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A solution of the conductivity problem with anomalies of piecewise
constant conductivities in a homogeneous medium can be represented as a
single layer potential. We propose a simple disk reconstruction method
based on the Laurent expansion of the single layer potential to estimate
anomalies that can be used as an initial guess for an iterative searching
algorithm. Using a simple linear relationship between the normal domain
perturbation distance and the boundary perturbation, we develop an
iterative algorithm to find anomalies within the domain. The performance
of the algorithm is illustrated via numerical examples. The iterative
searching algorithm works well in many cases using a single boundary
measurement. However, some features of the anomalies require that the
algorithm utilize multiple measurements. We discuss the limitations of the
inverse conductivity problem using a single Cauchy data set and present a
modified version of the algorithm for use with double boundary measure-
ments. The improved performance of this modified numerical scheme is
also illustrated with various examples.
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1. Introduction

Electrical impedance tomography (EIT), or the inverse conductivity problem (ICP),
is a methodology to recover interior conductivity information from boundary
measurements of current and potential voltage. The ICP is one of the most important
and classical inverse problems, and has applications in many areas of science,
engineering and medical imaging. (see [1] and references therein for further details).
Our goal in this article is to present a numerical method which finds electrical
anomalies sitting inside of a homogenous medium using single or double boundary
measurements.
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Let � be a bounded simply-connected domain in R
2 with a C2,1 boundary and

f�ig
I
i¼1 be subsets of � that are also bounded and simply-connected with C2,1

boundaries. Also suppose that there is a constant d0 such that dist(�i,�j)> d0 for

i 6¼ j, and dist(@�,�i)> d0 for all i. For a given piecewise conductivity

�ðxÞ ¼
�i if x2�i

�0 if x2�0 ¼ � n [Ii¼1�i

(
, ð1:1Þ

let u(x) be a solution of the conductivity problem

r � �ðxÞruðxÞð Þ ¼ 0 in x2� ð1:2Þ

which satisfies the continuity condition and the flux jump condition on each of the

inclusion boundaries

ui ¼ u0 and �i
@

@�
ui ¼ �0

@

@�
u0 on @�i ð1:3Þ

and also satisfies the Neumann boundary condition g2H�1/2(@�) with
R
@� g¼ 0,

@

@�
u ¼ g on @� ð1:4Þ

where � denotes the outward normal direction along the boundaries.
Since u(x) is harmonic in each �i of the anomalies D :¼ [Ii¼1�i and in the

homogeneous medium �0 :¼ � nD, it can be represented as a single layer potential

with charge density �D on @D and a harmonic function �(x),

uðxÞ ¼

Z
@D

Gðx, ysÞ�DðsÞdsþ �ðxÞ for x2�, ys 2 @D,

where s is a parameterization of the boundary in arclength, �D(s) is the charge

density at ys2 @D, Gðx, yÞ ¼ 1
2� logjx� yj is the Green’s function for the two-

dimensional Laplacian operator and �(x) is a harmonic function that matches the

boundary condition.
In Section 2, we propose a simple disk reconstruction method based on the

Laurent expansion of the single layer potential SD�D which can be directly obtained

from a single boundary measurement of Neumann g(x) and the corresponding

Dirichlet �(g)(x) :¼ u(x) data pair. We numerically demonstrate that the method

described in Section 3 could be used as an initial guess for the following iterative

searching algorithm.
Suppose ��i is a �-perturbation of �

p
i , that is,

@��i ¼ fys þ "hiðysÞ�iðysÞ : ys 2 @�
p
i g,

where �i denotes the outward normal vector on @�p
i . Shape deformation of

D ¼ [Ii¼1�i causes a boundary perturbation, a perturbation of modal parameters,

etc. The formula presented in Section 4 relates the perturbation distance hi and

(����p)(g), where �� and �p are the Neumann-to-Dirichlet maps which

correspond to the domains with anomalies [Ii¼1�
�
i and [Ii¼1�

p
i , respectively.
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For any given � in H�1/2(@�) and corresponding solution v(x), we can say

�0

Z
@�

�ðxtÞ
�

�� ��p
�
ð gÞðxtÞdt � "

