Chapter 4. Image Enhancement

- Processing of images to bring out specific features of an image
- Highlight certain characteristics of an image
- to process image so that the result is more suitable than the original image for a specific application (very much problem-oriented)
- Categories
 - spatial domain method
 - : based on direct manipulation of pixels in image
 - point processing
 - mask processing
 - frequency domain method
 - : based on modifying FT of image
 - combination two domain method
- Color image enhancement

4.1 Background

4.1.1 Spatial Domain Method

- contrast and dynamic range modification
- noise reduction
- edge enhancement and detection
- g(x,y) = T[f(x,y)]:

```
T : operator on f defined over some neighborhood of (x,y) f: input, g: output (processed image)
```

- neighborhood:
 - pixel group processing
 - mask, template, window or filter
 - image is MRF!!

rectangular subimage area centered at (x,y).

- the simplest form of T:
 - neighborhood: 1×1
 - depends only on the value f at (x,y)
 - ex) T: gray-level transformation function S = T(r)

- (a) to produce image of higher contrast (contrast stretching tech.)
- (b) to produce two-level binary image (thresholding)
- point processing technique.
- Simple, powerful processing technique.

- mask approach:
 - larger neighborhood
 - 2D array; values of the arary determine the nature of process (ex. Image shapening)

4.1.2 Freq. Domain Method

• convolution theorem :

$$g(x,y) = h(x,y) * f(x,y)$$

where $h(x,y)$: operator
 $G(u,v) = H(u,v)F(u,v)$

H(u,v): transfer function

• goal:

- to select H(u,v) so that the desired image $g(x,y) = F^{-1}[H(u,v)F(u,v)]$ exhibits some highlighted feature of f(x,y) ex) edge enhancement

: use a function H(u,v) that emphasize the high-frequency components of F(u,v)

• H(u,v), h(x,y)

- impulse response

- in optics
 - h(x,y): point spread function (blurring (spreading) the point)
- spatial convolution mask

4.2 Enhancement by Point Processing

: the simplest method

4.2.1 Some simple intensity transformations

1)image negatives; (complements)

- (a) s = T(r), r : intensity of pixels before processing, s : intensity of pixels after processing
- (b) image, (c) its negative

2) contrast stretching:

- low contrast image:
 - poor illumination

- lack of dynamic range in imaging sensor
- wrong setting of lens aperture

• basic idea:

- increase the dynamic range of gray level

- (a) transformation function location (b) low-contrast image
- (c) contrast stretched image (d) binary image $(r_1 = r_2, s_1 = 0, s_2 = L 1)$ in general $r_1 \le r_2$, $s_1 \le s_2$

3) compression of dynamic range:

- image with large dynamic range that exceeds the capability of the display device :
 - → only the brightest parts of image : visible on screen
 - (ex. Display of FT spectrum of image)

• intensity transform :

$$s = c \log(1 + |r|)$$

4) gray-level slicing:

• highlighting a specific range of gray level:

(a) the range of interest : high gray level, all other : low gray level (b) the range of interest : high gray level, all other : preserve

5) bit-plane slicing:

1-bit planes : from MSB to LSB

→ only 5 highest order bits contain visually significant data

4.2.2 Histogram Processing (Modeling)

→ modify an image so that its histogram has a desired shape

• histogram:

- discrete function

$$p(r_k) = n_k / n$$

where

 r_k : k-th gray level

 n_k : number of pixels with k-th gray level in image

n: total number of pixels in image

k: 0,1,2,...,L-1

- $p(r_k)$: probability of occurrence of gray level r_k

- (a) dark (b) bright (c) little dynamic range (low contrast)
- (d) large dynamic range (high contrast, well-balanced)

1) histogram equalization (linearization): global processing

- r : continuos gray level with interval [0,1]
- transformation

$$s = T(r)$$

- (a) T(r): single-valued, monotonically increasing (the order from black to white in gray scale); preserve the order from black to white
- (b) $0 \le T(r) \le 1$ for $0 \le r \le 1$; 지정된 범위내의 값 갖는 것을 보장

