Chapter 1. Introduction

1.1 Background

Interest in DIP

- human interpretation
- machine perception
 - In medicine, for easier interpretation of x-rays and other biomedical images
 - enhance the contrast
 - code the intensity levels onto colors
 methods capable of enhancing pictorial information for human interpretation and analysis
 - Geographers
 - use the similar techs. to study pollution pattern from aerial and satellite imagery
 - Archeology
 - image restoration
 - Physics
 - image enhancement in areas such as high-energy plasmas and electron microscopy.
 - Successful applications of image processing concepts
 - astronomy, biology, nuclear medicine, defense, industry, law enforcement

Example of human interpretation

(a): image of cell heavily corrupted by electronic noise

(c): picture of the Martian.

(d): picture after computer processing

(e)(f): by contrast and edge enhancement

(g): image blurred by uniform motion during exposure

(h): after application of a deblurred algorithm

Example of machine perception

- Image information suitable for computer processing.(machine perception)
 - statistical moments, Fourier transform coefficient , multidimensional distance measures.
- Typical problems in machine perception
 - automatic character recognition, industrial machine vision for product assembly and inspection.
 - Military recognizance, automatic processing fingerprints

- Screening of x-ray and blood samples
- Machine processing of aerial and satellite imagery for weather prediction and crop assessment

1.2 Digital Image Representation

- (monochrome) image
 - 2-D light intensity function f (x,y): proportional to the brightness (or gray level)

- brightness : the third axis

- digital image : f(x,y)
 - digitized both in spatial coordinates and brightness
 - considered as a matrix
 - element of digital array

: image elements, pictures element, pixels, pels

1.3 Fundamental Steps in Image processing

- The first step: image acquisition
 - a monochrome or color TV (1/30 sec)
 - line-scan camera
 - analog output
 - A/D Converter : digitizer
- The second step : preprocessing
 - image improvement
 - ✓ contrast enhancement
 - ✓ noise removement
 - ✓ isolating region (alphanumeric information)
- The third step: image segmentation
 - partition image into constituent part
 - very difficult task
 - in character recognition : extract individual characters and words from the background
 - output: raw pixel data, constituting either the boundary of a region of all the points in the region itself
- Representation
 - boundary representation
 - ✓ focus on external shape characteristics such as corners or

inflections

- regional representation
 - ✓ focus on internal properties such as texture of skeletal shape
- Description (feature selection)
 - feature extraction
 - in character recognition
 - ✓ lakes (holes), bays : important feature
- Recognition
 - Assign a label to an object based on information provided by descriptors.
- Interpretation
 - assign meaning to an ensemble of recognized object
- Knowledge base
 - detailing regions of an image : very simple
 - interrelated list of all major possible defects in a materials inspection problems : very complex
 - guiding the operation of each processing module
 - control the interaction between modules
 - the comm. between processing modules generally is based on prior knowledge of what a result should be
 - feedback request through the knowledge base to other module (ex. segmentation)

Result of image processing

- processing function
 - ✓ image analysis
 - ✓ recognition, interpretation (automatically)

1.4 Elements of Digital Image Processing System

- 1) acquisition
- 2) storage
- 3) processing
- 4) communication
- 5) display

1.4.1 Image Acquisition

- Physical device
 - sensitive to a band in the electromagnetic energy spectrum (such as x-ray, ultraviolet, visible, infrared violet)
 - electrical signal output, 디지털카메라, scanner, MRI, PET
- Digitizer
 - electrical output \rightarrow digital form

1.4.2 Storage

Three categories of digital storage

- 1) short term storage for use during processing
- 2) on-line storage for relatively fast recall
- 3) archival storage
- Short term storage
 - computer memory
 - frame buffer (video rate, 30 frames/sec) →instantaneous image zoom, scroll, pan
 - physical site of card
 - usually 32Mbytes
- On-line storage
 - magnetic disks
 - ✓ Winchester disk : hundreds of Mbytes
 - magneto-optical (MO) storage
 - ✓ laser and specialized material technologies
 - ✓ Gbytes of storage
 - characteristics : frequent access to data

- jukebox: hold 30 to 100 optical disks
- Archival storage
 - massive storage but infrequent need for access
 - high density magnetic tape: 6400 B/in
 - ✓ short shelf life (about 7 years)
 - ✓ need of controlled storage environment
 - write-once-read-many (WORM)
 - ✓ 1 GB on $5\frac{1}{4}$ in. disk
 - ✓ 6 GB on 12 in. disk
 - ✓ 10 GB on 14 in. disk
 - ✓ not erasable
 - ✓ shelf life : up 30 years

1.4.3 Processing

- Processing of image
 - algorithmic form
 - mainly implemented in S/W
 - H/W implementation : need for speed : low-light microscopy (image averaging)
 - H/W + S/W : today's image processing system
- Image processing system
 - late in $1980s \sim early$ in the 1990s
 - ✓ the form of single board designed to be compatible with industry standard buses. PC and workstations
 - the principal imaging H/W: digitizer + frame buffer + ALU
 - image processing S/W
 - ✓ obtained commercially
 - ✓ combined with other S/W (spread sheet, graphics)

1.4.4 Communications

- 9.6kbps modem
 - 512×512 8 bit image : 5minutes
 - data compression, decompression

1.4.5 Display

- CRT
- Printing devices