XI
i¼1

ð�0 � �iÞ

Z
@�p

i

hiðysÞ
n @u�
@	i

@v

@	i
þ
�0
�i

@u�

@�i

@v

@�i

o
ds,

where t is a parameterization of @� in arclength, xt is a point on @�, @
@	i

denotes the

tangential derivatives on @�p
i and u�¼��(g). This formula is linear with respect to a

normal domain perturbation distance hi(ys), thus can be easily used to find a best

updated domain ��i , in the sense that ��(g) matches the given Dirichlet data

f¼�(g). It is useful to note that there exist other possible reconstruction algorithms

using the polarization tensor (PT) which contain physical and geometric information

about the inclusions. Ammari et al. [2] apply an iterative algorithm based on the PT

for the reconstruction of a perturbed domain. For details, we refer the readers to [3–

5] and the references therein.
In this article, we develop an iterative searching algorithm to find anomalies in

the domain based on the linear relationship between the perturbation distance

function and the boundary perturbation. In Section 4, we develop an iterative

algorithm to find the anomalies in the domain and demonstrate its feasibility using

numerical examples. The algorithm works well in many cases including cases with a

single boundary measurement. However, some features of the anomalies cannot be

recovered using a single measurement. We discuss the limitations of inverse

conductivity problem using a single Cauchy data set and present a modified version

of the algorithm for use double boundary measurements. The improved performance

of this new numerical scheme has been illustrated with various numerical examples in

Section 5.

2. A representation formula and a disk searching algorithm

Since potential u is harmonic in each of the inclusions �i and u continuous across the

boundaries, u can be represented as a sum of a harmonic function � and a single layer

potential with charge density �D defined along @D,

uðxÞ ¼

Z
@D

Gðx, ysÞ�DðsÞdsþ �ðxÞ: ð2:1Þ

Due to the uniqueness of the piecewise conductivity problem (1.2)–(1.4), it is trivial

to show that there exists a unique decomposition of u into a sum of a single layer

potential SD�D and a harmonic function � although there are several possible

representations of � depending on the boundary type.
Since any harmonic function �(x) in � can be written in the form of a single layer

potential on @�, �(x)¼
R
@�G(x, ys)��(s)ds, the forward piecewise conductivity

solution u(x) with Neumann data g on @� can be written in the following form with a

single layer density �(s) defined on � :¼ @D[ @�,

uðxÞ ¼

Z
�

Gðx, ysÞ�ðsÞds:

Applicable Analysis 775

D
ow

nl
oa

de
d 

by
 [

E
w

ha
 W

om
an

s 
U

ni
ve

rs
ity

] 
at

 0
0:

40
 0

5 
Fe

br
ua

ry
 2

01
5 



In order to satisfy the flux continuity condition across the boundary of the i-th

inclusion, �i
@
@� ui ¼ �0

@
@� u0 and the Neumann boundary condition g on @�, � must

satisfy the following system of integral equations:

1

2
�ðtÞ þ 
i

Z
�

@

@�x
GðxðtÞ, ysÞ�ðsÞds ¼ 0 on xðtÞ 2 @�i, i ¼ 1, . . . , I ð2:2Þ

and

�
1

2
�ðtÞ þ

Z
�

@

@�x
GðxðtÞ, ysÞ�ðsÞds ¼ gðtÞ on xðtÞ 2 @�, ð2:3Þ

where 
i ¼
�0��i
�0þ�i

and @
@�x

denotes the normal derivative with respect to x.
Suppose we have an over-determined but consistent Cauchy data pair g ¼ @u

@�

��
@�

and f¼ uj@� along the boundary @�. Then a piecewise harmonic function v(x) defined

as v(x) :¼ u(x), x2� and v(x) :¼ 0, x2R
2n� can be written in the form of

v(x)¼SD D(x)þS�g(x)�D� f(x) where

S�gðxÞ ¼

Z
@�

Gðx, ysÞ gðsÞds, D�f ðxÞ ¼

Z
@�

@

@�y
Gðx, ysÞ f ðsÞds:

Since u(x)� v(x) for x2� and the piecewise conductivity problem has a unique

solution, it is trivial to show that �D(s)¼ D(s), ys2 @D and �(x)¼S�g(x)�D� f(x),

x2�. Therefore, u(x) can be written as a combination of a single layer potential

along the boundaries of the inclusions and a sum of a single and double layer

potential along the boundary of the domain,

uðxÞ ¼

Z
@D

Gðx, ysÞ�DðsÞdsþ S�gðxÞ �D� f ðxÞ, x2�, ð2:4Þ

where �D is a solution of the system of integral equations (2.2)–(2.3). It is not

surprising that the harmonic function �(x) written as a sum of a single and a double

layer potential appears frequently in the inverse conductivity problem [6–8] since it

contains all the information regarding the interior of the inclusions. Before we

present a new disk searching scheme, it is useful to note that there exist many

algorithms which utilize this representation directly in this form or in some other

form. However, many of these methods require a sequence of forward solvers (e.g.