• inverse transformation :

$$r = T^{-1}(s) \qquad 0 \le s \le 1$$

: satisfied two conditions

- s, r : random variables :
 - $P_s(s)$, $P_r(r)$: prob. density function
 - from prob. theory

$$P_s(s) = \left[P_r(r) \frac{dr}{ds} \right]_{r=T^{-1}(s)}$$

• transformation function :

$$s = T(r) = \int_0^r P_r(w) dw$$

$$0 \le r \le 1$$

: cumulative distribution function (CDF) of r

$$\frac{ds}{dr} = P_r(r)$$

$$P_s(s) = \left[P_r(r) \frac{1}{P_r(r)} \right]_{r=T^{-1}(s)}$$
$$= 1 \qquad 0 \le s \le 1$$

: uniform density! independent of the inverse transformation function increase in the dynamic range of pixels considerable effect in appearance of image

• discrete form:

- prob. of k-th gray level
- plot of $P_r(r_k)$ versus r_k : called histogram
- histogram equalization (or linearization)

-
$$S_k = T(r_k) = \sum_{j=0}^k \frac{n_i}{n}$$

= $\sum_{j=0}^k P_r(r_j)$ $0 \le r_k \le 1$ and k=0,1,2,...,L-1

- inverse transformation

$$r_k = T^{-1}(s_k) \qquad 0 \le s_k \le 1$$

- (a) 512×512 8-bit image (b) histogram of image
- (c) the result of histogram equalization (d) its histogram

- increase in dynamic range
- similar enhancement

: can be achieved by using the contrast stretching

: manual manipulation

: histogram equalization →fully automatic

- 2) histogram specification:
- histogram equalization :
 - only one result : uniform histogram
 - not lend itself to interactive image enhancement application
- procedure to specify particular histogram shape :
 - i. $s = T(r) = \int_0^r P_r(w) dw$; histogram equalization
 - ii. $v = G(z) = \int_0^z P_z(w) dw$; specify desired density function and obtain xform function

 $P_z(z)$: pdf of desired image

G(z): transformation function

 \rightarrow specifies

- iii. apply inverse transformation function $x = G^{-1}(s)$ to the levels obtained in step i
 - the new gray level: characterized by the specified density $P_z(z)$
- combined transformation function :

$$z = G^{-1}(s) = G^{-1}[T(r)]$$

if $G^{-1}[T(r)] = T(r) \rightarrow \text{histogram equalization}$

- methods to construct a meaningful histogram :
 - i. to specify a particular pdf (ex. Gaussian function) and then form a histogram by digitizing the given function
 - ii. to specify a histogram shape by mean of a graphic device (ex. Interactive screen, drawing tablet) whose output is fed into processor executing the histogram specification algorithm

3) local enhancement:

- enhancement in details over small areas :
- transformation functions based on the gray -level distribution in the neighborhood of every pixel in the image
- procedure
 - ✓ define a square of rectangular neighborhood
 - ✓ move the center of the area from pixel to pixel
 - ✓ each location, histogram transformation is obtained
 - ✓ map the gray level of pixel centered in the neighborhood
 - ✓ window : moved to adjacent pixel location
 - ✓ the procedure : repeated
 - ✓ only one new row or column of neighborhood : changed
 - ✓ updating the histogram (recursive)

(a): image slightly blurred to reduce its noise center, (b): result of global histogram equalization, considerable enhancement of noise, slight increase in contrast, no new structural details, (c): local histogram equalization with 7×7 window, reveal small square, finer noise texture

- local enhancement using pixel intensities :
 - intensity mean
 - ✓ measure of average brightness
 - variance
 - ✓ measure of contrast
 - transformation at each location (x,y)

$$g(x,y) = A(x,y) \cdot [f(x,y) - m(x,y)] + m(x,y)$$
$$A(x,y) = kM / \sigma(x,y) \qquad 0 \le k \le 1$$

where f(x,y): input image

g(x,y): output

m(x,y): gray level mean computed in a neighborhood centered at

(x,y)

