain Decomposition methods
pages 129–139, (1987).

[12] A. Brandt, Multi-level adaptive solutions to boundary value problems, Math. Comp. 31
330–390, (1977).

[13] M. Griebel, Parallel domain-oriented multilevel methods, SIAM J. Sci. Comput. 16(5) 1105–
1125, September (1995).

[14] S. Kim, Parallel multidomain iterative algorithms for the helmbholtz wave equation, Appl.
Numer. Math. 17 411–429, (1995).

[15] N. Carriero and D. Gelernter, How to write parallel programs : a first course, MIT Press,
Cambridge, (1992).

[16] K. Jeong, Fault-tolerant Parallel Processing Combining Linda, Checkpointing, and Transac-
tions, PhD thesis, New York University, (1996).

[17] K. Jeong and D. Shasha, Plinda 2.0: A transactional/checkpointing approach to fault tolerant
linda, In Proc. of the 13th International Symposium on Reliable Distributed Systems, October
(1994).

[18] K. Jeong, D. Shasha, S. Talla, and P. Wyckoff, An approach to fault-tolerant parallel processing
on intermittently idle, heterogeneous workstations, In Proc. the 27th International Symposium
on Fault Tolerant Computing, June (1997).

[19] N. Carriero, Implementing Tuple Space Machines, PhD thesis, Yale University, Department
of Computer Science, (1987).