[9]) while our method described below does not. Additionally, there are other

reconstruction methods [10–12] which do not use a forward solver, but are relatively

complicated as compared to the algorithm of this article.
Since u(x) in (2.4) is identical to zero in R

2 n �, SD�D can be represented [13,14]

as layer potentials induced by f and g,

SD�DðxÞ ¼ D�f ðxÞ � S�gðxÞ, x2R
2
n�: ð2:5Þ

We now extend the definition of the single and double layer potentials to complex-

valued functions. Suppose z2C corresponds to x2R
2 and �(s) to ys2 @D, then the

complex valued single layer potential SD�D(z) is defined as follows:

SD�DðzÞ ¼
1

2�

Z
@D

logðz� �ðsÞÞ�DðsÞds: ð2:6Þ
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Here the integral is well defined regardless of the branch cuts of log(z� �(s)), which
are assigned independently for each component �i since

R
@�i
�DðsÞds ¼ 0 (see [15,16]

and references therein for more details about the properties of the system of the

integral equations (2.2)–(2.3)). The complex-valued double layer can be defined

similarly, and the solution of the piecewise conductivity problem u(z) is the real part

of w(z) :¼SD�D(z)þS�g(z)�D� f(z).
Since SD�D(z) has singularities only along @D, it can be written in terms of a

Laurent expansion centred at z0 for jz� z0j �RD(z0) :¼max�2@D j�� z0j,

SD�DðzÞ ¼
1

2�

Z
@D

logðz� �ðsÞÞ�DðsÞds

¼
1

2�

Z
@D

logðz� z0Þ þ log 1�
�ðsÞ � z0
z� z0

� �� �
�DðsÞds

¼
logðz� z0Þ

2�

Z
@D

�DðsÞds�
1

2�

Z
@D

X1
n¼1

1

n

�ðsÞ � z0
z� z0

� �n

�DðsÞds:

Therefore,

SD�DðzÞ ¼
X1
n¼1

az0n
ðz� z0Þ

n , az0n ¼
�1

2�n

Z
@D

�ðsÞ � z0ð Þ
n�DðsÞds: ð2:7Þ

Note that az0n
�� �� � C � RDðz0Þð Þ

n and RDðz0Þ � lim infn!1 az0n
�� ��1=n.

On the other hand, the Laurent expansion faz0n g of the boundary layer potentials

D� f ðzÞ � S�gðzÞ ¼
X1
n¼1

az0n
ðz� z0Þ

n , jz� z0j � R�ðz0Þ ð2:8Þ

centred at z0 is easily computable from the Cauchy data pair ( f, g) as follows:

az0n ¼
1

2�n

Z
@�

�ðtÞ � z0ð Þ
ngðtÞdt�

1

2�

Z
@�

�ðtÞ � z0ð Þ
n�1�t f ðtÞdt, ð2:9Þ

where �(t) is a point on @� and �t is a unit normal vector at �(t) in complex value

notation.
Suppose the Laurent expansion faz0n g of SD�D centred at an arbitrary point z0 is

given via the formula (2.9) from a single boundary measurement ( f, g). For a fixed

point z0, we define the effective radius

Reffðz0Þ :¼
az0nþm
az0n

���� ����1m ð2:10Þ

for some n, m such that janj	 janþmj	 0. The following linear regression formula

gives a slightly better approximation:

Reffðz0Þ :¼ exp

P0 p logjapj �P0 pP0 logjapjP0 p2 � ðP0 pÞ2
 !