 σ (x,y): gray level standard deviation

M : global mean of f(x,y)

4.2.3 Image Subtraction

- application areas :
 - digital subtraction angiography
 - motion detection and tracking
 - background elimination

• difference between two images f(x,y) and h(x,y)

$$g(x,y) = f(x,y) - h(x,y)$$

- mask mode radiography
 - h(x, y): mask, image
 - : image captured by intensifier located opposite as x-ray source
 - f(x,y): image
 - : image acquired after injection of a dye
 - g(x,y) = f(x,y) h(x,y)

4.2.4 Image Averaging

- noisy image:
 - $g(x, y) = f(x, y) + \eta(x, y)$
 - noise : uncorrelated, zero mean value (assumption)
 - by averaging M different noisy images

if
$$\hat{g}(x,y) = \frac{1}{M} \sum_{i=0}^{M} g_i(x,y)$$

$$\rightarrow E\{\hat{g}(x,y)\} = f(x,y)$$

$$\sigma_{\hat{g}(x,y)}^2 = \frac{1}{M} \sigma_{\eta(x,y)}^2$$

- standard deviation at any point in average image

$$\sigma_{\hat{g}(x,y)} = \frac{1}{\sqrt{M}} \sigma_{\eta(x,y)}$$

4.3 Spatial Filtering

- use of spatial masks for image processing
- linear and non-linear spatial filters fro image enhancement
- high-frequency components: edges and sharp details or noises
- low-frequency components: slowly varying characteristics

4.3.1 Background

- LPF: image blurring
- HPF :
 - eliminate low freq. Components (overall contrast, average intensity)
 - sharpening of edges
- BPF:
 - used for image restoration
 - seldom of interest in image enhancement

- filter in freq. Domain
- corresponding spatial filter

- spatial filtering:
 - to sum products between the mask coefficients. And the intensities of the pixels under mask at a specific location in the image

 3×3 mask

w ₁	w ₂	w ₃		
w ₄	w ₅	w ₆		
w ₇	w ₈	w ₉		

$$- \qquad R = \sum_{i=1}^{9} w_i z_i$$

where w_i : mask coeffs.

 z_i : gray levels of pixels under mask

- nonlinear filters :
 - median, max, min filters

4.3.2 Smoothing filters

- purpose:
 - blurring, noise reduction
 - blurring
 - \checkmark removal of small details from image prior to object extraction
 - ✓ bridging of small gap in lines of curves

1)Lowpass spatial filtering

- All coeffs. : positive
 - modeled by sampled Gaussian function

					1			1	1	1
1	1	1			1	1		1	1	1
1 × 1	1	1	1/25		1			1	1	1
1	1	1			1 1			1	1	1
	(a)				1	1		1	1.	1
								b)		
	1	1	1	1	T	1	1	Γ	1	
	1	1	1	1		1	1	T	1	
	1	1	1	1		1	1		1	
$\frac{1}{49}$ ×	1	1	1	1		1	1		1	
	1	1	1	1		1	1		1	
	1	1	1	1		1	1		1	
	1	1	1	1		1	1		1	

: neighborhood averaging

2)Median filtering

• Objective :

- noise reduction rather than blurring

_

• Gray level of each pixel:

- replaced by median of gray level in mask

- Effective in reduction of strong, spikelike noise
- 3×3 mask:
 - median value : 5th largest value
- equal value:

ex)
$$(10, 20, 20, 20, 15, 20, 20, 25, 100)$$

$$\xrightarrow{sorting} (10, 15, 20, 20, 20, 20, 20, 25, 100)$$
median value : 20

- principal function of median filter:
 - force points with distinct intensities to be more like their neighbors ex.)