, ð2:11Þ
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where
P
0 denotes the average over p¼ n, nþ 1, . . . , nþm. It is easy to recompute the

Laurent expansion when the centre of the expansion is shifted to z1,

az1n :¼
Xn
m¼1

nCmðz0 � z1Þ
maz0n�m: ð2:12Þ

A simple disk reconstruction algorithm is used to find a disk with a centre zc and

smallest corresponding effective radius Reff(zc) such that

zc :¼ argmin
z2�

ReffðzÞ: ð2:13Þ

3. Numerical examples of the disk reconstruction method

We have implemented a forward solver based on the system of integral equation

(2.2)–(2.3). The integral equations were discretized using the equispaced trapezoidal
rule along the boundaries, which guarantees super-algebraic convergence. We set the

number of discretization points along each of the boundaries to range between 64

and 256. Under these conditions, a GMRES-type solver usually provided a solution

with relative error smaller than 10�10 after 10–30 iterations.

Example 1 The first examples contains a conductive inclusion (�1/�0¼ 102) with

5-leaves. Figure 1 shows the computational domain and the decay rates of jan(z0)j

depending on z0. We choose jan(z0)j to be greater than 10�3 and janþm(z0)j to be less

than 10�9 to compute the effective radius using (2.11). The left figure shows that the
effective radius is Reff� 0.28 for z0� (�0.05, �0.05). As z0 approaches the centre of

the inclusion, the decay rate of jan(z0)j becomes stiffer and the effective radius

reaches its minimum value of Reff� 0.095 near zc� (0.1, 0.1). Contour lines

outside of the effective disks represent the potential generated by the Laurent

expansion in (2.8).

Example 2 In order to test the numerical robustness of the algorithm, we add

random noise to the Cauchy boundary data (g, f ). Both additive noise wa(t)kgk@� and

multiplicative noise g(t)wm(t) are added to g(t), where wa, wm are independent
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Figure 1. Decay rate of multipole expansion an(z0).
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random variables with uniform distribution on (�1, 1)
NoiseLevel. Similarly,
random noises of NoiseLevel also modify the Dirichlet potential f(t).

The leftmost figure in Figure 2 shows the computational result for a fixed
z0¼ (0.075, 0.0) without any noise added. The middle plots shows the decay rate of
jan(z0)j depending on the noise level, NoiseLevel¼ 0, 10�3, 10�1. We observe that the
decay rate is relatively constant when there is no noise. However, higher frequency
modes with small modulus are prone to error. It is possible to find an optimal range
of an and anþm by comparing (g, f ) and the Laurent expansion of (2.8), especially for
high noise cases, although, we simply reduced the number of modes used by
restricting janþm(z0)j< 5
 10�6.

The rightmost figure numerically demonstrates that the error of effective radius is
linearly proportional to the noise level. It is worth mentioning that despite the
extreme ill-conditioning of the electrical impedance tomography problem [17], the
process of finding the effective radius and the corresponding centre of a disk is a
relatively stable algorithm since it requires only the first few modes of an which are
less prone to noise [18].

Example 3 We implemented the disk minimization algorithm (2.13) using the
subplex (subspace-searching simplex method) package by Rowan [19]. Figure 3 shows
the computational results in dotted lines for three different cases, starting with a initial
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Figure 2. Effective rate under noisy situation.
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Figure 3. Disk search algorithm.
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guess at z0¼ (0, 0). The final results are drawn in dark lines. The conductivity of the
background media is 1, the star shape inclusion is 102, the kite is 10�3 and the four
inclusions in the rightmost figures are 10�2, 10�1, 101, 102 from centre to boundary.

We have proven that there exists at least one interface point outside of the
constructed disk. Also, we observe that the disk searching algorithm usually gives
good approximations of the actual size and geometric centre of the inclusions.
However, there is no guarantee that this is always true. We know that a smooth
inclusion in a linear field does not generate higher frequency modes, thus the
effective radius is smaller than the actual size of the domain. A noticeable example is
in the case of a disk in a uniform gradient field, which has no multipole moments
higher than a dipole, and thus gives an effective radius of zero.

4. Reconstruction method using a single measurement

We start this section with a comment on the linear relationship between the domain
perturbation and the boundary perturbation. There exist many attempts to find a
relationship between a small perturbation of the domain and the corresponding
N-to-D map. One of the most notable improvements was derived by Ammari–Kang
et al. (see [2] and references therein). For example, it is derived in [2] that the
asymptotic formula for the eigenvalue due to the changes of the shape of
the inclusions. They also derived the asymptotic equation for the perturbation and
the N-to-D map as a dual formula. Ammari–Kang–Lim–Zribi developed a formula
for the inverse conductivity problem and used it for the reconstruction of the
conductive inclusions [4]. The following formula is also based on the same relation,
and our goal in this article is to develop a robust numerical method by studying the
numerical conditioning of the linear system derived from it.

Let us consider a perturbed domain ��i of a given domain �
p
i for i¼ 1, . . . , I,

@��i ¼ fys þ "hiðysÞ�iðysÞ j ys 2 @�
p
i g,

where �i(ys) is the outward unit normal to the interfaces at ys 2 @�
p
i and hi 2C

1,1ð@�p
i Þ

with jjhijjC1,1ð@�p
i
Þ51. Suppose that the conductivity profiles � and �� in � are given

by (1.1) and

��ðxÞ ¼
�i if x2��i

�0 if x2� n [Ii¼1�
�
i :

(
ð4:1Þ

Then, the integral equation in the following theorem relates a domain perturbation
hiðysÞ, ys 2 @�

p
i and a perturbation of the Dirichlet data u(x) on the boundary @�.

LEMMA 4.1 Let u�¼��(g), up¼�p(g) for a given g2H�1/2(@�) with
R
@� g¼ 0. For

any given Neumann boundary function �2H�1/2(@�) and the corresponding conduc-
tivity solution v¼�p(�), we haveZ

@�

�0�ðxtÞ
�

�� ��p
�
ð gÞðxtÞdt

¼ "
XI
i¼1

ð�0 � �iÞ

Z
@�p

i

hiðysÞ
n @up
@	i

@v

@	i
þ
�0
�i

@up

@�i

@v

@�i

o
ðysÞdsþOð"1þ�Þ ð4:2Þ

for some �> 0, where 	i is the tangent vector to @�p
i .
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Proof We omit a proof in this article, but note that the proof of this Lemma is

identical to that of the asymptotic formula in [2]. The above integral equation and its

derivation can be found in [4].

We now present an iterative domain searching algorithm based on the linear

relationship between (����p)(g) and hi in (4.2). Suppose our unknown target

domain is �� and the Cauchy data pair (g, f¼��(g)) is given on @�. In order to

apply an iterative scheme, we need an initial guess for �p¼0, and the result of the disk

reconstruction method described in Sections 2 and 3 is a good candidate, especially

when there is only one inclusion. With the aid of a numerical forward solver on �p,

we can compute (����p)(g) and hi. Once we compute fhig
I
i¼1, we may update our

domain @�pþ1
i ¼ fys þ "hiðysÞ�iðysÞ j ys 2 @�

p
i g until khik is smaller than the prescribed

tolerance. The following description is a process to update �p to �pþ1.
Let us choose a function �q in H�1/2(@�) satisfying

R
@� �q¼ 0. Then, we can find

the corresponding solution vq¼�p(�q) by solving the forward problem numerically

on �p. We use the following notations:

f ðxÞ ¼
�

�� ��p
�
ð gÞðxÞ for x2 @�, ð4:3Þ

JiqðyÞ ¼ ð�0 � �iÞ

�
@up

@	i
ðyÞ
@vq
@	i
ðyÞ þ

�0
�i

@up

@�i
ðyÞ
@vq
@�i
ðyÞ

�
for y2 @�i: ð4:4Þ

Then, the integral equation (4.2) for a single pair of data (vq,�q) reads

C1
q C2

q � � � CI
q

� � H1

..

.

HI

0B@
1CA ¼XA

a¼1

�0�qðxaÞf ðxaÞDx, ð4:5Þ

where Dx is a distance between two adjacent points among x1, . . . , xA2 @� and for

y1i , . . . , yBi

i 2 @�i with spacing Dyi,

Ci
q ¼ Jiqðy

1
i Þ � � � Jiqðy

Bi

i Þ

� �
Dyi, Hi ¼

"hiðy
1
i Þ

..

.

"hiðy
Bi

i Þ

0BB@
1CCA:

Of course, this equation can not be solved since there is only one equation withPI
i¼1 Bi unknowns. Even though we have only one or two boundary measurements

for (g, f ) on @�, we may generate arbitrarily many choices for the pairs (�q,�
p(�q)).

The integral equation (4.5) with Q different choices for �q becomes

C1 � � � CI
	 
 H1

..

.

HI

0B@
1CA ¼ �F, ð4:6Þ

where

Ci ¼

Ji1ðy
1
i Þ � � � Ji1ðy

Bi

i Þ

..

. . .
. ..

.

JiQðy
1
i Þ � � � JiQðy

Bi

i Þ

0BB@
1CCADyi, �F ¼

PA
a¼1 �0�1ðxaÞf ðxaÞ

..

.PA
a¼1 �0�QðxaÞf ðxaÞ

0BB@
1CCADx:
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Note that Ci are Q
Bi, Hi are Bi
 1 matrices, and the right-hand side of (4.6) is

a Q
 1 matrix. To solve this system of linear equations uniquely, we need more

constraints than unknowns, Q �
PI

i¼1 Bi. However, increasing Q requires applica-

tion of more numerical forward solvers for vq¼�p(�q) on �p.
Further difficulties arise due to ill-conditioning of the system when the number of

discretization points
PI

i¼1 Bi becomes large. We represent Hi using K-fourier modesbHi :¼ fbh k
i g

2K
k¼0 to overcome this difficulty,

Hi ¼

hiðy
1
i Þ

..

.

hiðy
Bi

i Þ

0BB@
1CCA ¼

bh 0
i þ

PK
k¼1

nbh2k�1i cosðk�1Þ þ bh2ki sinðk�1Þ
o

..

.

bh0i þPK
k¼1

nbh2k�1i cosðk�Bi Þ þ bh2ki sinðk�Bi Þ

o
0BBBB@

1CCCCA

¼

1 cosð�1Þ � � � sinðK�1Þ

..

. ..
. . .

. ..
.

1 cosð�BiÞ � � � sinðK�BiÞ

0BB@
1CCA

bh0i
..
.

bh2Ki

0BB@
1CCA :¼ F i

bHi,

where f�1, . . . , �Big 2 ½0, 2�� is a parameterization of @�i corresponding to

fy1i , . . . , yBi

i g. We choose K such that the smallest singular value of the Q-by-

(2Kþ 1)I coefficient matrix MQ,K in

MQ,K
bH :¼ C1F 1 � � � CIF I

	 
 bH1

..

.

bHI

0BB@
1CCA ð4:7Þ

is larger than the error level kf k. This updating process from the well-conditioned

system of linear equations continues until kbHk is small enough.
Before we give a formal description of the algorithm, it is worth to remarking

that this numerical scheme is not based on a non-linear optimization technique. For

a given Q, K, the matrix MQ,K in (4.7) is merely a numerical discretization of right-

hand side of the integral equation (4.2), and the linear system of equations

MQ,K
bH ¼ �F can be solved uniquely in l2-least squares sense. The numerical method

automatically maximizes the number of Fourier modes K under the condition that

the singular values of MQ,K are larger than the user specified noise level fnoise,

therefore, the method is free from user-specified tuning parameters once the number

of forward simulations Q and an estimation of the noise level fnoise are specified.

Following is a formal description of the implementation.

A domain searching algorithm

Step I: Initialization

1. With given (g, f¼��(g)) on @�, compute an initial disk�p¼0 by (2.13).
2. Set number of forward solutions Q, input noise level fnoise, update frequency

modes Kmax(<Q/2) and stop tolerance Htol.
Step U: Update

1. Compute up
¼�p(g) on �p.
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2. Compute fvq ¼ �pð�qÞg
Q
q¼1 on �p with �2q�1¼ cos(q�), �2q¼ sin(q�).

3. For K :¼ 1 to Kmax,
Form matrix MQ,K defined in (4.7).
Compute the smallest singular of MQ,K.
If smallest singular value< fnoise, break at the previous K.

4. Find bH from MQ,K
bH ¼ �F in a least square sense.

5. Set @�pþ1
i ¼ fys þ "hiðysÞ�iðysÞ j ys 2 @�

p
i g.

Step T: Termination

1. Stop if kbHk5Htol. Otherwise repeat Step U with new �pþ1.

5. Numerical results and concluding remarks

We have implemented the domain searching algorithm presented in the previous
section in Fortran, and the forward solver described in Section 3 was used to
generate the numerical Cauchy boundary data (g, f ) and (�q, vq¼�(�q)). We set
Q¼ 20 and the maximum frequency mode for bHi-updates to be Kmax¼ 6. The
iteration process continued until the norm of bH-update was less than Htol¼ 5
 10�3.
Three numerical examples are given below: one with a single boundary measurement,
another with double boundary measurements, and the last with multiple inclusions.

Example 4 The first example contains a single object with a size of about 0.32j�j
near the centre of a circular domain �. The conductivity of the inclusion is 100 times
higher than the background. The Cauchy data pair g¼ cos(�) and f¼�(g) on the
boundary @� is given by the numerical forward solver. In Figure 4, the solid line
shows the target domain and the dotted lines represent computed domains �p for
p¼ 1, . . . , 5. In each iteration, we choose the number of the update frequency modes
K such that the smallest singular value of Mq,K is greater than 0.1
k f��p(g)k@�.
The results show that K was chosen to be 4 for the first three iterations where the
discrepancy of the boundary Dirichlet data is relatively large, and the iteration
converges at p¼ 5 with K¼ 6.

We numerically tested the algorithm with various examples, and it performed
well in most cases, however, sometimes gave less satisfactory results. The following
example shows the limitations of the scheme, and a fix to improve convergence under
certain conditions.

Example 5 We set the numerical parameters to be the same as in the previous
example, and the upper plots in Figure 5 are the reconstructed domains using a single

Ωp = 1, K = 4 Ωp = 2, K = 4 Ωp = 3, K = 4 Ωp = 4, K = 5 Ωp = 5, K = 6

Figure 4. Star-shaped inclusion with a single-boundary measurement.
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current and voltage pair. The reconstruction method gives a good approximation of

the inclusion after just two iterations, however, large errors on the top edge emerge

as the iteration continues.

This phenomenon is usually observed when a large edge of an inclusion is parallel

to the current flow direction, left-to-right in this example. Moving an edge parallel to

the current flow direction generates much smaller perturbation than a perpendicular

edge movement which makes no changes to the current but causes large changes in

the potential. This symptom is not particular to this algorithm, but rather common

in many inverse conductivity reconstruction methods which use only one boundary

Neumann-to-Dirichlet map. A common cure is to use double measurements with

internal currents flowing relatively orthogonal to each other.
We use two boundary measurements, the first (g¼ cos �, f¼�(g)) with current

mainly flows from left to right and another (g2¼ sin �, f2¼�(g2)) with current

flowing from bottom to top. The only modification of the algorithm is that we solve

(4.6) in a least square sense simultaneously with two right-hand sides, �F and �F2.

Bottom plots in Figure 5 show the reconstruction results. Since we use only limited

frequency modes to update the interface, sharp corners are not captured when using

a single measurement. However, the final reconstruction matches with all four edges

correctly.

Example 6 The last example contains two inclusions. In general, it is difficult to

find a good initial guess for multiple inclusions or to develop an automatic domain

separation (or topology updating) method. In this example, we assume that an initial

guess is known consisting of multiple disks. Figure 6 shows the initial disks and

updated domains in dotted lines, and the target domains in solid lines. This

numerically demonstrates that the update procedure works very well even in the

presence of multiple inclusions, as long as the inclusions are well separated by the

initial guesses.

In summary, we have developed a disk searching method based on the decay rate

of the multipole expansion of the Cauchy boundary data, which requires no forward

Ωp = 1, K = 4 Ωp = 2, K = 4 Ωp = 3, K = 4 Ωp = 4, K = 5 Ωp = 5, K = 4

Ωp = 1, K = 6 Ωp = 2, K = 6 Ωp = 3, K = 6 Ωp = 4, K = 6

Figure 5. Reconstruction with single and double boundary measurements. Top plots using a
single Cauchy datum, Bottom plots using two Cauchy data.
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solver. Using an initial guess and double boundary measurements, our domain

update algorithm is able to correctly recover inclusion edges which are parallel to

current flow using a moderate number of Fourier modes bHi. The exact number of

Fourier modes needed depends on the noise level and the convergence error

(���p)(g)(x). More studies are needed to build an automatic optimal parameter

tuner for robust updates and a numerical scheme for automatically splitting one

object into multiple components.
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